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Abstract: Inflammation is the principal response invoked by the body to address injuries.
Despite inflammation constituting a crucial component of tissue repair, it is well known that
unchecked or chronic inflammation becomes deleterious, leading to progressive tissue damage.
Studies over the past years focused on foods rich in polyphenols with anti-inflammatory and
immunomodulatory properties, since inflammation was recognized to play a central role in
several diseases. In this review, we discuss the beneficial effects of resveratrol, the most
widely investigated polyphenol, on cancer and neurodegenerative, respiratory, metabolic,
and cardiovascular diseases. We highlight how resveratrol, despite its unfavorable pharmacokinetics,
can modulate the inflammatory pathways underlying those diseases, and we identify future
opportunities for the evaluation of its clinical feasibility.
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1. Introduction

Inflammation is a natural protective response of the body to infection or injury; this response
helps to maintain tissue homeostasis under stressful conditions [1]. This complex, tightly regulated
process serves as a rapid defense mechanism to contain potential pathogens, limit further tissue
damage, and stimulate repair mechanisms; consequently, inflammation is crucial for human health [2].
Although inflammatory response processes depend on the precise nature of the initial stimulus
and its location in the body, they all share a common mechanism, which consists of the following
steps: (1) cell-surface pattern receptors recognize detrimental stimuli; (2) inflammatory pathways are
activated; (3) inflammatory markers are released; (4) inflammatory cells are recruited; and (5) the target
tissues are affected [3,4]. This complex set of events results in the cardinal signs of inflammation: pain,
heat, redness, swelling, and eventual loss of function [5].

Inflammation can be acute and chronic [1]. Usually, the acute phase is initiated by tissue-resident
cells that detect pathogens or trauma, and then send chemical signals which amplify the local response
and recruit other cells [2]. Typically, the molecular and cellular events during acute inflammatory
responses are efficient, leading to the restoration of tissue homeostasis, and thus, the complete
resolution of inflammation [6]. However, altering or prolonging the activation of the inflammatory
response, even for low-grade inflammation, can trigger the second stage, called chronic inflammation,
which can cause more damage to a host than the pathogen itself [7]. Low-grade inflammation may
persist throughout periods of life due to recurrent or persistent infections, and emerging evidence
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indicated that inflammation has a pivotal role in the pathogenesis of several chronic diseases, including
metabolic, cardiovascular, pulmonary, and neurological disorders [8–11]. Moreover, studies showed
an association between inflammation and some types of cancers [2,12].

Inflammation therapy is based on the use of non-steroidal anti-inflammatory drugs (NSAIDs),
which possess multiple side effects and have limited efficacy. These drugs are potent inhibitors
of cyclooxygenases 1 and 2 (COX-1 and COX-2). Despite COX-2 being induced by inflammation
to trigger the production of pro-inflammatory prostaglandins (PGE2 and PGD2), COX-1 is the
constitutive isoform involved in homeostatic processes. Because NSAIDs inhibit both enzyme isoforms,
its continuous use can lead to damage to the gastrointestinal tract—the main side effect of these drugs.
Therefore, the development of selective COX-2 inhibitors was a strategy in the pipeline for new
anti-inflammatory compounds. These selective inhibitors, called coxibs, improved the efficacy of
NSAIDs and diminished their damage to the gastrointestinal tract; however, they increased the
risk of cardiotoxicity and hepatotoxicity [13]. For this reason, several drugs already approved by
the Food and Drug Administration (FDA) were removed from the market. In addition to NSAIDs,
glucocorticoids also represent the standard therapy for reducing inflammation. However, resistance
to the anti-inflammatory effects of glucocorticoids constitutes a major drawback to the effective
control of many diseases. Furthermore, glucocorticoid-associated side effects may involve metabolic
disturbances, osteoporosis, and musculoskeletal, gastrointestinal, cardiovascular, neuropsychiatric,
and immunological dysfunction [14,15]. Consequently, there is an urgent need to find novel, safe,
and efficacious agents for the management of inflammation [1].

Accumulating data strongly suggest that phytochemicals from fruits, vegetables, nuts, and herbs
may exert relevant beneficial effects due to their intrinsic antioxidant and anti-inflammatory
properties [16]. The hermetic properties of phytochemicals were reported to activate adaptive stress
response signaling pathways that increase cellular resistance to injury and disease. Thus, natural
products as sources of new anti-inflammatory agents attracted increasing interest in the past decades.
Among several naturally occurring bioactive substances, resveratrol (RSV, 3,4′,5-trihydroxystilbene),
one of the most studied phytochemicals, entered the spotlight since the first scientific paper described
its possible preventive effect on cancer in mice [17].

RSV is produced by plants as a phytoalexin in response to a stressful stimulus, or to a microbial
or fungal infection, providing the plant resistance [18]. First isolated from Veratrum grandiflorum by
Takaoka in the 1940s [19], RSV is found in food sources such as fruits, vegetables, and chocolate,
and is better known as a constituent of grapes and wines, although it is present in only minimal
quantities [18,20]. Due to its presence in wine, RSV attracted attention in the early 1990s to explain
“the French paradox”, which suggested that people from France had a lower incidence of cardiovascular
disease despite their high intake of saturated fats, presumably as a result of moderate red wine
consumption [21].

The application of RSV attracted increasing interest not only from the pharmaceutical industries,
but also from companies investing in cosmetics and food additives. Because of its potential as
a topical anti-aging compound due to its downregulation of important transcription factors involved
in photoaging, RSV gained popularity in dermatology applications as a cosmeceutical to improve skin
health [22–24]. In addition, RSV is already widely distributed as an over-the-counter nutraceutical for
its supposed beneficial effects on human health [20]. This increased interest in RSV activity resulted in
a range of in vitro and animal studies demonstrating its beneficial effects. Several studies demonstrated
the prophylactic and therapeutic properties of RSV in various diseases, including various types of
cancer [25,26], diabetes [27], and cardiovascular diseases [28], which are linked by their important
anti-inflammatory activity [20]. Furthermore, lifespan prolongation in several species was related to
the desirable biological actions of RSV [29–31]. As a pharmacological tool, RSV has a broad spectrum
of molecular targets, and it is believed that the observed effects result from its simultaneous action on
multiple targets (summarized in Table 1). RSV generally modulates enzymes belonging to various
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classes, including kinases, lipoxygenases, cyclooxygenases, and sirtuins [32], and acts as a potent
scavenger of free radicals [33].

Given the scientific interest in RSV over the past decade, this review focuses on understanding the
anti-inflammatory effects of RSV against metabolic, cardiovascular, respiratory, and neurodegenerative
diseases, as well as cancer.

Table 1. Anti-inflammatory effect of Resveratrol in chronic diseases.

Disease Model Concentration/Dose Inflammatory
Molecules Affected Ref.

Cardiovascular and
Metabolic
Disorders

High-fat diet in AMPK
knockout mice model 400 mg/kg v.o. AMPK [34]

High-fat diet mice model 30–400 mg/kg v.o.

↑ PGC-1α expression
↑ SIRT1 activation
↑ AMPK phosphorylation
↓ TLR2/4, MyD88, NF-κB
and AMPKα expression

[35–38]

TNF-α-stimulated human
coronary arterial
endothelial cells

1–100 µM
↓ ICAM-1
and iNOS expression
↓ NF-κB activation

[39,40]

Phenylephrine or
LPS-stimulated

neonatal cardiomyocytes
50 µM SIRT1-dependent [41]

Cigarette smoke
extract-stimulated rat
arteries and cultured

coronary arterial endothelial
cells or Cigarette

smoke-exposed rats

10 µmol/L or 25 mg/Kg
in drinking water

↓ iNOS, ICAM-1
and NF-κB expression
↑ SIRT1

[42]

Postinfarction heart
failure murine model 15 mg/Kg in drinking water ↓ p38-MAPK

and ERK1/2 expression [43]

Ischemia/reperfusion
murine model 100 µmol/L, i.v.

↓ NO and GMPc-dependent
↓ NF-κB
and TLR4 expression

[44,45]

Cardiomyocytes
anoxia/reoxygenation
injury in vitro model

5-20 µM ↓ NF-κB
and TLR4 expression [46]

Cardiovascular disorder in
streptozotocin-induced

diabetic rats model
0.75–80 mg/Kg i.g.

↓ NF-κB level
↓ VEGF expression
↓ p-p38 expression
↓ ERK1/2
and AT1R expression

[47,48]

LPS-stimulated
THP-1-derived macrophages 2.5 µM ↑ SIRT1

and AMPK expression [49]

Atherosclerosis model
induced by

hypercholesterolemia in rats
50 mg/kg in daily diet

↓ ICAM-1, NF-κB and
p38-MAPK expression
↑ SIRT1

[50]

Atherosclerosis model
induced by

hypercholesterolemia in
(apo E)-deficient mice

25 mg/Kg, v.o. ↓ NF-κB expression [51]

Respiratory
Diseases

Cigarette smoke stimulated
human lung epithelial cells 10 µM ↑ Nrf2 expression [52]

Non-stimulated
human lymphocyte 12.5 µmol/L ↓ NF-κB expression [53]

Cigarette smoke exposure
+ LPS rats model 50 mg/kg v.o. ↑ SIRT1

and PGC-1α expression [54]

Cigarette smoke exposure
mice model 1–3 mg/ kg v.o. ↓ NF-κB

nuclear translocation [55]

OVA-induced mice
asthma model 10–50 mg/kg v.o.

↑ NPP4A expression
↓ Akt phosphorylation
↓ TGF-β1/phosphorylated
Smad2/3

[56,57]

OVA-induced mice
asthma model 30 mg/kg i.p. ↑ PTEN expression

↓ MUC5AC expression [58,59]
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Table 1. Cont.

Disease Model Concentration/Dose Inflammatory
Molecules Affected Ref.

LPS-induced mice
ARDS model 5–30 mg/kg i.p.

↓ NF-κB p65
nuclear translocation
↓ p38 MAPK expression

[60,61]

Neuroinflammation

LPS-induced murine
RAW 264.7 macrophages
and microglial BV-2 cells

25–100 µM

↓ TLR4 oligomerization
↓ NF-κB activation
↓ IκB kinase
and IκB phosphorylation
↓ STAT1/3 signaling

[62]

LPS- stimulated mouse
microglia BV2 cells 5–50 µM ↑ PGC-1α expression

↓ NF-κB p65 translocation [63]

Neurotoxin MPTP-
stimulated dopaminergic

SN4741 cells
5–10 µM ↑ PGC-1α expression [64]

6-OHDA induced
Parkinson’s rat model 20 mg/kg v.o. ↓ COX-2 [65]

AD model induced by Aβ 5–10 µM5 mg/kg i.p.

↓ GFAP
↓ JNK and GSK-3β
activation
↓ p-β-catenin

[66,67]

Cancer

TNF-α-stimulated HepG2
human hepatocellular

carcinoma cells
10–100 µM ↓ NF-κB expression [68]

TNF-α-stimulated U373MG
human glioma cell 5–20 µM ↓ NF-κB and uPA

and uPAR expression [69]

Helicobacter pylori-induced
gastric inflammation in mice 100 mg/kg, v.o.

↓ IκBα phosphorylation
and iNOS expression
↑ Nrf2 expression

[70]

3D aggregates of SKOV-3
and OVCAR-5 ovarian

cancer cell
10–30 µM ↓ NF-κB expression [71]

HEK293T human embryonic
kidney cells transfected with

NF-B Luc vector
10–40 µg/mL

↓ NF-κB activity
and IKK-mediated
NF-κB activation

[72]

LPS-stimulated Caco-2 and
SW480 human colon

cancer cells
10–50 µM

↓ IκBα phosphorylation
↓ iNOS expression
and TLR4 expression

[73]

HT-29 and SW480 human
colon cancer cell lines 100–150 µM

↓ IGF-1R/Akt
and Wnt/β-catenin
signaling pathway
↑ p53 protein

[74]

Human bladder cancer cell
line T24 or xenograft cancer

model in mice
50–200 µM or 20 mg/Kg, i.p. ↓ Akt expression [75]

HepG2 Human
hepatocellular carcinoma

and Chang liver cells
200 µM ↓ p38 MAP kinase

and PI3K/Akt expression [76]

Glioblastoma-initiating cells
or xenograft cancer model

in mice
5–20 µM or 10 mg/Kg, i.p. ↓ PI3K/Akt

and NF-κB expression [77]

RPMI 8226, U266, and KM3
multiple myeloma cell lines 100–200 µM ↓ NF-κB expression [78]

U266 and RPMI 8226
multiple myeloma cells 50 µM ↓ NF-κB expression

↓ STAT3 activation [79]

SH-SY5Y human
neuroblastoma cells 50–100 µM ↓ ERK1/2 phosphorylation [80]

HeLa human cervical
squamous carcinoma cells 50 µM ↓ JNK, p38,

and ERK2 activities [81]

v.o. = via oral; i.v. = intravenous; i.g. = intragastric; i.p. = intraperitoneal; ↑= enhances and ↓= decreases.
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2. Resveratrol Metabolism and Bioavailability

Mounting evidence indicates that RSV has a broad range of desirable biological actions. Despite its
therapeutic properties, the application of these beneficial effects remains very limited. RSV exists
as two geometric isomers: cis (Z) and trans (E). The trans-isomer is more abundant and biologically
active than the cis-isomer. However, it was already demonstrated that RSV is extremely photosensitive,
and 80–90% of the trans-RSV in solution is converted to cis-RSV upon exposure to light for 1 h [82].
Furthermore, the poor water solubility of RSV is another constraint for its biological application.

Although the oral absorption of RSV by humans is high (approximately 75%) [83,84],
its bioavailability is less than 1% due to extensive intestinal and liver metabolism, involving glucuronic
acid conjugation and sulfation that generate the key metabolites trans-resveratrol-3-O-glucuronide
and trans-resveratrol-3-sulfate, respectively [83,85–87]. Since this polyphenol is known to have poor
bioavailability in that it is rapidly metabolized and excreted, only trace concentrations of free RSV can
be found in systemic circulation [83,85]. Therefore, the high concentrations of RSV commonly used
for in vitro studies may not be physiologically relevant. Furthermore, the results of these studies are
not expected to correlate well with those of in vivo studies, thus leading to disappointing outcomes in
human clinical trials. Consequently, the successful clinical application of RSV is a severe challenge
for the scientific community. To overcome these challenges, efforts were made to develop adequate
drug delivery systems to achieve better clinical efficacy. These strategies include various approaches,
such as the development of myriad RSV nanoformulations that can improve these inherent biologic
limitations of RSV, increase its solubility, and prevent its degradation while preserving its biological
activity [88–92].

3. Anti-Inflammatory Effects of Resveratrol on Metabolic Derangements and
Cardiovascular Diseases

Metabolic disorders, such as obesity and type 2 diabetes, currently reach epidemic proportions,
primarily due to a lifestyle based on calorie-rich diets and a lack of physical activity [93]. The incidence
of obesity worldwide increased drastically during recent decades. A large part of this risk is due to
obesity being a primary factor in the development of insulin resistance, type 2 diabetes, and metabolic
syndrome, all of which create an increased risk of cardiovascular disease [94]. Furthermore, obesity is
associated with an array of additional health problems, including increased risks of fatty liver disease;
dyslipidemia, characterized by high plasma concentrations of triglyceride and low concentrations
of high-density lipoprotein cholesterol; atherosclerosis; hypertension; degenerative disorders,
including dementia; airway disease; and some cancers [94–97]. These metabolic derangements
are all characterized by chronic low-grade inflammation, leading to the development of metabolic
syndrome [94–98].

Some studies suggest that the effects of RSV on metabolic syndrome are associated with its
ability to mimic caloric restriction, due to increased levels and activity of the protein deacetylase
enzyme—silent information regulator 2/sirtuin-1 (SIRT1). SIRT1 plays a central role in the body’s
response to diet and exercise [99,100]. In mice fed a high-calorie diet, several studies showed
that long-term treatment with RSV improves factors associated with a longer lifespan, including
increased insulin sensitivity [31,34–36], and reduced insulin-like growth factor-1 (IGF-1) levels [31].
RSV treatment also leads to increases in the metabolic rate and mitochondrial number, which
might be correlated with increases in peroxisome proliferator-activated receptor-γ coactivator
1α (PGC-1α) activity and expression, which control mitochondrial biogenesis in the liver and
muscle [31,34]. Additionally, weight loss [34,35,37], reduced fat mass [34], improvements in
glucose homeostasis [34,37], and reductions in plasma triglyceride, tumor necrosis factor-alpha
(TNF-α), and monocyte chemoattractant protein-1 (MCP-1) levels [37] were observed. In adipose
tissues in mice, TNF-α, interferon (IFN)-β, IFN-α, and interleukin (IL)-6 levels were attenuated,
as well as their upstream signaling molecules—toll-like receptors 2 and 4 (TLR2/4), myeloid
differentiation primary response 88 (MyD88), and the transcription factor, nuclear factor kappa B
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(NF-κB) [37,38]. These findings were, in part, correlated with increases in AMP-activated protein
kinase (AMPK) [31,34,36,38] and SIRT1 activity [35,38,101]. In addition, some clinical studies evaluated
the effects of RSV in patients with metabolic syndrome, and achieved promising preliminary results,
such as weight reduction [102], improved insulin sensitivity [103,104], and glycemic control [104,105].
However, further research should be conducted to confirm the pharmacological potential of RSV for
treating the physiological changes of metabolic syndrome.

Although cardiovascular dysfunction might be linked to metabolic syndrome, cardiovascular
disorders include any pathological condition of the blood vessels or heart leading to the
obstruction of continuous blood supply and nutrients to cardiac tissue, and therefore, to the entire
body [106]. Despite being largely preventable, cardiovascular diseases are the most common
cause of death worldwide; they are responsible for almost one-third of all global deaths [107].
Furthermore, the number of worldwide deaths related to cardiovascular disorders is expected to reach
23.6 million in 2030 [28]. Inflammation was also established as a central driver of many disorders that
affect the cardiovascular system [106]. Accumulating evidence shows that elevated circulating levels
of inflammatory markers are associated with an increased risk of future cardiovascular events [108].
However, despite significant advances in cardiovascular research, much work remains to be done to
reveal novel targets for therapeutic intervention [106]. Since RSV was linked to “the French Paradox”
and shown to play a pivotal role in the protection of the cardiovascular system [28], accumulating
evidence showed that its anti-inflammatory activity might underlie its protective mechanism against
cardiovascular diseases.

Several in vitro studies revealed the anti-inflammatory effects of RSV in cardiac tissue,
as evidenced by the inhibition of intercellular adhesion molecule 1 (ICAM-1), inducible nitric
oxide synthase (iNOS), and IL-1β messenger RNA (mRNA) expression in human coronary arterial
endothelial cells stimulated by TNF-α and treated with RSV [39]. Notably, it was already demonstrated
that RSV inhibits TNF-α- and IL-6-induced increases in monocyte adhesion in primary human
coronary arterial endothelial cells, which reduces pro-inflammatory NF-κB levels [40]. Another study
showed that RSV decreases the level of eotaxin-1, a chemokine related to eosinophil recruitment,
in human pulmonary artery endothelial cells stimulated with TNF-α or IL-13. This reduction was
followed by the inhibition of the expression of the pro-inflammatory transcription factors, Janus
kinase 1 (JAK1), phosphorylated extracellular signal-regulated kinase (ERK) 1/2, c-Jun N-terminal
kinase (JNK), and signal transducer and activator of transcription (STAT) 6, and the reduction of
the p65 subunit of NF-κB [109]. It is known that treatment with RSV also suppresses the bacterial
lipopolysaccharide (LPS)-induced tissue factor expression in human peripheral blood mononuclear
cells, which is the major initiator of the extrinsic blood coagulation pathway that is also involved with
intracellular inflammation signaling [110]. Moreover, a study by Planavila and colleagues showed that
RSV prevents phenylephrine, a hypertrophic agonist, or LPS-induced increases in MCP-1 levels in
neonatal cardiomyocytes, suggesting that this effect is due to the activation of SIRT1 [41]. Csiszar et al.
already showed the association between the anti-inflammatory effects of RSV and SIRT1 activation.
Importantly, the authors showed that cultured coronary arterial endothelial cells stimulated with
cigarette smoke extract, but previously treated with RSV, had decreased NF-κB transcriptional activity
and iNOS, ICAM-1, IL-6, IL-1β, and TNF-α expression. Curiously, these effects were significantly
attenuated by SIRT1 knockdown [42].

Cardiovascular diseases can result in heart failure, a progressive cardiac muscle disorder that
leads to the deterioration of heart function, and results in the inability to meet the normal metabolic
and energy needs of the body [111]. Some studies investigated the anti-inflammatory effects of RSV
on heart failure using various animal models. A previous study showed that oral RSV treatment for
28 days significantly attenuated macrophage and mast-cell infiltration in the left ventricles of C57BL6
mice subjected to pressure overload-induced heart failure, induced by transverse aortic constriction
surgery [112]. Furthermore, daily RSV intake for eight weeks resulted in cardioprotective effects against
advanced-stage heart failure in rats subcutaneously injected with isoproterenol, a strong sympathetic



Int. J. Mol. Sci. 2018, 19, 1812 7 of 25

agent used to induce myocardial infarction. Interestingly, this protective effect was accompanied
by a reduction in pro-inflammatory members of the mitogen-activated protein kinase superfamily
(p38-MAPK) and ERK1/2, suggesting that the regulation of these pro-inflammatory pathways may
contribute to the beneficial effects of RSV in cardiac disorders [43].

Heart failure can also be attributable to the detrimental effects of acute myocardial
ischemia/reperfusion injury [113], and anti-inflammatory effects of RSV on this type of injury
were reported. In a recent study, Cong and co-workers showed that reduced myocardial
infarction areas and myocardial myeloperoxidase levels, induced by RSV in a model of myocardial
ischemia, were accompanied by decreased TNF-α concentrations in the serum and myocardium.
Notably, these effects were abolished when the animals were treated with RSV combined with a nitric
oxide (NO) synthase inhibitor and with a cyclic guanosine monophosphate (cGMP) inhibitor, indicating
that these pathways are important for the anti-inflammatory activity of RSV [44]. Similarly, the authors
showed that RSV also reduces the expression levels of NF-κB and TLR4, a known receptor that
triggers innate immune responses; these findings further indicate the anti-inflammatory effects
of RSV in protecting against myocardial ischemia [45]. These results are in line with previous
work showing that RSV protects cardiomyocytes against anoxia/reoxygenation injury via the
TLR4/NF-κB signaling pathway [46]. Hypertension is another factor that may drive the development
of heart failure. RSV administration for eight weeks significantly reduced serum TNF-α and IL-6
levels in spontaneously hypertensive rats, but this treatment did not improve blood pressure [114].
These results suggest that combining RSV with blood pressure-lowering agents, which commonly
do not affect the inflammatory profile, may provide optimal outcomes for reversing cardiovascular
complications in hypertensive patients.

As discussed above, metabolic disorders, such as obesity and diabetes, increase the risk of
cardiovascular disease development. Patients suffering from both diabetes and cardiovascular disease
have a higher risk of mortality than patients without diabetes or heart failure [115]. Recently, a study
showed that RSV improved cardiovascular functions in rats injected with streptozotocin, a compound
toxic to pancreatic β cells. The improvement was linked to decreased serum levels of inflammatory
factors, such as TNF-α, IL-1β, and IL-6, and the inhibition of vascular endothelial growth factor
(VEGF), and the suppression of the p38-MAPK and NF-κB pathways [47]. Similarly, 12 weeks of
RSV treatment reduced the circulating levels of TNF-α, IL-1β, and IL-6, and decreased the activation
of the inflammatory factors angiotensin type 1 receptor (AT1R), ERK1/2, and p38-MAPK in rat
hearts [48]. Furthermore, by treating mice with RSV for two months, Wu and co-workers found
reduced serum, heart, and bone marrow-derived monocyte levels of high mobility group box 1
(HMGB-1), a pro-inflammatory cytokine that exerts its effects via binding to receptor for advanced
glycation end products (RAGE) and toll-like receptors [116]. In line with these results, Delucchi and
collaborators reported decreased HMGB-1 expression in left ventricular myocardial tissue in rats
injected with streptozotocin and receiving a low dose of RSV [117].

Atherosclerosis is another coronary heart disease associated mainly with metabolic derangements,
and the development of new therapies for this disorder is needed. This chronic disease is
associated with arterial inflammation, lipid accumulation in the vessel wall, plaque formation,
thrombosis, and late mortal complications, such as myocardial infarction and ischemic stroke [118].
Inflammatory responses play a crucial role in all phases of atherosclerotic development and progression,
so the anti-inflammatory activity of RSV could be an interesting alternative for the control of
the disease. In cultured THP-1-derived macrophages stimulated with LPS, pretreatment with RSV
suppressed the formation of foam cells, which are considered to initiate atherosclerosis; in addition,
the MCP-1 concentrations were reduced, and the expressions of SIRT1 and AMPK, a factor that
is involved in glucose and lipid metabolism, and inhibits inflammation, were upregulated [49].
In a hyperlipidemia animal model in which rats were fed a cholesterol-enriched diet combined
with vitamin D2, RSV treatment decreased the serum levels of IL-1β. Additionally, reduced MCP-1,
ICAM-1, p65 NF-κB, and p38-MAPK mRNA and protein expression levels were found in the thoracic
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aortas of hypercholesterolemic rats treated with RSV, as well as decreased inflammasome nucleotide
binding and domain-like receptor 3 (NLRP3) oligomerization. These effects were followed by the
upregulation of SIRT1 mRNA and protein expression [50]. Interestingly, Chang and colleagues
previously demonstrated that RSV reduces inflammatory markers, such as aortic macrophage
infiltration and NF-κB expression, in an atherosclerosis model in which apolipoprotein E-deficient mice
were fed a high-cholesterol diet [51]. Furthermore, an elegant study conducted by Cabo and co-workers
showed that RSV prevented high fat and sucrose diet-induced arterial wall inflammation, and the
accompanying increase in aortic pulse wave velocity in nonhuman primates [119]. Although more
studies are warranted to understand the mechanisms involved in the anti-inflammatory effects of RSV
on metabolic and cardiovascular disorders, the evidence discussed above can provide new options for
the development of alternative therapeutic strategies using this polyphenol.

4. Respiratory Diseases and Resveratrol

Respiratory diseases are highly prevalent throughout the world, but occur mainly in westernized
countries [120]. Despite therapeutic advances, there is a progressive increase in respiratory diseases,
which seriously compromises human health [121]. The pathophysiological components and site
of the inflammatory response may vary across respiratory diseases; however, the diseases share
common characteristics, such as airway space oxidative stress increases, which play an important
role in the lesion and inflammatory process [122]. RSV, as mentioned above, is widely known for its
antioxidant and anti-inflammatory effects. Growing evidence indicates that RSV plays a protective
role in respiratory diseases, which was already demonstrated in preclinical models of important
respiratory conditions, such as chronic obstructive pulmonary disease (COPD), allergic inflammation
(asthma models), and acute respiratory distress syndrome (ARDS).

COPD is a progressive lung disease with high global morbidity and mortality rates, and is
characterized by persistent airflow obstruction and emphysema, which are caused primarily by
cigarette smoke inhalation [123]. The mechanisms intrinsic to the pathophysiology of COPD are not
yet fully elucidated, but the disease is associated with chronic inflammation that is usually resistant
to corticosteroids [124]. In vitro assays using cells from a respiratory system treated with cigarette
smoke extract, and cells from COPD patients demonstrated the anti-inflammatory and antioxidant
effects of RSV. It was already shown that RSV reduces glutathione (GSH) depletion by augmenting
GSH synthesis via activating nuclear factor (erythroid-derived 2)-like 2 (Nrf2), a redox-sensitive
transcription factor [52]; RSV also inhibits COPD-related inflammatory mediators, such as IL-6,
MCP-1, TNF-α, IL-8, and granulocyte-macrophage colony-stimulating factor (GM-CSF), and decreases
nuclear NF-κB expression [53,125,126]. Cigarette smoke COPD models were used to show that RSV
reduces lung histological damage, decreases pro-inflammatory protein levels (IL-6, IL-17, TNF-α,
and transforming growth factor beta—TGF-β), inhibits airway remodeling, and reduces mucus
hypersecretion [127]. RSV further alleviates the inflammation and reconstruction of small airways in
the lungs by upregulating SIRT1 and PGC-1α expression [54]. In line with in vitro data, RSV treatment
increases the activity of superoxide dismutase (SOD), GSH peroxidase, and catalase (CAT), as well as
preventing the translocation of NF-κB to the nucleus and its binding activity [55].

Asthma is a heterogeneous clinical syndrome that mainly affects the lower respiratory tract; it is
characterized by chronic inflammation, bronchoconstriction, increased airway hyperresponsiveness
(AHR), and mucus production [128,129]. Current therapy consists of the combined use of
short-acting β2 agonists and inhaled corticosteroids, as well as avoiding aggravating environmental
factors [128]. In vivo studies over the past few years showed that RSV can effectively control
asthma in murine models. RSV has anti-inflammatory effects by suppressing AHR [56,57,130,131],
and reducing the infiltration of inflammatory cells, mainly eosinophils, into bronchoalveolar
lavage fluid (BALF) [130] and lung tissue [56–58]. Total immunoglobulin E (IgE) and ovalbumin
(OVA)-specific IgE levels were diminished in an OVA-induced asthma model, and reductions in
IL-4, IL-5 [56,130], TNF-α [132,133], and TGF-β1 [57] cytokine levels were found. TGF-β1 and



Int. J. Mol. Sci. 2018, 19, 1812 9 of 25

TGF-β1/phosphorylated Smad2/3 receptor expression levels in lung tissues were also significantly
decreased with RSV treatment [57,131]. In addition to the anti-inflammatory effects, using RSV
to treat asthma significantly downregulated oxidative stress by decreasing 8-isoprostane levels
(an in vivo marker of oxidative stress) [56], reducing reactive oxygen species (ROS) production,
and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase cytosolic subunit p47phox
expression, and enhancing SOD levels [133] and mitochondrial function [56]. Concerning airway
remodeling, RSV attenuated the fibrotic response [132], and reduced sub-epithelial collagen
deposition [131] and mucus hypersecretion [130]; RSV reduced mucus hypersecretion via inhibiting
Mucin 5AC (Muc5AC), a major component of mucus [59]. The molecular mechanisms underlying
the improvement of asthma include the increased lung expression levels of phosphatase and tensin
homolog (PTEN) [58] and inositol polyphosphate 4 phosphatase (INPP4A), which are related to
reduced protein kinase B (PKB/Akt) phosphorylation and activity [56]. It was also reported that
RSV inhibits degranulation in mast cells and the protein expression of spleen tyrosine kinase (Syk),
which plays an essential role in immune cell activation and lymphocyte development [132].

ARDS is an inflammatory disorder characterized by injury to the vascular endothelium and
alveolar epithelium, pulmonary infiltration, and inflammatory mediator production. Various factors,
such as pneumonia, sepsis, trauma, smoke, bacteria, and bacterial toxins, can lead to the development
of ARDS [134,135]. Despite numerous efforts, there are currently no effective therapies for ARDS.
A range of protocols to induce acute lung inflammation were used to demonstrate the beneficial
activity of RSV in protecting against lung damage, and reducing inflammation through several
possible molecular mechanisms. Similar data showed that RSV treatment improves structural changes
in the lungs [60,136–139], decreases pulmonary edema [137–139], improves lung function [137],
and diminishes neutrophil infiltration [134,137,138] and myeloperoxidase protein expression and
activity in lung tissue [60,61]. Regarding cytokines, RSV significantly modulates IL-1β [60,139],
IL-18 [60] IL-6, COX-2 [138], and macrophage inflammatory protein (MIP)-1α [139] in BALF and
systemic TNF-α [61]. Its antioxidant effects are evidenced by reduced oxidative stress, including
decreases in the pro-oxidant biomarker malondialdehyde (MDA) and hydrogen peroxide levels,
increases in antioxidant biomarkers (GSH, CAT, and SOD activity) [136,140], and the inhibition of iNOS
expression, ROS and NO production [60,139], and peroxynitrite formation [136]. These effects of RSV
found in the ARDS model are associated with the downregulation of NLRP3 inflammasome activation
through blocking NF-kB p65 nuclear translocation and its DNA-binding activity [60,138,139,141].
Moreover, the TLR4/Myd88 [138] and p38-MAPK [61,141] pathways are significantly downregulated
by RSV.

5. Effects of Resveratrol on Neuroinflammation

Despite inflammation triggering complex molecular and cellular responses to neutralize and
fight threats so as to restore normal body physiology, excessive or chronic inflammation damages the
surrounding healthy tissues [142], and is considered to be actively involved in neurological disorders.
For a long time, the brain was considered to be an immune-privileged organ [143]; however, the entire
understanding of the interaction between the immune system and the central nervous system (CNS)
was revised [144]. The immune system affects the CNS from its borders, and complex immune–CNS
crosstalk was shown to play an essential role in protecting and supporting the CNS in health
and disease [145,146]. Low-grade inflammation is linked to aging [147], and similar inflammatory
processes are thought to occur in the periphery and in the brain, as evidenced by many studies
reporting that the induction of systemic inflammation can trigger increased disease pathology in
murine models of various CNS disorders [148]. In light of these new findings, immune–CNS
interactions and neuroinflammation are recognized as common disease-escalating factors in many
CNS pathologies [149]; these diseases include age-related dementia [150], and neurodegenerative
diseases of the CNS, such as amyotrophic lateral sclerosis (ALS), Parkinson’s disease (PD), Alzheimer’s
disease (AD), and multiple sclerosis (MS) [151–154].
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The potential role of polyphenols in aging and neurodegeneration widened with discoveries that
they modulate various important cell signaling pathways and sirtuins, a class of proteins involved in
longevity and cell survival [29–31]. Given that the activation of inflammatory mechanisms is strongly
associated with aging, and may underlie several CNS disorders, an expanding body of preclinical
evidence suggests that RSV has the potential to impact a variety of CNS diseases. The hallmark
of brain neuroinflammation is the reactive morphology of glial cells, including both astrocytes and
microglia [155–157]. Upon activation, microglia secrete a range of pro-inflammatory factors, including
prostaglandins, chemokines, cytokines, complement proteins, proteinases, ROS, and reactive nitrogen
species, such as NO. The neuroprotective effects of RSV were described in several in vitro and in vivo
models of CNS disorders.

RSV was found to reduce LPS-induced NO and TNF-α production in primary microglia [158],
prevent LPS-induced microglial BV-2 cell activation [62], inhibit PGE2 and free radical production
by rat primary microglia [159], and differentially modulate microglia and astrocyte inflammatory
responses [160]. In addition, several studies used the N9 microglial cell line to indicate that RSV
attenuated the LPS-induced phosphorylation of p38-MAPK and the degradation of inhibitor of κB (IκB),
thus reducing the production of NO and TNF-α [158,161]. Furthermore, it was shown that RSV can
prevent apoptosis in dopamine-producing neurons by inhibiting the production of microglia-derived
TNF-α and IL-1β [162], and RSV can suppress IL-6 gene expression and protein secretion in mixed
glial cultures under hypoxia/hypoglycemia conditions [163].

Attenuating neuroinflammation is a therapeutic strategy for treating ischemic stroke, and several
in vivo studies showed that RSV effectively reduces the increased expression of pro-inflammatory
cytokines, inhibits NF-κB, reduces the phosphorylation of p38-MAPK and JNK activation via
decreased COX-2 and iNOS expression, and inhibits astroglial and microglial activation induced
by ischemia/reperfusion [164–168]. These findings suggest that the suppression of inflammation
is associated with the neuroprotective effects of RSV, and RSV could be a promising candidate for
stroke treatment.

Once microglia were shown to have functional plasticity and dual pro-inflammatory M1 and
anti-inflammatory M2 phenotypes, Yang and collaborators reported that RSV suppressed microglia
activation by promoting polarization toward the M2 phenotype via PGC-1α overexpression [63].
The increased M2 marker expression induced by RSV was accompanied by coactivation of the
STAT6 and STAT3 pathways, and linked to the inhibition of NF-κB. The notion that RSV promotes
PGC-1α expression could lead to the application of this polyphenol for PD therapy, as it was already
demonstrated that PGC-1α expression and activation protect dopaminergic neurons in an MPTP
mouse model of PD [64]. Interestingly, Jin and collaborators previously found that RSV decreased
COX-2 and TNF-α levels in the substantia nigra of rats with 6-hydroxydopamine (6-OHDA)-induced
PD [65]; however, thorough studies showing the mechanisms involved in the anti-inflammatory effects
of RSV in PD are missing.

Microglial activation and inflammation were pointed out to play a pivotal role in AD pathogenesis.
The basis for this assumption comes from studies showing that markers of inflammation such as TNF-α,
IL-1β, IL-6, and other cytokines are increased in the brain, cerebrospinal fluid, and plasma of AD
patients [10,169–171]. Mounting evidence suggests neuroinflammation induced by reactive microglia
leads to reduced amyloid-β peptide (Aβ) clearance, triggers aberrant synaptic pruning [10,172,173],
and prompts Aβ and tau pathologies. Taken together, these alterations contribute to impaired synapse
function [174] resulting in memory dysfunction, the main characteristic of the disease. Although trials
with anti-inflammatory compounds do not yet provide exciting outcomes [175], the lifelong use of
NSAIDs was associated with a reduced risk of developing AD [176]. Therefore, polyphenols could
provide new options for modulating neuroinflammation in AD.

Studies from our group demonstrated that RSV can protect organotypic hippocampal cultures
from Aβ-induced toxicity through decreasing TNF-α, IL-1β, and IL-6 levels, and increasing IL-10
cytokine levels [66]. These salutary effects were highly correlated with the reduction of glial activation
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as a mechanism of protection. Corroborating data appear in a recent study showing that RSV
inhibits neuroinflammation triggered by Aβ in cultured astrocytes and microglia [177]. Capiralla and
colleagues previously showed that RSV mitigates LPS-induced NF-κB activation by interfering with
TLR4 oligomerization, and IκB kinase (IKK) and IκB phosphorylation; these effects potently reduced
the transcriptional stimulation of several NF-κB target genes, including TNF-α and IL-6, in RAW
264.7 macrophages and microglial BV-2 cells [62]. Furthermore, the authors showed that RSV prevented
the pro-inflammatory effects of Aβ on macrophages by inhibiting IκB phosphorylation and activation
of STAT1 and STAT3, and inhibiting TNF-α and IL-6 secretion. Interestingly, Wight and co-workers
reported that RSV inhibited astrocyte production of NO, the cytokines TNF-α, IL-1β, and IL-6, and the
chemokine MCP-1, which play critical roles in innate immunity. In addition, the authors also showed
that RSV suppressed astrocyte production of IL-12p40 and IL-23, which are known to alter the
phenotype of T cells that are involved in adaptive immunity [178].

TNF-α-dependent mechanisms appear to drive memory defects [179], thereby indicating a causal
role of inflammation in the deleterious processes linked to AD. Our previous study suggests that the
chronic administration of RSV blocked cognitive impairment in an animal model of AD, and this effect
seemed to be related to the inhibition of synaptic dysfunction, and microglial and astroglial activation
triggered by Aβ [67]. In addition, RSV treatment modulated important cell signaling pathways, such
as the JNK, GSK-3β, and β-catenin pathways, which might be involved in neuroinflammation, cell
metabolism, and survival. Importantly, the administration of RSV in a mouse model of cerebral amyloid
deposition decreased the microglia activation associated with amyloid plaque formation [62,180].
Although a mechanistic link between inhibited microglia activation and the anti-inflammatory effects
of RSV was not described in these studies, it is already known that microglial-derived cytokines
enhance amyloid precursor protein (APP) processing, induce tau phosphorylation, and contribute to
synapse plasticity impairment in neurons [174]. Altogether, these observations are consistent with the
idea that RSV can modulate several signaling pathways involved in neuroinflammation.

6. Anti-Inflammatory Effects of Resveratrol on Cancer

Advances in diagnostic medicine during the past decades provided highly sensitive tools for
early detection of cancer, one of the most commonly diagnosed diseases [181]. Development of
cancer is a multistep process involving molecular and cellular alterations conventionally divided
into initiation, promotion, and progression [182,183]. Together, these processes cause the hallmark of
cancer: abnormal cell proliferation that cannot be controlled or stopped. Furthermore, epidemiological,
pre-clinical, and clinical studies over the past several decades established a relationship between
inflammation and cancer [184]. Inflammation is involved in all of the major steps of cancer initiation,
metastasis progression, and drug resistance, and epidemiological studies suggest that as many as 25%
of all cancers may be due to chronic inflammation [185,186]. Inflammatory signaling plays decisive
roles in the development of cancer, and involves a complex interplay between oncogenic and tumor
suppressive transcription factors [187].

Despite scientific breakthroughs during the past decades that expanded our knowledge regarding
the cellular and molecular bases of cancer, the development of effective therapies with few side effects
remains a challenge; therefore, the prevention of carcinogenesis is an area of considerable interest
and research. Natural products may provide one the most promising approaches for reducing cancer
via chemoprevention [188]. Given that inflammation is a critical component of tumor progression,
and plays a key role in the tumor microenvironment, RSV might be a promising candidate for cancer
prevention and/or treatment. RSV activity was documented in various cancer cell types; RSV acts on
multiple targets and has anti-inflammatory effects, helping explain the plethora of anticancer pathways
synergistically regulated by this polyphenol. After Jang and co-workers found that RSV inhibited
carcinogenesis in a mouse skin cancer model in 1997 [17], a growing number of studies placed RSV at
the center of anti-cancer research.
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NF-κB regulates diverse cellular activities related to inflammation, and innate and adaptive
immune responses [189], and the deregulation of NF-κB activity was implicated in the development
of cancer [190,191]. Several in vitro, pre-clinical, and clinical studies showed that NF-κB and
NF-κB-dependent gene expression play a major role in cancer progression, metastasis, and drug
resistance [192]. The anti-inflammatory effects of RSV seem to be related to NF-κB signaling
attenuation [193,194], which drives the inhibition of the growth and invasion of various tumor
types [22,68–71,195]. In colorectal cancer cells, for instance, RSV attenuates the phosphorylation,
acetylation, and nuclear translocation of NF-κB [72]. Furthermore, RSV was reported to inhibit
iNOS expression in colon cancer cells [73]; iNOS is an enzyme induced by cytokines and
pro-inflammatory agents. The overproduction of NO can result in cellular injury and inflammation,
and plays an important role in colon tumorigenesis. Because the expression and activity of iNOS
were demonstrated in human colorectal cancer tissue and animal models [196], the use of RSV as
a chemopreventive agent should be investigated. Additionally, it was shown that RSV inhibits the
IGF-1R/Akt/Wnt pathways, and activates p53 [74] to impair cell development and tumorigenesis.
In line with these findings, Frazzi and co-workers showed that RSV, through modulation of SIRT1,
induces increased p53 expression and acetylation, leading to an increase in apoptosis and cell death
of a Hodgkin-lymphoma cell line [197]. Therefore, RSV can constitute a promising agent affecting
cancer initiation.

Alterations in the Phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/Akt signaling pathway
are frequent in human cancer. PI3K/Akt signaling is associated with cell proliferation and survival,
and plays a major role in tumor growth, as well as the potential response of a tumor to cancer
treatment [198]. Further, PI3Kγ regulates the chemokine-mediated recruitment and activation of immune
cells [199], and Akt regulates the transcriptional activity of NF-κB by inducing the phosphorylation and
subsequent degradation of IκB [200]. Mounting evidence shows that RSV, paradoxically, can inhibit the
PI3K/Akt pathway in cancer to regulate cell differentiation, growth, proliferation, and several other
activities [75,76,201]. Additionally, it was reported that RSV inhibits the adhesion, invasion, and migration
of glioblastoma-initiating cells, both in vitro and in vivo, through suppressing the PI3K/Akt/NF-κB
cascade [77]. Given that TNF-α is a strong stimulatory factor in various cancer cell lines [202], previous
studies reported that RSV inhibits TNF-α-induced cell invasion in many types of cancer cells through
inhibiting NF-κB [68,195]. Furthermore, RSV represses the expression of IL-6, B-cell lymphoma 2 (BCL-2),
BCL-xL, X-linked inhibitor of apoptosis protein, cellular inhibitor of apoptosis protein, VEGF, and matrix
metalloproteinase-9 (MMP-9), the syntheses of which are regulated by NF-κB [78,203]. In accordance with
these studies, Ryu and colleagues reported that RSV reduces TNF-α-induced U373MG human glioma cell
invasion through regulating NF-κB activation [69].

The maintenance of a pro-carcinogenic inflammatory microenvironment linked to multiple
alterations in cell signaling pathways was recognized to play a key role in the transitions from
a normal cell to a neoplastic malignant cell, as well as during cancer progression. Although our
current understanding of these alterations is limited, STAT3 seems to be a critical element in
inflammation-related tumorigenesis fostering the proliferation, survival, invasion, and angiogenesis
of tumor cells [204]. Additionally, the signaling mediated by STAT3 is interconnected with NF-κB
signaling, and the co-regulation of inflammatory and oncogenic genes, such as those coding for
IL-1β, BCL-xL, Myc, COX-2, and cyclin D1 [204]. Importantly, this interaction can further promote the
development of tumors via inducing the expression of pro-tumorigenic genes [79]. It is noteworthy that
RSV inhibits proliferation, induces apoptosis, and overcomes chemoresistance through downregulation
of STAT3 and NF-κB [79], providing support for its pro-apoptotic and anti-proliferative potential.
In line with these observations, it was recently found that RSV could modulate the mitogen-activated
protein kinase (MAPK) pathway. Despite needing a constitutively active state of MAPKs for the
maintenance of the malignant state, short-term MAPK activation may cause cell apoptosis [205]. At low
concentrations, RSV activates ERK1/2; however, at higher concentrations, it can inhibit MAPK [80].
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In cervical carcinoma cells, RSV inhibits the activation of p38, JNK1, and ERK2 [81]. In contrast, RSV
activates ERK1/2 in prostate [206], breast [207,208], glial [209], and ovarian cancer cells [210].

Another outstanding effect of RSV against cancer promotion and progression is related to the
control of the expression of microRNAs (miRNAs), mainly those at the crossroads of inflammation,
cell differentiation, and homeostasis. For instance, RSV activity appears to be partially dependent on the
impaired expression of miR-663, miR-21, and miR-155, which are linked to tumor suppression, oncogenicity,
and pro-inflammatory effects, respectively. Modulation of these miRNAs by RSV led to decreased secretion
of pro-inflammatory cytokines IL-6, IL-8, and TNF-α, reduced expression of adhesion proteins, such as
ICAM-1, and leukocyte chemoattractants, and increased production of anti-inflammatory cytokines [211].
Overall, these observations indicate the anti-inflammatory effects of RSV on various types of cancer,
and provide new directions for RSV chemoprevention, and its use as a chemotherapeutic agent.

7. Conclusions

Extensive research within the past several decades revealed that chronic, low-grade inflammation can
underlie the development of several non-communicable diseases, including cancer, and neurodegenerative,
respiratory, metabolic, and cardiovascular diseases. Although scientific breakthroughs during the past
decades expanded our knowledge of the cellular and molecular mechanisms underlying inflammation,
this knowledge is not yet translated into effective therapies. Accumulating data strongly suggest that
phytochemicals can interact with multiple targets, and alter the dysregulated inflammatory pathways
and mediators, thus indicating the possible development of affordable, novel, and safe drugs for the
treatment of inflammatory processes underlying chronic diseases. The growing interest in RSV increased
our understanding of how this polyphenol can directly and indirectly modulate major signaling pathways
that protect cells from inflammation (Figure 1). While preclinical studies yielded exciting results, there is
little clinical evidence that RSV is an effective therapeutic in humans. Although some official systematic
clinical trials using RSV treatment in humans had some disappointing outcomes, the difficulties of the
clinical application of RSV are enormous, such as its poor water solubility, bioavailability, and dosage.
Therefore, in-depth scientific investigations and large-scale clinical trials are required to completely
determine the potential of RSV, and provide new options for the better management of inflammation in
patients with chronic diseases.
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Figure 1. Some of the molecular bases of resveratrol anti-inflammatory effects. Inflammation induces the
activation of several cell signaling pathways. The exact mechanism of RSV-mediated protection is not
yet understood, but it was described that RSV interacts with multiple targets, and alters dysregulated
inflammatory pathways and mediators. Arrows with a point indicate activation, while arrows with a flat
tip indicate inhibition. Dashed arrows indicate a poorly understood mechanism.
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TGF-β Transforming Growth Factor Beta
TLR4 Toll-Like Receptor 4
TNF-α Tumor Necrosis Factor-Ahlpa
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uPAR Urokinase Plasminogen Activator Receptor
VEGF Vascular Endothelial Growth Factor
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