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Heritiera fomes Buch.-Ham., a mangrove plant from the Sundarbans, has adapted to a 

unique habitat, muddy saline water, anaerobic soil, brackish tidal activities and high 

microbial competition. Endophytic fungal association protects this plant from adverse 

environmental conditions. This plant is used in Bangladeshi folk medicine, but it has not 

been extensively studied phytochemically, and there is hardly any report on investigation 

on endophytic fungi growing on this plant. In this study, endophytic fungi were isolated 

from the surface sterilized cladodes and leaves of H. fomes. The antimicrobial activities 

were evaluated against two Gram-positive and two Gram-negative bacteria and the 

fungal strain, Candida albicans. Extracts of Pestalotia sp. showed activities against all test 

bacterial strains, except that the EtOAc extract was inactive against E. coli. The 

structures of the purified compounds, oxysporone and xylitol, were elucidated by 

spectroscopic means. The anti-MRSA potential of the isolated compounds were 

determined against various MRSA strains, i.e., ATCC 25923, SA-1199B, RN4220, XU212, 

EMRSA-15 and EMRSA-16, with MIC values ranging from 32-128 µg/mL. This paper, 

for the first time, reports on the anti-MRSA property of oxysporone and	xylitol, isolation 

of the endophyte Pestalotia sp. from H. fomes, and isolation of xylitol from a Pestalotia sp. 

Keywords: Heritiera fomes; Pestalotia sp.; endophyte; oxysporone; xylitol; anti-MRSA 
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INTRODUCTION 

 

Endophytic fungi are a diverse group of microorganisms that thrive asymptomatically in the 

healthy tissues of the host plant. Many of these endophytes biosynthesize a plethora of 

bioactive secondary metabolites that may assist the host in protection and survival against 

pathogenic microbial and insect attacks, stress tolerance and disease resistance (Zhang et al., 

2006; Rodriguez et al., 2009). Moreover, some of these metabolites are useful as leads for 

novel drug discovery (Tan et al. 2001; Yu et al., 2010; Yadav et al., 2014).  

The unique mangrove ecosystem adjacent to the coastal waters provides a wide variety 

of organic substrates and a significant salinity gradient caused by daily changes in the sea level 

(Shearer et al., 2007). This constitutes an ideal environment for the bases of trunks and 

submerged aerating roots of mangrove plants, making mangrove forests an important source 

for unique endophytic fungi (Xing et al., 2011). Mangrove fungi are the second largest group 

among the marine fungi (Hyde and Lee, 1995). Mangrove forest represents an ecosystem of 

high biodiversity (Bandarnayake, 1998). In addition, plants produce secondary metabolites 

under stressful conditions. Therefore, it is not surprising that mangrove plants, facing various 

ecological and environmental stresses, also biosynthesize a wide range of secondary 

metabolites of potential medicinal importance.   

Mangrove plants are atypical from common terrestrial plants in that they can tolerate 

high salt concentration and remain submerged in saline water. Because of the scant distribution 

of the mangrove forests, mangrove plant species are still almost unacquainted to a vast 

population. Ancient people used mangrove plant species scarcely, because they could hardly 

enter these areas (Shilpi et al., 2012). Heritiera fomes Buch. Ham. (Syn.: Heritiera minor or 

Amygdalus minor) is an evergreen moderate size tree growing abundantly in the Sundarbans 

(Pasha and Siddiqui, 2013). All plant parts of H. fomes are used in the treatment of different 

ailments; leaves and seeds are reported for their uses in the treatment of gastrointestinal 

disorders (diarrhoea, dysentery, constipation, acidity, indigestion and stomach ache) (Mollik et 

al., 2010; Patra and Thatoi, 2011). The stem bark is a well-reputed remedy for diabetes and 

skin diseases (dermatitis, eczema, boils, abscess, acne, sores, and rash) (Mollik et al., 2010). 

Local people use twigs to clean teeth and relive cough (Rahmatullah et al., 2010).  

Activity of many phytochemicals reported with various bioactivities have been found 

to be the products of endophytic fungus, not necessary products of biosynthesis in plants. The 

classic example is taxol, which is actually a compound from an endophytic fungus 
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Pestalotiopsis microspora growing on Taxus wallacbiana, not necessarily produced by the 

plant itself (Strobel et al., 1996). Since tolerance to biotic stress has been correlated with 

endophytic fungal natural products, it is likely that H. fomes would be a rich source of 

endophytic fungi, which produce chemically diverse and biologically active secondary 

metabolites enhancing the host allelopathic effects, and providing protection against 

phytopathogenic microbes (Wangensteen et al. 2009; Patra and Thatoi, 2013). 

In this context, the objective of the present study was to investigate the antimicrobial 

activities, particularly potential anti-MRSA property, of the endophytic fungi from H. fomes 

and to purify compounds responsible for the activity. Therefore, we here report on the isolation 

of endophytic fungi from H. fomes growing in the Sundarbans mangrove forest in Bangladesh, 

the antimicrobial properties of the organic extracts, isolation and structure elucidation of the 

principal antimicrobial secondary metabolites (oxysporone and xylitol) and assessment of their 

anti-MRSA potential. 
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MATERIALS AND METHODS 

 

General. Unless otherwise stated, all chemicals were purchased from Sigma-Aldrich (Dorset, 

UK). All solvents for extraction and chromatography were purchased from Fisher Scientific, 

(Loughborough, UK). NMR solvents were from GOSS Scientific (Crewe, UK). Mass 

spectroscopic analyses were performed on a Finnigan MAT 95 spectrometer. The 
1
H- and 

13
C-

NMR spectra were recorded at 600 MHz and 150 MHz, respectively on an Ultrashield Bruker 

AMX 600 NMR spectrometer. Methyl, methylene and methane carbons were distinguished by 

DEPT experiments. Homonuclear 
1
H connectivity was determined by using the COSY 

experiment. 
1
H-

13
C one-bond connectivity was established with HSQC gradient pulse factor 

selection. Two- and three-bond connectivity was confirmed by HMBC experiments. Chemical 

shifts are reported in δ (ppm) and coupling constants (J) were measured in Hz.  

 

Collection of plant materials, and isolation and identification of endophytic fungi. Healthy 

leaves, bark and roots of Heritiera fomes Buch. Ham. were collected from the mangrove forest 

Sundarbans, Bangladesh. The samples were kept in tightly sealed polythene bags under humid 

conditions at room temperature. The plant was identified during collection following their 

morphological characters as outlined by Zabala (1990), and a voucher specimen (TRN-KU-

2017011) of this collection has been retained at the herbarium of the Forestry and Wood 

Technology Discipline, Khulna University, Khulna, Bangladesh. The isolation of the fungal 

endophytes commenced within 24 h of collection. 

Prior to isolation of endophytes, the plant material was surface-sterilized. The bark, 

roots and leaves were washed thoroughly with water for 8, 10 and 3 min, respectively, 

immersed in 70% ethanol for 1-2 min, 5.25 % Sodium hypochlorite for 1-2 min and again in 

70% ethanol for 30-60 sec (Pattanaik et al., 2008). Finally, the surface-sterilized plant parts 

were washed with sterilized distilled water and allowed to dry inside a laminar flow cabinet. 

Small pieces of tissue were cut from the surface-sterilized plant materials and placed on dishes 

with water agar (WA). The endophytic fungi that immerged from the tissues were transferred 

on to potato dextrose agar (PDA) dishes and sequential sub culturing was performed until pure 

cultures were obtained.  

 For calculation of colonization frequency, the number of endophytic fungi found in the 

water agar was calculated with the total number of tissue placed on the agar plate. The 

colonization frequency percentage and the dominant fungi percentage of the endophytic fungi 
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was calculated using the method described by Kumar, et al. (2009) utilizing the following 

equations. 

 

Colonization frequency % = [(Number of segments colonized by an endophyte) / (Total number 

of segments analysed)] x 100, and 

Dominant fungi % = [(Number of isolates collected from the samples) / Total number of bark)] 

x 100 

 

 Colony morphological features of isolated endophytic fungal strain were recorded, and 

examined under microscope leading to identification as a Pestalotia sp. 

 

Extraction of secondary metabolites. Each pure fungal culture was grown in (5 × 250 mL) 

conical flasks containing potato dextrose broth (PDB) for around 28 days. Culture broths were 

separated from the mycelium by filtration, and the culture filtrates were extracted three times 

with an equal volume of ethyl acetate (EtOAc) in a separating funnel. The EtOAc layer was 

evaporated to dryness under reduced pressure at 40-45°C using a rotary evaporator to obtain a 

crude broth EtOAc extract. The mycelium was dried and extracted by methanol (MeOH) and 

filtered. The MeOH layers was evaporated to dryness under reduced pressure at 50-55°C using 

a rotary evaporator to obtain a crude broth methanolic extract. 

 

Initial antimicrobial screening. The EtOAc and MeOH extracts of the endophytic fungi 

Pestalotia sp were screened for their potential antimicrobial activity against two Gram-

positive, i.e., Staphylococcus aureus (NCTC 12981) and Micrococcus luteus (NCTC 7508) 

two Gram-negative, i.e., Escherichia coli (NCTC 12241) and Pseudomonas aeruginosa 

(NCTC 12903), bacterial strains, as well as against a fungal strain, Candida albicans (ATCC 

90028) using the resazurin 96-well microtitre plate based in vitro antimicrobial assay (Sarker 

et al., 2007). These microbial strains were selected for initial screening because they are easily 

available, easy to grow, representative of two Gram stains and a fungus, provide a clear idea 

about potential antimicrobial activity of test samples, and proven and established organisms 

for initial antimicrobial screening as outlined in numerous publications.  

 All bacterial strains were cultured on nutrient agar (Oxoid) and incubated for 24 h at 37
0
C 

prior to MIC determination (resazurin assay).  Ciprofloxacin was used as a positive control for 

bacterial strains, and nystatin for C. albicans. Resazurin solution, prepared by dissolving 4 mg 
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of resazurin in 20 mL of sterile distilled water, was used in this assay as an indicator of cell 

growth, and the method was as described by Sarker et al. (2007).  

 Briefly, plates were prepared under aseptic conditions. A sterile 96 well plate was labelled. 

A volume of 100 µL of test material in 10% (v/v) DMSO (10 mg/mL for crude extracts) was 

pipetted into the first row of the plate. To all other wells 50 µL normal saline was added. Serial 

dilutions were performed using a multichannel pipette. Tips were discarded after use such that 

each well had 50 µL of the test material in serially descending concentrations. To each well of 

30 µL nutrient broth and 10 µL of resazurin indicator solution was added. Finally, 10 µL of 

bacterial suspension (5×10
5
 cfu/mL) was added to each well. Each plate was wrapped loosely 

with cling film to ensure that bacteria did not become dehydrated. Each plate had a set of 

controls: a column with a broad-spectrum antibiotic as positive control (usually ciprofloxacin 

in serial dilution), a column with all solutions with the exception of the test compound, and a 

column with all solutions with the exception of the bacterial solution adding 10 µL of nutrient 

broth instead. The plates were prepared in triplicates, and placed in an incubator set at 37°C 

for 18–24 h. The colour change was then assessed visually. Any colour changes from purple to 

pink or colourless were recorded as positive. The lowest concentration at which colour change 

occurred was taken as the MIC value. The average of three values was calculated and that was 

the MIC for the test material and bacterial strain. 

 

Assessment of anti-MRSA activity. Unless otherwise stated, all chemicals were obtained 

from Sigma-Aldrich Company Ltd., UK. Cation-adjusted Mueller-Hinton broth was obtained 

from Oxfoid and was adjusted to contain 20 and 10 mg/L of Ca
2+

 and Mg
2+

, respectively. The 

S. aureus strains used in this study included ATCC 25923, SA-1199B, XU212, MRSA340702, 

and EMRSA-15. ATCC 25923 is a standard laboratory strain sensitive to antibiotics like 

tetracycline (Gibbons and Udo, 2000). SA-1199B overexpresses the NorA MDR efflux pump 

(Kaatz et al., 1993). XU212 is a Kuwaiti hospital isolate that is a MRSA strain possessing the 

TetK tetracycline efflux pump (Gibbons and Udo, 2000), whilst the EMRSA-15 strain 

(Richardson and Reith, 1993) was epidemic in the UK.  All were obtained from the National 

Collection of Type Cultures (NCTC).  

 

 An inoculum density of 5X 10
5
 colony-forming units of each bacterial strain was prepared 

in normal saline (9 g/L) by comparison with a 0.5 MacFarland turbidity standard. The inoculum 

(125 µL) was added to all wells, and the microtitre plate was incubated at 37
0
C for the 

corresponding incubation time. For MIC determination, 20 µL of a 5 mg/mL methanolic 
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solution of 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) was added to 

each of the wells and incubated for 20 min. Bacterial growth was indicated by a colour change. 

The minimum inhibitory concentrations (MICs) were determined using broth microdilution 

method according to National Committee for Clinical Laboratory Standards with modification 

using Nutrient broth as the medium. Norfloxacin, a well-known antibiotic, was used as the 

positive control. 

 

Large-scale fermentation and extraction of secondary metabolites. The endophytic fungus 

Pestalotia sp, as its EtOAc and MeOH extracts showed significant antimicrobial activity, was 

subjected large-scale fermentation. The fungus was grown on PDA media for 3 days. The 

mycelium (5 mm) was transferred to 40 x 250 mL conical flasks containing the media. The 

flasks were placed in continuous shaking for around 28 days at 180 RPM at room temperature. 

The mycelium was separated from the media by filtration and extracted by equal volume of 

EtOAc. The mycelium then dried, extracted by MeOH and filtered. Both EtOAc and MeOH 

extracts were dried using a rotary evaporator. 

 

Fractionation, isolation and structure elucidation of the bioactive compounds 

(oxysporone and xylitol). Reversed-phase analytical HPLC analysis of the EtOAc and the 

MeOH extracts, using a Phenomenex C18 reversed-phase column (250 mm x 4.6 mm; particle 

size 5 µm) on a Dionex Ultimate 3000 analytical HPLC-coupled with a photo-diode-array 

detector (mobile phase: standard gradient of 30-100% MeOH in water over 30 min, flow rate: 

1 mL/min), revealed the presence of only two major metabolites (>90% of the extract), one in 

each extract. Therefore, the crude EtOAc and MeOH extracts were investigated directly by 1D 

and 2D NMR and MS spectral data analyses, revealing the identity of the major compounds as 

xylitol (1) from the EtOAc extract and oxysporone (2) from the MeOH extract.  
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RESULTS AND DISCUSSION 

 

Pestalotia sp (family: Amphisphaeriaceae), which is a secondary pathogen, saprophytic on 

dead and dying tissues and weakly parasitic infecting wounds under moist conditions, was 

successfully isolated and identified as one of the major endophytic fungal species growing in 

various parts, e.g., leaves, bark and roots of the mangrove plant Heritiera fomes. The 

identification of Pestalotia sp was based on its macroscopic and microscopic morphological 

features (Figure 1). The frequency of endophytic fungal growth was quite variable in various 

parts; from the primary culture (water agar medium) of fungi, the colonization frequency 

percentage and dominant fungi percentage were calculated using the method described by 

Kumar et al. (2009) and the frequencies of endophytic fungal growth in the water agar medium 

were 100, 60 and 67% in leaves, bark and roots, respectively.  

 

   

(a)                                                      (b)                                               (c) 

Figure 1: (a) Pestalotia sp on PDA medium (b) Spore of the fungi at 100x (c) Mycelium of 

the fungi. 

 

Large-scale culture and subsequent extraction of Pestalotia sp with EtOAc and MeOH 

yielded 0.6 and 1g of crude EtOAc and MeOH extracts, respectively. Initial assessment of the 

antimicrobial activity of the extracts using the resazurin microtitre assay (Sarker et al., 2007) 

demonstrated significant antimicrobial activity against all tested microorganisms (Table 1) 

with MIC values ranging from 0.00024 mg/mL to 0.25 mg/mL, except that the EtOAc extract 

was inactive against E. coli. The most remarkable activity was observed with the MeOH extract 

against P. aeruginosa (MIC = 0.00024 mg/mL), which was approximately half the potency of 

the positive control, ciprofloxacin (MIC = 0.00012207 mg/mL). 
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Table 1. Antimicrobial activity of the EtOAc and MeOH extracts of Pistalotia sp

  

Test organisms Minimum inhibitory concentration (MIC) 

in mg/mL 

Positive controls Extracts 

Ciprofloxacin Nystatin EtOAc MeOH 

Candida albicans (ATCC 90028) NT 0.00097656 0.25 0.062 

Escherichia coli (NCTC 12241) 0.00048828 NT NA 0.25 

Micrococcus luteus (NCTC 7508) 0.00097656 NT 0.25 0.062 

Pseudomonas aeruginosa (NCTC 12903) 0.00012207 NT 0.125 0.00024 

Staphylococcus aureus (NCTC 12981) 0.00097656 NT 0.25 0.125 

 

NT = Not tested; NA = No activity at the highest test concentration 

 

As both extracts showed significant antimicrobial activities, they were analysed by reversed-

phase analytical HPLC coupled with a photo-diode-array detector. Each extract showed the 

presence of one major peak, accounting for >90% of the detected peaks in the extracts. 

However, the peak observed for the EtOAc extract almost co-eluted with the solvent front, 

right at the beginning of the chromatogram. Analytical HPLC analysis suggested that there was 

no need for further purification as it seemed the major compounds present in the extracts were 

of sufficient purity for further analysis. Therefore, the crude EtOAc and MeOH extracts were 

investigated directly by 1D and 2D NMR and MS spectral data analyses, revealing the identity 

of the major compounds as xylitol (1) from the EtOAc extract and oxysporone (2) from the 

MeOH extract (Figure 2). NMR and MS spectroscopic analyses established that xylitol (1) 

constituted more than 95% of the EtOAc, and as this compound does not have any 

chromophore, this compound was not really observed in the HPLC chromatogram of the 

EtOAc extract where PDA UV-Vis detector was used. The peak observed in the HPLC 

chromatogram of EtOAc extract was not due to xylitol (1), but for some highly UV sensitive 

minor compounds (<5%) of highly polar phenolic or polyphenolic compound(s) which almost 

co-eluted with the solvent front. Thus, the NMR and MS, together with the HPLC data, have 

established that the crude EtOAc and MeOH extract had >95% pure xylitol (1) and oxysporone 

(2), respectively, requiring no additional purification process, e.g., chromatography, to obtain 

these compound in high yield and high purity directly from the crude (broth) extract. 
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1 

 

 

2 

 

Figure 2. Xylitol (1) and oxysporone (2) from Pestalotia sp 

 

The ESIMS (positive and negative ion modes) analyses of the EtOAc extract comprising 

mainly one compound (1) revealed the [M + H]
+
 ion at m/z 153 and the [M-H]- ion at m/z 151 

confirming the molecular formula C5H12O5 for the compound present in the EtOAc extract. 

The 
1
H NMR spectrum (Table 2) showed several highly overlapped peaks in the region dH 

3.60-3.80 ppm, assignable to oxymethine and oxymethylene protons, indicating that the 

compound was a polyhydroxylated compound. The 
13

C NMR spectrum (Table 2) showed 

signals for only three carbons in the region dC 63.7-71.6 ppm, and a DEPTQ 
13

C NMR revealed 

that two of the three signals (dC 70.0 and 71.6 ppm) were oxymethine carbons and one was an 

oxymethylene (dC 63.7 ppm), but there was no quaternary or methyl carbon. The 
1
H-

13
C HSQC 

NMR spectrum (Table 2) established the direct 
1
H-

13
C correlations and helped assignment of 

the overlapped protons. The number of 
13

C NMR signals and their associated 
1
H NMR signals 

could not support any three carbon based chemical compound, and also could not satisfy the 

MS data. The only way the situation could be explained was with the presence of a symmetry, 

where there were two sets of identical carbon atoms in the molecule. Therefore, instead of a 

compound containing three carbon atoms, it was actually a compound with five carbon atoms, 

and all carbon atoms were linked to oxygen atoms. Taking the NMR and MS data together, the 

compound could be identified as xylitol (1) (Biological Magnetic Resonance Data Bank, 2017), 

where a clear symmetry exists (Figure 2). The 
1
H-

13
C HMBC NMR spectrum established the 

2
J and 

3
J 

1
H-

13
C correlations (Table 2) and further confirmed the structure of xylitol (1). To 

the best of our knowledge, this is the first report on the isolation of xylitol from a Pestalotia 

sp.. However, this compound has previously been found in other fungal species, e.g., 

Aspergillus and Candida (Sampaio et al., 2003; Dalli et al., 2017) and endophytic yeast (Buro 

et al., 2012). 
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Table 2. 1D and 2D NMR data of xylitol (1) 

 

Position Chemical shift d in ppm 
1
H-

13
C HSQC 

direct correlation 

1
H-

13
C HMBC long-

range correlations 

1
H NMR

a
 (Coupling 

constant J in Hz in 

parentheses) 

13
C 

NMR
b
 

1
J 

2
J 

3
J 

1 and 5 3.62 and 3.78 m, 4H 63.7 C-1 and C-5 C-2  (C-4) C-3 

2 and 4 3.76 dt (6.9, 4.4), 2H 70.0 C-2 and C-4 C-1, C-3 

(C-3, C-5) 

C-4 

(C-2) 

3 3.66 m, 1H 71.6 C-3 C-2, C-4 C-1 

(C-5) 

 

a
Obtained in CD3OD, 600 MHz; 

b
Obtained in CD3OD, 150 MHz 

 

The ESIMS (positive ion mode) analyses of the MeOH extract comprising mainly one 

compound (2) revealed the [M + H]
+
 ion at m/z 157 confirming the molecular formula C7H8O4 

for the compound present in the MeOH extract. The 
1
H NMR and 

13
C NMR spectra of 2 (Table 

3), revealed the presence of two olefinic methines (dH 6.46 and 5.05; dC 143.5 and 100.1), one 

highly deshielded oxymethine (dH 5.87; dC 96.0) and another oxymethine (dH 4.05; dC 60.0), a 

methine (dH 2.85; dC 41.8) and a methylene (dH 2.38 and 2.62; dC 29.5). The 
13

C NMR spectrum 

(Table 3) also showed the presence of a lactone carbonyl signal at dC 175.3. All these data 

were comparable to the published NMR data for oxysporone (2) (Figure 2) (Adesogan and 

Alo, 1979; Venkatasubbaiah et al. 1991; Mazzeo et al., 2013). A combination of 
1
H-

1
H COSY, 

1
H-

1
H NOESY, 

1
H-

13
C HSQC and HMBC NMR analyses further supported the identification 

of 2 as oxysporone and the unequivocal assignment of all data. Oxysporone (2) was first 

isolated from Fusarium oxysporum (Adesogan and Alo, 1979), but later, found in a number of 

other endophytic fungal strains including Pestalotia species (Sarker et al., 2017). This is the 

first report on the isolation of Pestalotia sp growing on the mangrove plant, Heritiera fomes, 

as well as the isolation of oxysporone (2) from this endophytic fungus.  
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Table 3. 1D and 2D NMR data of oxysporone (2) 

 

Position Chemical shift d in ppm 
1
H-

13
C HSQC 

direct correlation 

1
H-

13
C HMBC long-

range correlations 

1
H NMR

a
 (Coupling 

constant J in Hz in 

parentheses) 

13
C 

NMR
b
 

1
J 

2
J 

3
J 

2 6.46 d (6.0), 1H 143.5 C-2 C-3 C-4,  

C-6 

3 5.05 ddd  

(6.0, 5.5, 1.0), 1H 

100.1 C-3 C-2, C-4 C-5 

4 4.05 dd (5.5, 2.0), 1H 60.0 C-4 C-3, C-5 C-6,  

C-7 

5 2.85 m, 1H 41.8 C-5 C-4, C-6,  

C-7 

C-3,  

C-8 

6 5.87 d (4.5), 1H 96.0 C-6 C-5 C-7,  

C-8 

7 2.38 and 2.62 dd  

(11.6, 9.2) 

29.5 C-7 C-5, C-8 C-4,  

C-6 

8 - 175.3 - - - 

 

a
Obtained in CD3OD, 600 MHz; 

b
Obtained in CD3OD, 150 MHz 

 

Once the structures of xylitol (1) and oxysporone (2) were confirmed, and their initial 

antimicrobial activity was assessed (Table 1), these compounds were subjected to evaluation 

of their potential anti-MRSA activity against five MRSA strains (Table 4), as the focus of this 

study was on anti-MRSA activity. Both compounds demonstrated considerable activity against 

all strains with MIC values ranging from 32-128 µM. Oxysporone (2) was most active against 

the MRSA strains, SA1199B and EMRSA-15 (MIC = 32 µM), and overall, was more active 

than xylitol (1).  In fact, the anti-MRSA activity of oxysporone (2) against SA1199B and 

MRSA340702 was comparable with the positive control norfloxacin (Table 4).  

 



14	

	

Table 4. Anti-MRSA activity of xylitol (1) and oxysporone (2) from Pistalotia sp

  

Test organisms  Minimum inhibitory concentration (MIC) 

in µM 

Positive control 

(Norfloxacin) 

Test compounds 

1 2 

XU212  16 128 128 

ATCC25923  2 128 64 

SA1199B  32 64 32 

EMRSA-15  1 64 32 

MRSA340702  64 128 64 

 

 This is the first report on the anti-MRSA activity study on xylitol (1) and oxysporone (2). 

Bioactivity studies on oxysporone (1), surprisingly, have been limited to its phytotoxicity and 

antifungal property over the last few decades, despite the fact that it was first isolated as a 

potential cure for chronic dysentery (Adesogan and Alo, 1979; Andolfi et al., 2014; Sarker et 

al., 2017). Antimicrobial activity of H. fomes has previously been reported (Wangensteen et 

al., 2009), but only with the crude extracts. One might wonder, whether the antimicrobial 

activity, at least to some extent could be contributed by the antibacterial secondary metabolites, 

e.g., xylitol (1) and oxysporone (2) produced by the endophytic fungus like Pestalotia sp 

growing in H. fomes. Xylitol (1) is a sugar alcohol, used as a sweetener in chewing gum, 

lozenges and nasal spray, and known to reduce the incidence of acute middle ear infection in 

healthy children, and to inhibit the growth of Streptococcus pneumoniae, as well as the 

attachment of Haemophilus influenzae on the nasopharyngeal cells (Reusens, 2004). 
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CONCLUSIONS 

The present study has revealed that H. fomes harbours the endophytic fungus, Pestalotia sp. 

that produces potent antimicrobial substances, xylitol (1) and oxysporone (2). The findings of 

this study also suggests that endophytes from harsh and competitive environments, like 

mangrove eco system, might be an attractive source for new anti-infective compounds. 

Promising anti-MRSA activity shown by oxysporone (2) might be exploited further to generate 

analogues using oxysporone (2) structural template for anti-MRSA drug discovery and 

development. In fact, oxysporone (2) has a simple structure and the hydroxyl group at C-4 

could provide an easy option for generating numerous synthetic analogues by simply 

incorporating various functionalities at C-4 whilst keeping the main skeleton intact.   
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