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Anti-Müllerian hormone (AMH), secreted by immature Sertoli cells, provokes the regression of male fetal Müllerian ducts. FSH
stimulates AMHproduction; during puberty, AMH is downregulated by intratesticular testosterone andmeiotic germ cells. In boys,
AMH determination is useful in the clinical setting. Serum AMH, which is low in infants with congenital central hypogonadism,
increases with FSH treatment. AMH is also low in patients with primary hypogonadism, for instance inDown syndrome, from early
postnatal life and in Klinefelter syndrome from midpuberty. In boys with nonpalpable gonads, AMH determination, without the
need for a stimulation test, is useful to distinguish between bilaterally abdominal gonads and anorchism. In patients with disorders
of sex development (DSD), serum AMH determination helps as a �rst line test to orientate the etiologic diagnosis: low AMH is
indicative of dysgenetic DSD whereas normal AMH is suggestive of androgen synthesis or action defects. Finally, in patients with
persistent Müllerian duct syndrome (PMDS), undetectable serum AMH drives the genetic search to mutations in the AMH gene,
whereas normal or high AMH is indicative of an end organ defect due to AMH receptor gene defects.

1. Introduction

Anti-Müllerian hormone (AMH), also known as Müllerian
inhibiting substance (MIS) or factor (MIF), is a member of
the transforming growth factor-� (TGF-�) secreted essen-
tially by fetal and prepubertal Sertoli cells and to a lesser
amount by granulosa cells of small follicles. AMHplays a bio-
logical major role in shaping the male reproductive tract by
triggering the regression of male fetal Müllerian ducts while
androgens, secreted by the Leydig cells present in the intersti-
tial tissue, are responsible for the stabilization of theWol�an
ducts and their dierentiation into male accessory organs as
well as for the virilization of the urogenital sinus and the
external genitalia. In males lacking AMH, the persistence of
Müllerian derivatives coexists with the development of nor-
mal male external genitalia. It follows that clinical applica-
tions of AMH in pediatric endocrinology are essentially diag-
nostic and restricted to boys. In recent years, AMHhas gained

great importance in gynecology and obstetrics, due to its
value as a marker of ovarian reserve but this clinical applica-
tion does not concern pediatricians and will not be consid-
ered here. Several AMH ELISA kits are commercially avail-
able as discussed elsewhere in this issue.

2. Ontogeny and Regulation of
Testicular AMH Production

AMH is a homodimeric glycoprotein member of the TGF-
� family. It is initially secreted as a precursor, subsequently
cleaved to yield 110 kDa N-terminal and 25-kDa C-terminal
homodimers, which remain associated as a biologically active
noncovalent complex [1]. Dissociation of the noncovalent
complex occurs at the time of binding to type II AMH recep-
tor and is required for biological activity [2].
emajor site of
AMH production is the immature Sertoli cell. In the late fetal
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Figure 1: Regulation of testicular AMH secretion by gonadotropins and androgens. In general, the hypothalamus regulates LH and FSH
secretion by the gonadotroph through the gonadotropin-releasing hormone (GnRH). LH acts on the LH receptor (LH-R) present in Leydig
cells, inducing testosterone (T) secretion. FSH acts on the FSH receptor (FSH-R) present in Sertoli cells.
e hypothalamic-pituitary-gonadal
axis is active in the foetus and early infancy, is quiescent during childhood, and is reactivated at puberty. FSH is a moderate inducer of AMH
secretion, whereas T, acting through the androgen receptor (AR), is a potent inhibitor of AMHproduction. In the normal foetus and infant, as
well as in patients with the androgen insensitivity syndrome (AIS), the lack of AR expression results in high AMH production by Sertoli cells
(I). During childhood, there is a physiologic hypogonadotropic state resulting in very low T; AMH levels remain high, but somewhat lower
probably due to the lack of FSH stimulus (II). In normal or precocious puberty, T prevails over FSH, resulting in AMH inhibition (III). In
congenital central hypogonadism, AMH is lower than in the normal boy because of the longstanding lack of FSH from foetal life; however, at
pubertal age, the inhibitory eect of T is also absent, and AMH remains higher than in normal puberty (IV). In Leydig cell-speci�c primary
hypogonadism (Leydig cell aplasia or hypoplasia due to LH-R defects or defects of steroidogenesis), the inhibitory eect of androgens is
absent, and AMH levels are high. 
e orange area represents the testis. 
ickness of lines is in correlation with hormone eect on its target.
From [5], Copyright Karger AG, 2010, with permission.

and postnatal ovary, it is also produced by granulosa cells of
developing follicles, essentially preantral and small antral fol-
licles [3, 4].

In the male, AMH is a speci�c functional marker of the
immature Sertoli cell. AMH expression is initiated at the time
of fetal dierentiation of the seminiferous cords, by the end of
the 7th embryonic week, and remains at high levels until the
onset of puberty, except for a transient decline in the perinatal
period [6, 7]. AMH expression is triggered by SOX9, which
binds to the AMH promoter; subsequently, SF1, GATA4, and
WT1 further increase AMH promoter activity (reviewed in
[8]). 
e onset of AMH expression and its basal expression
level throughout life are independent of gonadotropins.
However, FSH stimulates testicular AMHproduction by both
inducing Sertoli cell proliferation and upregulating AMH
transcription [9]. 
e latter is mainly mediated by the clas-
sical pathway involving Gs� and adenylyl cyclase increase of
cyclic AMP levels, which stimulates protein kinase A (PKA)
activity, subsequently involving transcription factors SOX9,
SF1, GATA4, NF�B, and AP2 [10–12]. During puberty, AMH
production is inhibited by the increase of intratesticular
testosterone concentration and the onset of germ cell meiosis

(Figure 1) (reviewed in [13, 14]). 
e inhibitory eect of
androgens onAMHovercomes the positive eect of FSHa�er
pubertal onset. On the contrary, androgens cannot inhibit
AMH production in the fetal and neonatal testis, where
Sertoli cells do not yet express the androgen receptor [15–17].

3. AMH in Boys with Hypogonadism

Gonadotropin and testosterone, which are high in the 3–6
months a�er birth, normally decrease to very low levels until
the onset of puberty. 
erefore, their usefulness as markers
of the function of the hypothalamo-pituitary-gonadal axis
in the boy is limited. On the contrary, AMH determination
is extremely useful, since Sertoli cells remain active during
infancy and childhood [18, 19]. Serum AMH reliably re�ects
the presence and function of testes in prepubertal boys, with-
out the need for any stimulation test [18, 20, 21]. In this sec-
tion, we address how the dierent disorders causing hypogo-
nadism aect AMH testicular production.

3.1. Central Hypogonadism. Serum AMH is low in infants
with congenital central hypogonadism. Treatment with FSH
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Figure 2: AMH levels in central hypogonadism. Serum AMH was
low for Tanner stage I (prepubertal) in patients with previously
untreated central hypogonadism. Initial treatment with recombi-
nant human FSH (rhFSH) during 30 days resulted in an elevation
of serum AMH in all 8 patients, while testosterone (T) remained at
prepubertal levels. Shaded area represents normal AMH for Tanner
I stage, according to T levels observed in these patients. Subsequent
addition of hCG treatment resulted in an elevation of T which
provoked a decline in serum AMH. Shaded area represents AMH
values for Tanner IV-V stages, according to T levels observed in
the treated patients. From [5], Copyright Karger AG, 2010, with
permission.

results in an elevation in serum AMH in correlation with an
increase in testis volume [22]. In patients of pubertal age with
untreated congenital central hypogonadism, serum AMH
is elevated for age—because the insu�cient testosterone
production is unable to downregulate AMH, but lower than
expected for patient’s Tanner stage [23, 24]—re�ecting the
lack of FSH stimulus. FSH treatment results in an increase in
serumAMH; subsequent treatmentwith hCG induces andro-
gen production, which provokes a physiological decline in
AMH (Figure 2). Interestingly, inhibition of AMH does not
occur when patients are treated with exogenous testosterone,
which re�ects that intratesticular testosterone levels remain
low [24].

3.2. Primary Hypogonadism. In patients with sex-chro-
mosome aneuploidies resulting in Klinefelter syndrome
(47,XXY), no overt signs of hypogonadism are evident during
infancy and childhood: AMH, inhibin B, and FSH levels
are normal. However, from midpuberty Sertoli cell function
deteriorates progressively, resulting in extremely lowor unde-
tectable AMH and inhibin B levels, very high FSH, and small
testis volume [25].

Unlike Klinefelter syndrome, the somatic aneuploidy of
Trisomy 21 (Down syndrome) results in early-onset primary
hypogonadism in a large proportion of cases. Serum AMH is
low from infancy [22].

Patients with Prader-Willi syndrome have hypogonadism
leading to small genitalia and arrested pubertal development,

classically attributed to hypothalamic dysfunction. However,
recent investigations have demonstrated that the disorder
may also be due to primary hypogonadism, with low AMH
and testosterone levels associated with normal to moderately
elevated gonadotropins [26–28] or to a combined form of
hypogonadism, with low testicular hormones and inade-
quately normal gonadotropins [27, 29].


e X-linked form of adrenal hypoplasia congenita asso-
ciated with hypogonadism resulting from mutations in the
DAX1 gene is another example of combined (central + pri-
mary) hypogonadism. 
ese patients have low serum AMH
and inhibin B and defective androgen response to hCG,
indicative of a primary testicular failure. At pubertal age,
gonadotropin levels remain inadequately normal in spite of
the lack of negative feedback resulting from low inhibin B and
testosterone, which indicates that gonadotrope function is
also impaired [30].

3.3. Cryptorchidism. Cryptorchidism is a sign that can be
present in many disorders of dierent etiologies, most of
which remain elusive [31, 32]. Dissociated testicular dysfunc-
tion primarily aecting the tubular compartment seems to be
the underlying pathophysiology in cases presenting with low
AMH [33] and inhibin B [34] but with normal testosterone
and INSL3 [35] during early infancy and childhood. In other
cases, no signi�cant changes in hormone levels could be
detected [36]. 
e apparently contradictory results are most
probably due to the heterogeneity of the cryptorchid patients
with underlying conditions of dierent etiologies and prog-
noses. Bilateral cryptorchidism with nonpalpable gonads
should be distinguished from anorchia. Vanishing or regres-
sion of testicular tissue occurring in late fetal life, once
sex dierentiation has occurred, is associated with male
genitalia, micropenis, and hypoplastic scrotum. Later in
postnatal life, anorchia should be distinguished from bilateral
cryptorchidism with abdominal testes. Serum AMH is unde-
tectable in anorchid boys but detectable in boys with abdom-
inal gonads (Figure 3) [20, 21, 37].

In Noonan syndrome, cryptorchidism occurs in approx-
imately 2/3 of the cases. During childhood, reproductive
hormones are within the expected range. Pubertal onset is
delayed; by mid- to late puberty, gonadotropin levels increase
over the normal range and AMH and inhibin B decline to
subnormal levels in patients with a history of cryptorchidism
but remain within normal levels in those with descended
testes [38].

4. AMH in Disorders of Sexual Differentiation


edevelopment and dierentiation of the sex organs during
fetal life involve three successive steps: (1) the early mor-
phogenesis of the gonadal and genital primordia, which is
identical in XY and XX embryos; (2) the dierentiation of the
gonadal ridge into a testis or an ovary; (3) the dierentiation
of the primordia of the internal and external genitalia, which
are virilized by the action of androgens and AMH or femi-
nized in their absence.
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Figure 3: Serum AMH levels are useful to distinguish between
bilateral cryptorchidism with abdominal testes and anorchism.
Serum AMH is undetectable in anorchid patients; in patients with
bilaterally abdominal testes, serum AMH is always detectable rang-
ing from subnormal to normal values according to the functional
status of the gonads. Shaded area represents the normal serumAMH
range (3th–97th centiles), according to [22].

Based on the recognition of the cause of abnormal sex
organ development in patients bearing a Y chromosome
(Table 1), disorders of sex development (DSD)may be divided
into (a) malformative DSD, where abnormal morphogenesis
of the genital primordia occurs in early embryonic life; (b)
dysgenetic DSD, due to abnormal gonadal dierentiation
resulting in insu�cient secretion of androgens and AMH;
and (c) nondysgenetic DSD, in which the abnormal sex hor-
mone-dependent genital dierentiation results from speci�c
defects in the production or action of androgens or AMH.

4.1. AMH in Malformative DSD. Defects in the early mor-
phogenesis of the Müllerian orWol�an ducts, the urogenital
sinus, or the primordia of the external genitalia, for example,
cloacal malformations, isolated hypospadias, or aphallia,
usually occur in eugonadal patients. 
erefore, serum AMH
and testosterone levels are within the expected range for sex
and age. From a practical standpoint, nonendocrine related
DSD should be considered when there is inconsistency in
the development of the dierent elements of the genitalia.
For instance, isolated hypospadias, with no other signs of
hypovirilization, in patients with normal AMHand androgen
levels is most probably due to early morphogenetic defects
[39, 40]. In most cases, endocrine-unrelated malformations
of the genitalia are associated with other somatic dysmorphic
features, like in Robinow syndrome due to ROR2 mutations,
Pallister-Hall syndrome due to GLI3 mutations, or many
other polymalformative associations of unknown etiology.
“Idiopathic” persistence of Müllerian derivatives (PMDS) in
patients with a normal AMH level, mutation-free AMH, and
AMH receptor genes may belong to the same category (see
below).

4.2. AMH in Dysgenetic DSD. Gonadal dysgenesis estab-
lished in the �rst trimester of fetal life represents the earliest
form of primary hypogonadism and prevents the normal
hormone-driven dierentiation of the sex organs. In the
fetus carrying a Y chromosome, gonadal dysgenesis results in
female or ambiguous genitalia, re�ecting the degree of testic-
ular hormone de�ciency. SerumAMH is low or undetectable,
depending on the amount of testicular tissue remaining [41]
(Table 1 and Figure 4). Serum AMH observed in a newborn
with ambiguous genitalia should be compared with reference
levels for the adequate age period to avoid overdiagnosis of
dysgenetic DSD. AMH levels are transiently lower during the
�rst 2-3 weeks a�er birth in the normal newborn [6, 7, 22];
when in doubt, a repeat measurement to assess the evolution
of serum AMHmay be helpful [42].

In 45,X or 45,X/46,XX patients, gonads are reduced to
�brous streaks or develop into dysgenetic ovaries. Serum
AMH levels re�ect the amount of small follicles present in
these gonads and predict the occurrence of spontaneous
pubertal onset [43].

Ovotesticular DSD is a particular type of gonadal dysgen-
esis where both testicular and ovarian tissues are present.
e
most frequent karyotypes are 46,XX or mosaicism including
at least one XY lineage. 
e degree of virilization is usually
commensurate with the amount of testicular tissue. In XX
patients, the dierential diagnoses are congenital adrenal
hyperplasia, aromatase de�ciency, and androgen-secreting
tumors. An increased level of serum AMH is speci�c of
ovotesticular DSD [41]; in the other conditions serum AMH
is in the female range. In contrast, androgen assay is not
useful for diagnosis, since androgens are always above normal
female levels.

4.3. AMH in DSD due to Defects in Androgen Synthesis or
Action. While gonadal dysgenesis aects the production of
both androgens and AMH, DSD may also result from a spe-
ci�c defect impairing the endocrine function of Leydig cells.
In this case, there is a “dissociated” or “cell-speci�c” form of
fetal-onset primary hypogonadism (reviewed in [5]), as
opposed to gonadal dysgenesis leading to whole gonadal
failure. De�ciency of androgen synthesis results in the occur-
rence of female or ambiguous external genitalia and no
uterus.

4.3.1. Leydig Cell Aplasia/Hypoplasia and Steroidogenic Pro-
tein Defects. Leydig cell aplasia, due to inactivating muta-
tions of the LH/CG receptor, and defects in proteins or
enzymes involved in testicular steroidogenesis result in com-
plete lack or insu�ciency of androgen production by the
testes. Consequently, hypovirilization or feminization of gen-
italia occurs as in dysgenetic DSD. Both dissociated primary
hypogonadism speci�cally aecting Leydig cells and dysge-
netic DSD have low testosterone levels in serum, yet it is pos-
sible to distinguish them bymeasuring AMH.While AMH is
low or undetectable in dysgenetic DSD, as described above, it
is normal/high in steroidogenic defects because the androgen
inhibitory eect on AMH is lacking and the elevation of
serum FSH upregulates AMH secretion [41], particularly in
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Table 1: Etiopathogenic classi�cation of disorders of sex development (DSD) in patients with a Y chromosome.

Etiopathogenic classi�cation Serum AMH Serum T

(A) Malformative DSD

Defective morphogenesis of the wol�an ducts

Congenital absence of the vas deferens (Cystic Fibrosis) Normal Normal

Defective morphogenesis of the urogenital sinus and of the primordia of the
external genitalia

Cloacal malformations, aphallia, and isolated hypospadias Normal Normal

(B) Primary hypogonadism (early fetal-onset)

(B.1) Dysgenetic DSD: whole testicular dysfunction

Complete gonadal dysgenesis

Y chromosome aberrations

DSS duplications, 9p deletions (DMRT1/2?), 1p duplication (WNT4?)

Gene mutations: SRY, CBX2, SF1, WT1, SOX9, DHH, MAMLD1, TSPYL1,
DHCR7, and so forth

Undetectable Undetectable

Partial gonadal dysgenesis

Same as complete gonadal dysgenesis Low Low

Asymmetric gonadal dierentiation

45,X/46,XY, an other mosaicism, or Y chromosome aberrations Low Low

Ovotesticular gonadal dierentiation

46,XX/46,XY; an other mosaicism Low Low

(B.2) Nondysgenetic DSD: cell-speci�c dysfunction

Leydig cell dysfunction

Mutations in LH/CG-R, StAR, P450scc, P450c17, POR, cytochrome b5,
3�-HSD, and 17�-HSD

High in neonates and
in pubertal age,
normal in childhood

Low/undetectable

Sertoli cell dysfunction

AMH gene mutations Low/undetectable Normal

(C) End-organ failure

(C.1) Androgen end-organ failure

Impaired DHT production

5�-Reductase gene mutations Normal Normal

Androgen insensitivity syndrome (AIS)

Androgen receptor mutations

Partial AIS: high in
neonates, normal in
childhood, and
inadequately high at
pubertal age
Complete AIS:
normal/low in
neonates, normal in
childhood, and very
high at pubertal age

Normal/high

(C.2) AMH end-organ failure

AMHR-II mutations Normal Normal

3�-HSD: 3�-hydroxysteroid dehydrogenase; 17�-HSD: 17�-hydroxysteroid dehydrogenase; AGD: asymmetric gonadal dierentiation; AMH: Anti-Müllerian
hormone; AMHR2: Anti-Müllerian hormone receptor type 2.

the �rst 3–6 months a�er birth and at pubertal age in those
caseswhere gonadectomyhas not yet been performed (Table 1
and Figure 4). It should be noted that AMHmay bewithin the
normal male range in these patients during childhood.

4.3.2. De�ciency of 5�-Reductase. Steroid 5�-reductase is
the key enzyme for the conversion of testosterone to dihy-
drotestosterone (DHT). 
e androgen receptor has a higher
a�nity for DHT than for testosterone. In the absence of
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Figure 4: Serum AMH in disorders of sex development (DSD). (a) Serum AMH levels in patients with DSD. LCD: Leydig cell defects,
including Leydig cell aplasia or hypoplasia and steroidogenic enzyme mutations; CAIS: complete androgen insensitivity syndrome; PAIS:
partial androgen insensitivity syndrome; PTD: partial testicular dysgenesis, including asymmetrical gonadal dierentiation; CGD: complete
gonadal dysgenesis; TH: true hermaphroditism or ovotesticular DSD. 
e shaded areas represent the normal levels. Data is obtained from
[41]. Copyright, 
e Endocrine Society, 1999. (b) Serum AMH levels in patients with DSD due to defects in androgen production (Leydig
cell defects, LCD) or action (complete or partial androgen insensitivity syndrome, AIS). 
e shaded area represents the normal levels. Data
is obtained from [44]. Copyright, 
e Endocrine Society, 1994, with permission.

5�-reductase activity, the Wol�an ducts dierentiate nor-
mally because the adjacent testes supply su�ciently high
local testosterone concentrations. Conversely, more distant
androgen-dependent organs, like the urogenital sinus and the
external genitalia, need testosterone conversion to DHT for
adequate virilization. 
e Müllerian ducts regress normally
because Sertoli cell AMH production is not aected. Testos-
terone levels are normal, and serum AMH is also within
the normal male range. Because there are normal testicular
androgen concentration and androgen receptor expression
and FSH is not elevated, serumAMH is not increased in these
patients [45] (Table 1).

4.3.3. Androgen Insensitivity Syndrome (AIS). Androgen
insensitivity due to mutations in the androgen receptor is the
most frequent cause of lack of virilization in eugonadal XY
patients. 
e testes dierentiate normally, and both Sertoli
and Leydig cells are functionally normal from an endocrine
standpoint. Owing to end-organ insensitivity to androgens,
Wol�an ducts regress, and the urogenital sinus and the exter-
nal genitalia fail to virilize. Müllerian ducts do not develop,
re�ecting normal AMH activity. Complete AIS results in a
female external phenotype, whereas partial AIS presents with
ambiguous genitalia.


epituitary-gonadal axis shows dierent features during
the �rst three months of life in complete and partial AIS.
In the newborn with complete AIS, FSH remains low, which
probably explains why serumAMH is not as high as expected
[46]. Conversely, in partial AIS, gonadotropins as well as
AMH are elevated (Table 1 and Figure 4) [44, 46]. As in DSD
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Figure 5: Recurrent alleles in families with persistent Müllerian
duct syndrome (PMDS). Number of PMDS families and number
of families with recurrent alleles. PMDS: persistent Müllerian duct
syndrome; AMH: anti-Müllerian hormone gene; AMHR-II: anti-
Müllerian hormone receptor type II gene.

due to defects of steroid synthesis, serum AMH remains
within the normal male range during childhood [41]. At
pubertal age, provided gonadectomyhas not been performed,
a dierence is again observed between partial and complete
AIS. In complete AIS, serum AMH increases to abnormally
high levels, whereas in partial AIS the elevation of intrat-
esticular testosterone concentration is capable of inducing
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an incomplete inhibition of AMH expression. Nonetheless,
AMH levels are inadequately high for the concomitant circu-
lating testosterone [41].

4.4. AMH in the PersistentMüllerianDuct Syndrome (PMDS).
PMDS is characterized by the persistence of Müllerian duct
derivatives, uterus, Fallopian tubes, and upper vagina, in oth-
erwise normally virilized 46,XYmales. Approximately 85%of
cases are due to mutations of the AMH or AMHR-II gene; in
roughly equal proportions, 15% are idiopathic. All the infor-
mation provided is current up to May 2013.

4.4.1. AMH De�ciency: PMDS due to AMH Gene Mutations

Clinical and Anatomical Features. Because of their normal
external male phenotype, patients are assigned at birth to the
male gender without hesitation, in spite of the fact that one or
both testes are not palpable in the scrotum. When cryp-
torchidism is unilateral, the contralateral scrotal sac contains
a hernia, in addition to the testis. Preoperative diagnosis of
PMDS is best reached by laparoscopy [47, 48]. However,
unless an elder brother has been diagnosed with the con-
dition, persistence of Müllerian derivatives is usually dis-
covered unexpectedly during a surgical procedure for cryp-
torchidism and/or hernia repair.

Testes and the vasa deferentia adhere to thewalls of uterus
and vagina [49]. 
eir location depends upon the mobility

of the Müllerian structures. O�en, the broad ligament which
anchors the uterus to the pelvis is abnormally thin, allowing
the Müllerian derivatives to follow one testis through the
inguinal canal and into the scrotum, resulting in “hernia
uteri inguinalis.” 
e testis on the opposite side may already
be present in the same hemiscrotum, a condition known as
“transverse testicular ectopia;” this rare condition is associated
with PMDS in 30% of cases [50]. Very rarely, transverse tes-
ticular ectopia is the only anatomical abnormality observed
in patients homozygous for an AMH or AMHR-II mutation;
no Müllerian derivatives can be detected [51].


e PMDS testis is only loosely anchored to the bottom
of the processus vaginalis; the gubernaculum is long and thin,
resembling the round ligament of the uterus and exposing the
mobile testis to an increased risk of torsion [52] and subse-
quent degeneration [53]. Alternatively, the Müllerian deriva-
tivesmay remain anchored in the pelvis, preventing testicular
descent [54] and giving rise to bilateral cryptorchidism. 
e
presence of these midline structures may be missed if cure
is attempted through inguinal incisions. 
e apparent rise
in the incidence of PMDS over recent years may be due to
the increased use of laparoscopy in patients presenting with
bilateral impalpable testes.

Prognosis. Pubertal development is normal; however, incon-
trovertible evidence of paternity is lacking. Infertility may
result from aplasia of the epididymis or germ cell degenera-
tion due to long standing cryptorchidism. However, excising
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Figure 7: Ethnic origin of PMDS families. Results are expressed
as percentages of total number of families with, respectively, AMH
or AMHR-II mutations. 
e number of families is shown between
parentheses. Dierences between AMH and AMHR-II mutations
are not statistically signi�cant; the predominance of Northern
Europe merely re�ects a recruitment bias. N. Europe: Northern
Europe (including Northern France), S. Europe: Southern Europe
(including Southern France), Africa: (mostlyMaghreb),ME:Middle
East (includes Turkey, Afghanistan, and Pakistan, as per Wikipedia
de�nition), Latin Am.: LatinAmerica (includesMexico, Central and
South America).

the uterus to allow abdominal testes to descend into the
scrotum carries signi�cant risks to testicular blood supply.
Most authors recommend partial hysterectomy, limited to the
fundus and proximal Fallopian tubes or the simple division
of Müllerian structures in the midline. Later, in the case of
ejaculatory duct defects, intracytoplasmic sperm injection
may be helpful. Orchiectomy is required if the testis cannot be
brought down because of a 15% risk of cancer, an incidence
apparently not higher than that for other abdominal unde-
scended testes (reviewed in [55, 56]). AMH mutations are
asymptomatic in young girls.

Biological Features. Testosterone and gonadotropin levels are
normal for age. Serum AMH levels are generally very low or
undetectable in prepubertal patients [57] due to instability
of the mutant protein. 
is is not restricted to mutations
coding for the bioactive C-terminus [58]: a 3D model of the
C-terminus has been generated, using BMP2 and BMP7 as
templates, providing insights into the impact of 3� mutations
upon secretion and action. One single mutation suspected
of disturbing the interaction of the molecule with its type I
receptor, ALK3, coexisted with a normal serum AMH con-
centration [58].
us, a normal serumAMH, albeit very rare,
does not absolutely rule out the possibility of a pathogenic
AMH gene mutation; however, this hypothesis cannot be
entertained unless the AMHR-II gene has been totally exon-
erated.

Type I
receptor

AMHRII

Receptor signaling
complex

P P

Smad1/5/8PSmad4

P

Translocate to nucleus
Turn on AMH responsive genes

Mature AMH

AMH intracellular signaling

Figure 8: Signaling pathway of the AMH protein. Model showing
how processing of AMH may regulate the assembly of the recep-
tor signaling complex. Cleavage of full-length AMH results in a
conformational change in the C-terminal domain, indicated by the
shape and color change, which allows binding of AMRH-II. Binding
of AMHRII induces dissociation of the proregion via a negative
allosteric interaction between the receptor- and proregion-binding
sites on theC-terminal dimer, indicated by the shape change. Results
presented in this paper are consistent with proregion dissociation
occurring before type I receptor engagement, but this has not been
proven. Type I and II receptor-binding sites on theC-terminal dimer
are indicated by either a I or a II; black labels indicate sites on the
front of the dimer, and white labels indicate sites on the back of
the dimer. From [2], Copyright 
e Endocrine Society, 2010, with
permission.

Molecular Genetics. 
e human AMH gene, �rst cloned in
1986 [59], contains 5 exons. 
e 3� end of the last one is
extremely GC rich and shows homology to other members
of the TGF-ß family; it codes for the bioactive C-terminal
domain of the AMH molecule. 
e gene is located on
the short arm of chromosome 19 [60]. PMDS is usually
transmitted as an autosomal recessive trait; AMH mutations
are responsible for 52% of the PMDS cases in which genetic
defects have been detected.
e�rst reportedAMHmutation,
a nonsensemutation of the 5th exon,was discovered in 1991 in
a Moroccan family [61]. At the time of writing, May 2013, 65
families with AMHmutations (Figure 5), representing a total
of 54 dierent alleles, have been identi�ed (Figure 6). Except
for exon 4, all exons coding both the inactive N-terminal
proregion and the bioactive C-terminal mature protein are
aected. All types of mutations are represented; 63% are
homozygous. 
ere is no true hotspot, though 17 abnormal
alleles have been detected inmore than one family.
e ethnic
origin of patientswith documentedAMHmutations is shown
in Figure 7. 
e high proportion of European families is
certainly due to a recruitment bias.

4.4.2. Insensitivity to AMH: PMDS due to AMH Receptor
Mutations. Like other members of the TGF-ß family, AMH
uses two types of membrane-bound serine/threonine kinase
receptors for signal transduction. 
e AMH type II receptor,
cloned in 1994 [62, 63], binds speci�cally to AMH and then
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recruits type I receptor, which phosphorylates intracytoplas-
mic proteins, the SMADs, allowing them to enter the nucleus
to interact with target genes (Figure 8).

ALK2/ACVR1 [64, 65], ALK3/BMPR1A [66], and
ALK6/BMPR1B [67], all type I receptors of the BMP
family, have been found to interact with the AMH type II
receptor. ALK2/ACVR1 [65] and ALK3/BMPR1A [66] have
been shown to function redundantly in transducing AMH
signal to provoke Müllerian duct regression. Conversely,
ALK6/BMPR1B disruption does not aect Müllerian duct
regression in male mice [64], and in the immature Sertoli
cell line SMAT1 ALK6/BMPR1B inhibits AMH action [68].

Mutations of type II receptor, AMHR-II, are responsible
for 48% of PMDS cases with documented genetic abnormal-
ities (Figure 5). Clinical and biological features do not dier
from those described above for AMH mutations, apart from
the fact that serum AMH level is low/normal. AMH assay
cannot discriminate between AMH and AMHR-II mutations
in adulthood, because, in both instances, AMH levels are low.
Even in childhood, a normal AMH level is not speci�c for
AMHR-IImutations, since approximately 15%of PMDS cases
are not associated with either AMH or AMHR-II mutations.


e AMHR-II gene is composed of 11 exons, the �rst 3
coding for the receptor extracellular domain, exon 4 for most
of the transmembrane domain, and the rest for the intracellu-
lar domain, where the kinase consensus elements are located.

e gene has been mapped to the long arm of chromosome
12 [69]. 
e �rst AMHR-II mutation in PMDS, a splice
mutation, was reported in 1995 [69]. Since then, 59 families,
harboring a total of 49 abnormal AMHR-II alleles, have been
studied in our laboratory, and an additional one has been

reported in Boston (Figure 9) [70]. All exons except exon
4 may be aected. A 27-base deletion in exon 10 is present
in approximately half the families with receptor mutations,
nearly all of Northern European origin, suggesting a founder
eect. Other recurrent mutations are much less frequent,
apart from the nonsense R407Stop in exon 9, detected in 5
cases.

In approximately 15% of PMDS cases, all with a normal
level of serum AMH, both the AMH and AMHR-II genes,
including their proximal promoters and intronic sequences,
are free of mutations. Several were born small and/or pre-
sented with various other congenital defects, such as jejunal
atresia [71]. Mutations of the AMH type I receptors or cyto-
plasmic downstream eectors [72] are unlikely since these are
shared with the BMPs and required for normal embryonic
development. Inactivation [73] or dysregulation [74] of ß-
catenin or dysfunction of other factors capable of interfering
with AMH action might be involved.

5. Concluding Remarks

Assay of serum AMH now provides the pediatric endocri-
nologist with a new tool for investigating the function of the
prepubertal testis, without the need for hCG stimulation.
e
assessment of both serumAMH, amarker of Sertoli cell func-
tion, and serum testosterone, re�ecting Leydig cell function,
is a simple and useful tool for the clinician. In DSD patients,
when both hormones are below the normalmale range, testic-
ular dysgenesis should be suspected. AMH in the male range
and low testosterone indicate Leydig cell-speci�c disorders.
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When both hormones are within or above the male range,
androgen target organ defects are most likely. Finally, PMDS
is a rare etiology of cryptorchidism in boys with virilized
external genitalia: in these cases, low or undetectable serum
AMH predicts mutations in the AMH gene while normal
serum AMH drives attention to the AMHR-II gene. In boys
with normally virilized genitalia, serum AMH helps in the
assessment of the existence and function of testes. Unde-
tectable AMH is indicative of anorchia, whereas low AMH
indicates primary or central hypogonadism.

Abbreviations

AIS: Androgen insensitivity syndrome
AMH: Anti-Müllerian hormone
AMHR-II: AMH receptor type 2
DSD: Disorders of sex development
hCG: Human chorionic gonadotropin
PMDS: Persistent Müllerian duct syndrome.
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[9] C. Lasala, D. Carré-Eusèbe, J.-Y. Picard, and R. Rey, “Subcellular
andmolecularmechanisms regulating anti-Müllerian hormone
gene expression in mammalian and nonmammalian species,”
DNA and Cell Biology, vol. 23, no. 9, pp. 572–585, 2004.

[10] C. Lukas-Croisier, C. Lasala, J. Nicaud et al., “Follicle-stim-
ulating hormone increases testicular Anti-Müllerian Hormone

(AMH) production through Sertoli cell proliferation and a non-
classical cyclic adenosine 5�-monophosphate-mediated activa-
tion of the AMH gene,” Molecular Endocrinology, vol. 17, no. 4,
pp. 550–561, 2003.

[11] R. A. Rey, M. Venara, R. Coutant et al., “Unexpected mosaicism
of R201H-GNAS1 mutant-bearing cells in the testes underlie
macro-orchidismwithout sexual precocity inMcCune-Albright
syndrome,”HumanMolecular Genetics, vol. 15, no. 24, pp. 3538–
3543, 2006.

[12] C. Lasala, H. F. Schteingart, N. Arouche et al., “SOX9 and
SF1 are involved in cyclic AMP-mediated upregulationof anti-
Müllerian gene expression in the testicular prepubertal Sertoli
cell line SMAT1,”American Journal of Physiology: Endocrinology
and Metabolism, vol. 301, no. 3, pp. E539–E547, 2011.

[13] R. Rey, “Endocrine, paracrine and cellular regulation of postna-
tal anti-Müllerian hormone secretion by Sertoli cells,” Trends in
Endocrinology and Metabolism, vol. 9, no. 7, pp. 271–276, 1998.

[14] R. A. Rey, M. Musse, M. Venara, and H. E. Chemes, “Ontogeny
of the androgen receptor expression in the fetal and postnatal
testis: its relevance on sertoli cell maturation and the onset of
adult spermatogenesis,”MicroscopyResearch andTechnique, vol.
72, no. 11, pp. 787–795, 2009.

[15] E. B. Berensztein, M. S. Baquedano, C. R. Gonzalez et al.,
“Expression of aromatase, estrogen receptor � and �, androgen
receptor, and cytochrome P-450scc in the human early prepu-
bertal testis,” Pediatric Research, vol. 60, no. 6, pp. 740–744,
2006.

[16] H. E. Chemes, R. A. Rey, M. Nistal et al., “Physiological
androgen insensitivity of the fetal, neonatal, and early infantile
testis is explained by the ontogeny of the androgen receptor
expression in Sertoli cells,” Journal of Clinical Endocrinology &
Metabolism, vol. 93, no. 11, pp. 4408–4412, 2008.

[17] K. Boukari, G. Meduri, S. Brailly-Tabard et al., “Lack of andro-
gen receptor expression in Sertoli cells accounts for the absence
of anti-Müllerian hormone repression during early human
testis development,” Journal of Clinical Endocrinology &Metab-
olism, vol. 94, no. 5, pp. 1818–1825, 2009.

[18] R. Rey, “Assessment of seminiferous tubule function (anti-
Müllerian hormone),” Best Practice and Research, vol. 14, no. 3,
pp. 399–408, 2000.

[19] M. M. Lee, M. Misra, P. K. Donahoe, and D. T. MacLaughlin,
“MIS/AMH in the assessment of cryptorchidism and intersex
conditions,” Molecular and Cellular Endocrinology, vol. 211, no.
1-2, pp. 91–98, 2003.

[20] M.M. Lee, P. K. Donahoe, B. L. Silverman et al., “Measurements
of serum Müllerian inhibiting substance in the evaluation of
children with nonpalpable gonads,”�eNew England Journal of
Medicine, vol. 336, no. 21, pp. 1480–1486, 1997.

[21] N. Josso, “Paediatric applications of anti-Müllerian hormone
research. 1992 Andrea Prader Lecture,” Hormone Research, vol.
43, no. 6, pp. 243–248, 1995.

[22] R. P. Grinspon, P. Bedecarrás, M. G. Ballerini et al., “Early onset
of primary hypogonadism revealed by serum anti-Müllerian
hormone determination during infancy and childhood in tri-
somy 21,” International Journal of Andrology, vol. 34, no. 5, pp.
e487–e498, 2011.

[23] J. Young, R. Rey, B. Couzinet, P. Chanson, N. Josso, and G.
Schaison, “Antimüllerian hormone in patients with hypogo-
nadotropic hypogonadism,” Journal of Clinical Endocrinology &
Metabolism, vol. 84, no. 8, pp. 2696–2699, 1999.

[24] J. Young, P. Chanson, S. Salenave et al., “Testicular anti-
Müllerian hormone secretion is stimulated by recombinant



International Journal of Endocrinology 11

human FSH in patients with congenital hypogonadotropic
hypogonadism,” Journal of Clinical Endocrinology & Metabo-
lism, vol. 90, no. 2, pp. 724–728, 2005.

[25] M. G. Bastida, R. A. Rey, I. Bergadá et al., “Establishment of tes-
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