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Abstract

Anti-Müllerian hormone (AMH) was initially thought to be produced solely by the foetal male during sexual differentiation to promote

regression of the Müllerian ducts. Over the last decade, however, a new and interesting role has emerged for AMH in the ovary. In human

ovaries, AMH is produced by granulosa cells from 36 weeks of gestation until menopause, with the highest expression being in small

antral follicles. AMH production gradually declines as follicles grow; once follicles reach a size at which they are dominant, it has largely

disappeared. Its removal from these larger follicles appears to be an important requirement for dominant follicle selection and

progression to ovulation as AMH has an inhibitory role in the ovary, reducing both primordial follicle initiation and follicle sensitivity to

FSH by inhibition of aromatase. It is for this reason that AMH is a focus of interest in polycystic ovary syndrome (PCOS). Serum levels are

doubled, and granulosa cell production is greatly increased. Interestingly, there appear to be two groups of women with PCOS who can

be distinguished by their AMH level: one group consists of those who have high levels which do not reduce with treatment and who

respond less well to induction of ovulation, and a second group consists of those in whom the level is less elevated and reduces on

treatment and who seem to respond rather better. Understanding the reason for the raised AMH in PCOS may give clues as to the

mechanism of anovulation. To conclude, AMH appears to have a major inhibitory role during folliculogenesis, which may contribute

to anovulation in PCOS.
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Introduction

Anti-Müllerian hormone (AMH), also known as Müller-
ian-inhibiting substance, is a member of the transforming
growth factor-b (TGFb) superfamily, which includes
more than 35 structurally related peptides including
activins, inhibins, bone morphogenetic proteins (BMPs)
and growth differentiation factors. Many of these are
involved in the reproductive function of both sexes
(Itman et al. 2006, Knight & Glister 2006). TheAMH gene
is located on chromosome 19 (Cohen-Haguenauer et al.
1987, Cate et al. 1990) and encodes a 140 kDa dimeric
glycoprotein. AMH is synthesised as a pro-hormone,
which undergoes cleavage at the site of action to
generate a biologically active C-terminal fragment
(Pepinsky et al. 1988, Wilson et al. 1993, Rey et al. 2003).

Members of the TGFb superfamily exert their effects
through serine/threonine kinase receptors. AMH acts on
its own specific type II receptor, AMHR2 (Imbeaud et al.
1995, Visser et al. 1995), to signal through a BMP-like
pathway, recruiting one of the type I receptors; ALK 2, 3
or 6. Downstream signalling of the AMH receptor
involves cytoplasmic effectors known as receptor-related
SMAD proteins (R-Smads 1, 5 and 8) and a common
SMAD4 protein (Visser 2003). Once AMH binds to
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AMHR2, the type I receptor becomes recruited forming a
receptor complex. This results in activation of the type I
receptor, which causes phosphorylation of R-Smads.
These proteins bind to the common SMAD4 protein,
resulting in translocation of the complex into the nucleus
and binding directly to the DNA to regulate gene
expression or interacting with other DNA-binding
proteins (Massague & Wotton 2000).

AMHR2 is essential for signalling was demonstrated
by the fact that its disruption in mice caused persistence
of the Müllerian ducts (Mishina et al. 1996, di Clemente
et al. 2003). In humans, mutations of either the AMH or
the AMHR2 gene are the cause of persistent Müllerian
duct syndrome (Josso et al. 2005).
Ovarian AMH

Bioactive AMH was first detected in granulosa cells in
the 1980s (Vigier et al. 1984). It was later reported that
AMH was produced from 36 weeks of gestation in
human GCs (Rajperts-de Meyts et al. 1999) and was
expressed until menopause. Many studies followed
demonstrating AMH expression in rats (Ueno et al.
1989, Baarends et al. 1995), mice (Munsterberg &
Lovell-Badge 1991), sheep (Sweeney et al. 1997) and
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human (Weenen et al. 2004, Stubbs et al. 2005, Modi
et al. 2006) ovaries using in situ hybridisation or
immunostaining. It is still unclear precisely when during
folliculogenesis AMH expression begins with the studies
on primordial follicles producing equivocal results
(Stubbs et al. 2005, Modi et al. 2006), but it is clear
that the highest expression of AMH is found in preantral
and small antral follicles. The latter being those involved
in FSH-dependent cyclic recruitment (Ueno et al. 1989,
Baarends et al. 1995, Weenen et al. 2004). After
selection, the level of expression gradually declines
in the mural GCs with the AMH-positive staining
becoming localised to the cumulus GCs (Munsterberg
& Lovell-Badge 1991). Direct measurements of AMH
protein production by human GCs and follicular fluid in
2007 confirmed that the highest concentrations were in
small antral follicles and became very low or undetect-
able in follicles R10 mm (Pellatt et al. 2007a), as shown
in Fig. 1. The cessation of production of AMH from these
follicles suggests that this is an important requirement for
selection of the dominant follicle.

Neither AMH staining nor AMH mRNA expression
was observed in oocytes, corpus luteum, atretic follicles
or theca cells in mice, rats or human ovaries (Ueno et al.
1989, Baarends et al. 1995, Weenen et al. 2004, Modi
et al. 2006), confirming that the GCs are the only source
of AMH in the ovary.

AMHR2 was shown to have a similar pattern to AMH
mRNA expression in rodent follicles (Baarends et al.
1995), in which expression of both was colocalised in
the GCs of preantral and small antral follicles. Interest-
ingly, the mRNA for the AMH receptor was also found in
the theca from a range of follicle sizes as well as in GCs
and granulosa-luteal cells (GLCs) from human ovaries
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Figure 1 AMH concentration in GC and follicular fluid from normal
ovaries: left panel: AMH production was measured in the medium
conditioned by GCs from 14 follicles (range 4–19 mm) collected from
12 individual patients. Levels of AMH declined as the follicle size
increased with very low or undetectable levels of AMH in follicles
O10 mm. Right panel: follicular fluid aspirated from 18 follicles from
eight patients. Follicles ranged from 3 to 22 mm in diameter. The
concentration of AMH was highest in the smallest follicles, then
decreased to low or undetectable in follicles O9 mm. (Graph
reproduced, with permission, from Pellatt L, Hanna L, Brincat M,
Galea R, Brain H, Whitehead S & Mason H 2007 Granulosa cell
production of anti-Müllerian hormone is increased in polycystic
ovaries. Journal of Clinical Endocrinology and Metabolism 92
240–245. Copyright 2007, The Endocrine Society).
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(Ingraham et al. 2000, Hanna et al. 2006). The effects of
AMH on theca function are yet to be determined, but this
poses the possibility of a new signalling pathway
between granulosa and theca in the developing follicle.
A reliable marker of ovarian function?

In females, AMH has been heralded as a marker of
ovarian ageing and reserve in humans (Van Roojj et al.
2002, de Vet et al. 2002). In mice, the higher production
of AMH by small antral follicles reflected the remaining
follicle pool (Kevenaar et al. 2006). Women of !25
years of age had higher serum AMH concentrations than
those aged 35 years and above (Piltonen et al. 2005), and
when women were followed longitudinally for a period
of between 1 and 7 years, there was a decrease in serum
AMH levels, with levels becoming undetectable when
menopause was reached (Piltonen et al. 2005).

It has also been suggested that AMH may be a better
predictor for successful IVF treatment and oocyte
maturation than traditional markers (Muttukrishna et al.
2005, Silberstein et al. 2006, La Marca et al. 2007).
A lower serum AMH concentration preceding or during
assisted reproductive techniques was strongly associated
with reduced oocyte yield and low oocyte quality
(Silberstein et al. 2006, La Marca et al. 2007). This
might be expected if serum AMH concentrations
produced by the small follicles indirectly reflect the
remaining follicle pool. Ironically, the opposite appears
to be true for successful treatment of infertility in women
with polycystic ovary syndrome (PCOS), in that those
who had the highest concentrations of AMH seemed to
respond less well. This is discussed in detail below. In
terms of predicting outcome, a recent systematic review
of possible predictors of outcome of IVF has found that
any tests of ovarian reserve, including AMH, had only
‘modest-to-poor’ predictive properties and were unsui-
table as a basis for clinical decision making (Broekmans
et al. 2006). Understanding the importance of AMH in
normal ovarian function may assist in improving
treatment regimens and in improving success rates in
the future; however, it appears that at least at the
moment, these tests are insufficiently robust as a basis for
clinical decision making.
Function of AMH in the normal ovary

Some of the most informative studies examining AMH
action in the ovary have been performed by knocking
out AMH or its receptor. AMH knockout (AMHKO)
mice (Durlinger et al. 1999, 2001, 2002) are fertile, but
have an increase in the number of growing follicles
resulting in depletion of the primordial pool and early
cessation of ovulation (Durlinger et al. 1999): an effect
which was reversed by culture of ovaries from 2-day-old
mice with AMH (Durlinger et al. 2002). These results
were confirmed by culture of mouse AMHR2-null or
www.reproduction-online.org
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wild-type ovaries beneath the chorioallantoic membrane
of chick embryos (‘in ovo’). In this position, the pieces of
tissue become vascularised thereby preventing the
normal loss of follicles which occurs in culture. There
was an increase in follicle growth compared to wild-type
in those pieces lacking AMH receptor (Gigli et al. 2005).

In human tissue, the picture is rather less straightfor-
ward. In cultured human ovarian cortical biopsies,
AMH treatment (100 ng/ml) reduced primordial follicle
growth compared to untreated tissue in one study
(Carlsson et al. 2006), whereas in another study, AMH
actually increased the numbers of primordial follicles
growing (Schmidt et al. 2005). The latter study used a
higher dose of AMH, and the tissue was previously
cryopreserved which may account for the difference.

In an effort to clarify the stage of follicle at which AMH
may be able to act, we looked for the presence of
AMHR2 in individual preantral human follicles and
found that it was rarely expressed (Rice et al. 2007). This
indicates that AMH may not have a role at this stage of
follicle development in humans. The expression of
AMHR2 in rodent preantral follicles (Baarends et al.
2005) and the effect by AMH observed by McGee et al.
(2001) on preantral growth indicate that AMH acts on its
receptor in these small follicles in the rodent. This
suggests that there is a species difference in the
expression of AMHR2.

In antral follicles, the overall effect of AMH is to
reduce follicle sensitivity to FSH. A number of in vitro
studies have demonstrated similar findings, in that
FSH-stimulated follicle growth was inhibited by the
addition of AMH. In rat GCs, FSH- and cAMP-stimulated
aromatase activity was significantly reduced after AMH
treatment (di Clemente et al. 1994). In the same report,
AMH reduced aromatase mRNA expression in cAMP-
stimulated cells and also reduced LH receptor
mRNA expression in porcine GCs stimulated with FSH
(di Clemente et al. 1994). Even in the low FSH
environment of the AMHKO mouse, there was an
increase in the number of growing follicles compared
to wild-type littermates (Durlinger et al. 2001). An
inhibitory effect of AMH on FSH-stimulated aromatase
mRNA expression and oestradiol (OE2) production has
also been shown in human GLCs (Grossman et al. 2007).
Our preliminary data in humans support these reports, in
that AMH, in the presence of FSH or LH, significantly
reduced aromatase mRNA expression and activity in
GCs from small (4–9 mm) and large (R10 mm) follicles
respectively (Pellatt et al. 2007b). These studies collec-
tively demonstrate an inhibitory role of AMH in antral
follicle growth, and it can be envisioned that high
concentrations of AMH in small antral follicles would
hold back FSH responsiveness and steroidogenesis and
acquisition of LH receptors until the time of follicle
selection. By the time the intercycle rise in FSH has
occurred, AMH production ceases, concentrations
fall and the follicle is ‘released’ to produce OE2.
www.reproduction-online.org
Intriguingly, the factor causing inhibition of AMH
production in these selected follicles remains unknown
and, in our hands at least, it is not the obvious
candidate, FSH itself (Pellatt et al. 2007a). Discovery of
this inhibitor is important as it may provide a clue as
to why AMH production is high in PCOS.

There is one other important question which arises
regarding the role of AMH in these small follicles. It is
well described that AMH causes regression of the
Müllerian duct by inducing cellular apoptosis (Roberts
et al. 1999). It is therefore interesting to speculate as to
why the high concentrations in small follicles are not
similarly damaging. In the Müllerian duct, atresia occurs
in a pattern from cranial to caudal following the AMHR2
gradient. We have previously shown the presence of the
receptor in both theca and granulosa of small healthy
follicles, so why do these follicles similarly not undergo
atresia due to cellular apoptosis? Is it possible that in
ovarian cells the requisite intermediary pathways are
absent? The only study to date to our knowledge
investigating the effect of AMH on ovarian cell growth
did show that it was in fact decreased (Kim et al. 1992),
and this is hard to reconcile with the known increase in
granulosa and theca cell division which occurs in small
follicles. Figure 2 illustrates how AMH may modulate
ovarian follicle development. Research into the role of
ovarian AMH and the expression pattern of the receptor
clearly needs to address this issue, particularly in light of
the high concentrations found in PCOs.
AMH and PCOS

PCOs are characterised by an increase in follicle
number, and this increase has been shown to occur at
the earliest stages. The previously demonstrated ability of
AMH to alter early follicle growth therefore made it a
candidate for causing this change. In order to investigate
this possibility, the expression of AMH in fixed stained
sections of PCOs from anovulatory or ovulatory women
was determined by immunostaining (Stubbs et al. 2005).
The percentage of positively stained primordial and
transitional follicles from anovulatory ovaries was
significantly lower than from normal and ovulatory
PCOs (ovPCOs); however, the intensity of staining in the
preantral and antral follicles was similar among all three
groups (Stubbs et al. 2005). This suggests that the
absence of AMH in anovulatory PCOs (anovPCOs) at
the early stage of follicle development may allow for an
increased number of follicles to initiate growth. It is
perhaps the later appearance of theca that may increase
the production of AMH in these follicles, but until the
factors controlling AMH production are determined, this
will remain speculation.

AMH has been shown to be two- to three-fold higher
in serum from women with PCOS than in women with
normal ovaries (Fallat et al. 1997). This was initially
thought to be due to the increase in the number of small
Reproduction (2010) 139 825–833
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Figure 2 AMH as a regulator of normal follicle growth and development: AMH production in preantral follicles is variable, but has been detected
from the primary stage onwards. It is unclear whether preantral follicles express AMHR2. AMH production by surrounding larger follicles is
thought to inhibit primordial follicle initiation by a paracrine action. AMH production by granulosa cells (pink layer) increases to the small antral
stage by an unknown mechanism. AMH may ‘fine tune’ follicle development by inhibiting early maturation of these follicles. It may reduce follicle
sensitivity to FSH, thereby inhibiting aromatase mRNA expression and activity. The effects on cell proliferation are uncertain, but it does not clearly
have the apoptotic effect seen in the Müllerian duct during differentiation. AMHR2 has been detected in theca (blue layer) from a range of follicle
sizes, but its actions are unknown. As the follicles develop and grow, AMH levels decline, but the causative factor/s remains to be discovered. The
decrease in AMH then releases the inhibitory effect, allowing these larger follicles to become responsive to FSH, and stimulating aromatase and
oestradiol production.
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Figure 3 Comparison of AMH concentration from normal ovaries,
ovPCOs and anovPCOs: AMH production was measured in the
medium conditioned by GCs isolated from follicles ranging from 2
to 10 mm in size from normal ovaries (nZ7), ovPCOs (nZ9) and
anovPCOs (nZ5). AMH production was significantly different between
normal, ovPCOs and anovPCOs. Mean concentration of AMH in GCs
from anovPCOs was 75 times higher than the mean for normal ovaries.
Note the log scale. (Graph reproduced, with permission, from Pellatt L,
Hanna L, Brincat M, Galea R, Brain H, Whitehead S & Mason H 2007
Granulosa cell production of anti-Müllerian hormone is increased in
polycystic ovaries. Journal of Clinical Endocrinology and Metabolism
92 240–245. Copyright 2007, The Endocrine Society).
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antral follicles; however, in 2007, we demonstrated that
AMH production was on average 75 times higher per
granulosa cell from anovPCOs than from cells from
normal ovaries (Fig. 3). Similarly, concentrations of AMH
were found to be five times higher in follicular fluid from
unstimulated follicles from women with anovulatory
PCOS compared to women who were ovulatory (Das
et al. 2008). In a further study, the serum concentration
of AMH correlated with the severity of symptoms,
with again the ovulatory group having lower concen-
trations than those who were equally hyperandrogenic
but anovulatory (Piouka et al. 2009). Interestingly,
follicle number only added 5.3% to the variance in
the concentration of AMH. The fact that raised AMH
production was an intrinsic property of granulosa cells in
PCOs was later confirmed by the finding of raised levels
of AMH mRNA in these GCs, even after stimulation for
IVF (Catteau-Jonard et al. 2008). Together, these studies
demonstrate that the increase in AMH concentration is
largely due to the increase in production of AMH by
each follicle and not just a consequence of an increase
in follicle number.

The cause of the increased AMH production in PCOS
is unknown; however, increased concentrations may be
a consequence of other factors altered in PCOS, the most
obvious being androgen production. Evidence to support
this comes from the studies showing that in serum, AMH
has been positively correlated to androgen levels (Pigny
et al. 2003, Laven et al. 2004, Eldar-Geva et al. 2005).
Women with hyperandrogenism and PCO had higher
serum concentrations of AMH than women with PCO
and normal androgen concentrations (Eldar-Geva et al.
2005). In addition, androgen production per theca cell
was equally increased in anovPCOs and ovPCOs
Reproduction (2010) 139 825–833
(Gilling-Smith et al. 1994); however, the total number
of follicles found in the anovulatory ovary is higher
resulting in increased total androgen (Mason 2001).
Therefore, this may not only explain the higher AMH
concentrations found in all PCOs, but also explain the
significantly higher production of AMH by cells from the
anovulatory ovaries. The results of a very recent study,
however, rather contradict this idea. Although at the
beginning of the study, there was a direct correlation
between AMH and androgen levels in a group of women
with PCOS, after 6 months of androgen suppression with
dexamethasone, the AMH concentration remained
unchanged (Carlsen et al. 2009). It is possible, however,
that the concentration of androgen within the ovary is
the determining factor. It is interesting to note that in the
www.reproduction-online.org
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testis, androgens actually inhibit AMH production (Rey
et al. 1993), so a different control mechanism would
have to be present in the ovary for androgens to cause the
rise seen in PCO.

Another candidate for the cause of the increase in
AMH in PCOS is insulin. Hyperinsulinaemia is known to
affect anovulatory women more than ovulatory women
(Conway & Jacobs 1993), and falling insulin concen-
trations do correlate with the return of ovulatory cycles
(Dunaif et al. 1988). La Marca et al. (2004a) found no
correlation between serum AMH and androgen levels,
but did observed a direct correlation between AMH and
insulin insensitivity. Insulin has been shown to enhance
gonadotrophin-stimulated steroid production in GCs
and theca (Willis et al. 1996); therefore, the raised
AMH concentrations may be secondary to an effect of
insulin on androgen levels. Although this is a possible
cause, other studies have failed to find a direct
correlation between insulin and AMH concentrations
(Pigny et al. 2003, Eldar-Geva et al. 2005), and even
when insulin levels have reduced with treatment, a fall in
serum AMH has not followed directly (Bayrak et al.
2007, Carlsen et al. 2009). It is possible that there is an
intrinsic over-expression of the AMH gene causing the
raised production of the protein in the PCO or that the
currently unknown factor driving the androgen pro-
duction also increases AMH. Discovering the answers
to these questions may have important implications for
the treatment of this condition.
AMH and response to treatment in PCOS

One interesting and important finding from our study
was that women with PCOs could be clearly divided into
ovulatory or anovulatory by identifying whether or not
their GCs were ‘low’ or ‘high’ AMH producers. In
women with PCO but regular cycles, AMH production
was still significantly higher than normal; however, GCs
from anovPCOs produced on average 18 times more
AMH than GCs from ovPCOs (Fig. 3). The results were
tightly grouped with no overlap (Pellatt et al. 2007a). Is it
possible therefore that in order to begin ovulating the GC
production of AMH in follicles in anovPCOs has to be
greatly reduced? A partial answer to this question has
come from the results of some recent publications
regarding response to treatment in women with PCOS.
One study showed that pre-treatment of AMH was a
reliable predictor of reproductive response to weight loss
(Moran et al. 2007), in that although the degree of weight
loss was similar, it was only those women with lower
AMH who responded with an increase in the number of
ovulatory cycles. This was followed by an investigation
of the reverse phenomenon, i.e. whether improvement in
reproductive function was accompanied by reduced
AMH (Thomson et al. 2009). Weight loss did improve
reproductive function, but again only in those patients
who already had significantly lower serum AMH at the
www.reproduction-online.org
start and in neither group did the weight loss result in a
reduction in AMH. We are therefore hypothesising that
in this group of women with PCOS and chronic
anovulation, the high GC production of AMH does not
reduce and is preventing a response to weight loss
treatment. It is only in those with less elevated AMH that
the ovary can be coaxed into overcoming its inhibitory
effects (Fig. 4).

Is this hypothesis supported by the results of other
treatments for induction of ovulation? The data are rather
scarce; however, in one study, the response to clomi-
phene citrate in obese patients with PCOS was again
dependent on initial AMH concentration (El-Halawaty
et al. 2007). Unfortunately, AMH response during
treatment was not measured in this study. With regards
to metformin treatment, there are a number of studies
that have correlated reduced AMH with responsiveness;
however, the AMH measurement has been made during
or after treatment as opposed to correlating pre-
treatment levels with subsequent response.

This hypothesis may appear to be contradicted by the
number of studies indicating that high AMH is a positive
predictor of outcome of IVF; however, the majority of
these studies have not focussed on women with PCOS
and involve women with different or non-specified
ovarian morphology. When the concentrations of AMH
were measured in follicular fluid collected at the time of
oocyte retrieval for IVF only from women with PCOs, the
results were very interesting. Although again AMH was
higher compared to ovulatory women, the concen-
trations in both small and large follicles were found to be
lower in those women who began a pregnancy
(Desforges-Bullet et al. 2010). This indicates that even
following a stimulation protocol, it is those women with
PCOS producing the relatively lower levels of AMH who
have the best outcome.

Although metformin is now one of the most common
treatments for PCOS, to our knowledge, there are no
studies in which the initial concentration of AMH has
been correlated with response to treatment, but it is clear
that AMH concentrations do fall during treatment, even
if this does take some time. Certainly over the course of a
single week, metformin did not reduce the serum AMH
level despite there being a reduction in antral follicle
number (Bayrak et al. 2007). This is not surprising given
that in other studies it was not until after 4, 6 or 8 months
of metformin treatment that AMH levels fell (Fleming
et al. 2005). It was assumed that the time taken reflected
the growth of a new cohort of follicles from the earliest
stages, and that these follicles had developed in a
partially normalised endocrine environment. One
problem with interpreting AMH levels in serum is that
it is only a reflection of the total ovarian output, and this
will depend on both the follicle number and size
distribution given that production is highest in the
small antral follicles.
Reproduction (2010) 139 825–833
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Figure 4 Hypothesis of the effects of AMH on follicles in polycystic ovaries: both ovulatory and anovulatory polycystic ovaries increased the numbers
of preantral follicles than normal ovaries and more of these ovaries progress to antral stages in both; however, anovulatory ovaries contain the most.
A lower percentage of both primordial and transitional follicles stained positive for AMH in anovPCOs than in the two ovulatory groups which may
explain the excess numbers of antral follicles found in the latter, in that there is a reduced AMH ‘break’ on progression. Granulosa cell AMH
production increases rapidly as the follicles become antral in all groups, but in the ovulatory and anovulatory polycystic ovaries, the levels increase
several fold and w75 fold above normal respectively. In the two ovulatory groups as the dominant follicle is selected, AMH levels fall and are
virtually undetectable in the pre-ovulatory follicle. In the anovulatory women undergoing treatment, e.g. by weight loss, either the AMH reduces and
ovulatory cycles resume, or it is resistant to treatment, remaining high and exerting a break on aromatase and follicle growth.
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One of the most reliable methods of induction of
ovulation in PCOS is FSH treatment. Women treated
with recombinant human FSH to induce ovulation had
lower serum concentrations of AMH after treatment
(La Marca et al. 2004b), again indicating that reducing
AMH is an essential part of the response. Indeed, it has
generally been anticipated that FSH would be the factor
responsible for the reduction in AMH production seen
following follicle selection in natural cycles. Indeed, we
observed a significant reduction in concentrations of
AMH protein in the conditioned medium from GCs from
PCOs which had been treated with FSH. Surprisingly,
however, this was not seen in cells from normal ovaries
(Pellatt et al. 2007a). Curiously, acute stimulation with
FSH (24 h) in women with PCOS had no effect on serum
AMH concentrations (Wachs et al. 2007). An earlier
in vitro study in mice demonstrated a reduction in
AMH in response to FSH and OE2 (Baarends et al. 1995).
It may be possible that it is not FSH per se that is affecting
AMH levels, but it is the FSH-stimulated OE2 production,
and this effect may take a little longer to become evident.
In support of this, a number of groups have shown a
negative correlation between OE2 and serum AMH
concentrations in women with PCOS (Fallat et al. 1997,
La Marca et al. 2004a); however, OE2 production by the
follicle is the end point of many processes and factors,
and again these results are difficult to interpret. It seems
that there is a fine balance between AMH production
Reproduction (2010) 139 825–833
and follicle sensitivity to FSH, which will need to be
examined further. If this was the case, then it could be
seen that those women with very high intra-follicular
concentrations of AMH may be prevented from inducing
the aromatase and subsequently the OE2 which is the
very important thing required to reduce the AMH. One
further piece of information which adds to the puzzle is
that AMH itself was able to stimulate FSH b-subunit
mRNA expression in a pituitary cell line (Bedecarrats
et al. 2003). It is difficult to reconcile this with
anovulation in PCOS because, if this is the case, why
do women with high serum AMH concentrations not
have higher FSH levels also? There are clearly a number
of research questions which remain to be answered.
Conclusion

AMH has an inhibitory role in the ovary, and the
increased production by GCs from anovPCOs may
therefore contribute to cessation of follicle development.
It appears that a decrease in AMH is an essential part of
reproductive response to treatment and that those
women with the highest concentrations have the worst
outcome. The evidence has led us to hypothesise that
there is a subgroup of women with PCOS who have
elevated levels of AMH and who are the most resistant to
treatment. AMH is unlikely to be the sole cause of
anovulation, but its effects on aromatase expression and
www.reproduction-online.org
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Anti-Müllerian hormone and PCOS 831
OE2 production suggest that it is involved in follicle
growth and selection, and that very high concentrations
actually prevent the normal process of removal of the
AMH ‘break’ from the follicle. The function and
regulation of the production of AMH in the normal
ovary warrant further investigation if we are to unravel
the complexities of its action in PCOS.
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