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Abstract 

 In this paper, the fundamental solutions for anti-plane elasticity are derived by using the 

Fourier transform and the Laplace transform techniques, with the shear modulus and the mass 

density varying exponentially for functionally graded materials. It has been shown that the 

transformed fundamental solutions both in the Laplace space and in the time domain have the 

same order of singularities as that in the static case. The time-dependent variables including the 

displacement and the shear stresses for anti-plane elasticity are obtained with the Durbin’s 

inversion method for the Laplace transform. The Discontinuity Displacement Method is 

formulated from the fundamental solutions and applied to the mode III fracture problems.  
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1. Introduction  

 In Functionally Graded Materials (FGMs), the variation of the material properties can be pre-

determined by controlling the spatial distribution of the composition and the volume fraction of 

their constituents, which means that the uniform properties are in all directions. These materials 

have been introduced in recent years to benefit from the ideal performance of its constituents e.g. 

the high temperature and the corrosion resistance of the ceramics on one side and the large 

mechanical strength and toughness of the metals on the other by Suresh1. For FGMs, we need to 

solve the differential equations with variable coefficients, because the material properties are 

dependent on the coordinates. Although the Finite Element Method and Finite Difference Method 

are well-developed to solve complicated problems, the degree of accuracy needs to be considered. 

It is well-known that the fundamental solutions for a partial differential equation are essential for 

numerical analysis in engineering with the Boundary Element Method (BEM), see Brebbia2, 

Aliabadi3,4,  Chen & Hong5,  Cheng. & Cheng6, Clements & Budhi7. The spatial variations of the 

material parameters of FGMs are described by an exponential law for the convenience of analysis. 

In the family of the BEM, the Method of Fundamental Solution (MFS) is getting more attraction, 

due to its unique characteristics, see Burgess & Mahajerin8, Wen9,10, Fairweather & 

Karageorghis11, Golberg & Chen12, Marin & Lesnic13. The main idea of the MFS consists of 

approximating the solution of the problem by a linear combination of fundamental solutions with 

some source points located outside the domain, because of the singularity of the fundamental 

solution. The general problem is transformed to determine the coefficients of the fundamental 

solutions (known as the density of source), by considering the boundary conditions. In other words, 

if the source points located outside of the domain are fixed, then the coefficients of the MFS 

approximation are determined by considering the boundary conditions. To avoid the boundary 

integration, the MFS has gradually evolved as an effective boundary free method for solving 

homogeneous partial differential equation (PDE). In addition, if the number of source points tends 

to infinite and the collocation of source points is on the boundary, the MFS becomes the indirect 

BEM. Therefore, the MFS retains the same advantage of discretizing only on the boundary but 

requires no numerical integration. The Discontinuity Displacement Method (DDM) is very similar 

to the MFS from the super-position principle point of view. However, the DDM can be applied to 

solve crack problems efficiently, with high degree of accuracy, see Crouch14, Crouch and 
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Starfield15, Dong & Pater16, Liu17, Shi et al 18. The introduction for the DDM under static and 

dynamic loads both for 2D and 3D problems can be found in a book by Wen19.  

 Due to the mathematical complexities for the non-homogeneous nature of FGMs, there are 

only a few investigations on the transient dynamic responses of cracked FGMs. Jin and Batra20,21 

investigated the interface cracking between the ceramic and/or FGM coatings and a substrate 

under the anti-plane shear with four coating models by the Boundary Integral Equation Method 

(BIEM). Reports on their dynamic fracture mechanics are still very few including a numerical 

treatment of fracture occurring in an FGM under dynamic load by Nakagaki et al 22, the dynamic 

fracture investigation in FGMs with discrete property variations using dynamic photoelasticity by 

Parameswaran and Shukla 23, the dynamic fracture mechanics analysis for a composite material 

with a material inhomogeneity in the thickness direction by Wang et al 24. Dynamic responses 

under impact loading have been investigated by Babaei and Lukasiwicz25. Li and Zou 26 reported 

the torsional impact response of an FGM with a penny-shaped crack by using dual integral 

equations. Li et al 27,28 investigated a functionally graded material with mode III crack under 

dynamic load using integral equation method. A crack at an arbitrary angle to the graded 

interfacial zone in bounded media was studied with the shear modulus and the mass density 

varying in the form of power functions by Choi 29. The applications of the BEM to FGMs are very 

limited, as the corresponding time-domain fundamental solutions for general FGMs are either not 

available or mathematically too complex. Zhang et al 30,31 presented a transient dynamic crack 

analysis for FGMs by using the BIEM with hyper-singularity in time-domain.   

 In this paper, the fundamental solutions with point concentrated force and dislocation both in 

the Laplace domain and the time domain for anti-plane elasticity are derived by using the Fourier 

and the Laplace transform techniques. These fundamental solutions can be used to obtain the 

direct/indirect boundary element formulations for static and dynamic anti-plane problems. 

However, the applications of these fundamental solutions in this paper are demonstrated with the 

DDM for static and dynamic fracture problems. For FGMs, the boundary integral formulation 

with dislocation distribution is derived to determine the stress intensity factors. As the 

fundamental solutions are of hyper-singularity, the Chebyshev polynomial of the second kind is 

employed. The static and the dynamic stress intensity factors are determined from the coefficients 

of the Chebyshev polynomials with high accuracy. Comparisons are made with the available exact 

and the numerical solutions to show the degrees of accuracy and convergence.  
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2. Fundamental solutions of concentrated force in anti-plane 

For the mode III fracture statics with orthotropic FGMs, there are two material coefficients 

including the shear modulus xµ and yµ  which are functions of coordinate. It is necessary to make 

assumptions for these material parameters for mathematical analysis. In static problems, several 

models have been proposed, such as power function, exponential function and linear function etc 

(see Li et al 27). In order to derive the fundamental solution in closed-form, the shear modulus are 

assumed to vary continuously as yx
xx e βαµµ 220 += , yx

yy e βαµµ 220 +=  in this paper, where 0
xµ  and 0

yµ  

are the shear modulus at the origin along the horizontal and vertical directions, α  and β  are two 

gradient parameters. Due to the mathematical complexity, it is difficult to obtain the fundamental 

solution for general material assumptions including dynamic cases.  

The equilibrium equation for the anti-plane problem gives  

0=
∂
∂

+
∂
∂

yx
yx ττ ,                    (1) 

where xτ and yτ  are the shear stresses. For elasticity, one has 

y
w

x
w

yyxx ∂
∂

=
∂
∂

= µτµτ   ,  ,                 (2) 

where w is the anti-plane displacement.  

 

 

 

 

  

 

 

 

                                    (a)                                                     (b)                                        

Figure 1. Infinite FGM sheet with straight crack: (a) crack subjected to anti-plane load on the 

crack surfaces; (b) anti-plane concentrated force and its location. 
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Due to the shear modulus varying exponentially in the domain, the equilibrium equation becomes 

022 2

2

2

2

=
∂
∂

+
∂
∂

+
∂
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+
∂
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y
w

y
w

x
w

x
w βαεε .               (3) 

Applying the Fourier transform  

∫
∞

∞−

−= ωω
π

ω deyWw xi),(
2
1 ,                 (4) 

the equilibrium equation (3) yields 

( ) 0 222

2

=+−+ Wi
dy
dW

dy
Wd αωεωβ ,               (5) 

where 00 / yx µµε =  is the orthotropic parameter of FGMs. Therefore, the general solution of 

displacement are given as 
yeAW

+++ = γ  when ∞≤≤ yy0                  (6a) 

yeAW
−−− = γ  when 0yy ≤≤∞−                 (6b) 

where +A  and −A  are coefficients for the upper and lower half-infinite planes respectively, and 

βλαωεγβλαωεγ −++=−++−= −+ 2222 )(  ,)( ii , 22 εαβλ += .     (7) 

For a concentrated force Q acting at point ),( 00 yxP , the continuous conditions on the joint line 

can be described as 

00       when  ,0   )( yywwxxQyy ==−−=− −+−+ ，δττ .          (8) 

Thus, we have two coefficients to be determined: 
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The displacement is obtained for the upper half-infinite plane 
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−
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0
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Consider the integral formula of the Fourier transform 

 )(2
)(

1 22
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yxKedee
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Then, from (10), the displacement in the upper half-infinite plane is written as   
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( )rKeQyxw yyxx

yx

λ
µµπ

βα
0

)()(

00
00

2
),( +−+−+ =   +∞≤≤ yy0         (12) 

where 2
0

2
0 )(/)( yyxxr −+−= ε . It is easy to prove that the fundamental solution (12) is valid 

for the lower half-infinite plane. Therefore, the displacement fundamental solution under 

concentrated force Q for orthotropic FGMs is 

( )rKeQyxw yyxx

y

λ
επµ

βα
0

)()(
0

00

2
),( +−+−=                (13) 

For the isotropic media, 1=ε  and 0
00 µµµ == yx , we have 

( )rKeQyxw yyxx 22
0

)()(

0

00

2
),( αβ

πµ
βα += +−+−              (14) 

where 2
0

2
0 )()( yyxxr −+−= , which is the same, given by Marin & Lesnic13 for potential 

problems.  

 Next, we consider the fundamental solution under dynamic load for orthotropic FGMs. It is 

assumed that the mass density vary in the same manner as the shear module i.e. yxe βαρρ 22
0

+= , 

where 0ρ  is the mass density at the origin. Then, the equilibrium equation becomes 
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Applying the Fourier and the Laplace transforms over the equilibrium equation, with zero initial 

conditions gives  

( ) 0~~
2

~~ 2 2

2

2

2

=−+++− W
c
p

dy
Wd

dy
WdWi βαωεω             (16) 

in which 0
0 / ρµ yc =  is the velocity of the shear elastic wave along the y axis and 

∫
∞

−=
0

),,(),,(~ dtetyWpyW ptωω                 (17) 

Then, the roots of the characteristic equation (16) are 

βλαωεγβλαωεγ −++=−++−= −+ 22 )(~  ,)(~ ii , 222 / cp+= λλ .    (18) 

The general solutions of displacement of (16) are 
yeAW

+++ = γ~~~  when ∞≤≤ yy0                  (19a) 
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yeAW
−−− = γ~~~  when 0yy ≤≤∞−                 (19b) 

where +A~  and −A~  are the coefficients. The continuous conditions with a concentrated shear force 

Q, acting at point P, in time domain give 

00         ,0   )()( yywwtxxQyy ==−−=− −+−+ ，δδττ            (20) 

Thus, two coefficients can be obtained from 
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As for static case, the displacement fundamental solution in the Laplace transform domain under 

concentrated force )(tQδ  for orthotropic FGMs is obtained 

( )rKeQpyxW yyxx
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with the shear stresses 
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Again, for the isotropic media, the fundamental solution of displacement is given, in the Laplace 

domain as 

 ( )rKeQpyxW yyxx λ
πµ

βα
0
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2
),,(~ +−+−= .             (24) 

Consider the inversion of the Laplace transform by Bateman32, the fundamental solution of 

displacement in the time domain is given by 
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where 
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in which 
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where )(1 zJ is the Bessel function. Substituting (27) into (26) gives, 
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It is clear that the time-dependent displacement is zero before the arrival of the elastic shear wave. 

The shear stresses can be obtained: 
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Consider a concentrated force with the Heaviside function i.e. )(tQH , the fundamental solution of 

displacement in the Laplace domain is 
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and the shear stresses are 
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By using the formula of the Laplace transform inverse, the fundamental solutions in the time 

domain can be obtained 
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The integral domain is shown in Figure 2. By changing the order of the integration, we have  
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Therefore, (33) can be written as 
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Therefore the shear stresses can be obtained 
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in which 
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     Figure 2. Integration domain and changing the integral order. 
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where rctt /= and the dimensionless functions )(tA  and ),( utB  are defined as 

( )

( ) .
1

1

)1()1(

1),(

,1
11

1)(

2
2222

22

uututt
utB

ttt
tA

+
+

+−+−+
=

+
−−+

=

            (38) 

 Finally, we consider the fundamental solution for a dislocation, as shown in Figure 3. Consider 

two reference cases. The first case is a dislocation located at the coordinate ),( 00 yxT  along the 

local axis 'x  with a slant angle θ  against axis x. The second case is a unit concentrated shear force 

)1( =Q  acting at the point ),( yxP . Applying the principal of reciprocity over these two reference 

cases, we have the fundamental solution of displacement with a dislocation as 

θτθτ cos),,(~sin),,(~),,(~
0000 pyyxxpyyxxpyxW yxD −−−−−=        (39) 

in which ),,(~  and  ),,(~
0000 pyyxxpyyxx yx −−−− ττ are the fundamental solutions of the shear 

stress shown in (23). Therefore, the fundamental solution of displacement with a dislocation is 

written, in the Laplace domain as  
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          Figure 3. Two load cases: (a) Dislocation with angle θ ; (b) Concentrated anti-plane force。  
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 By Hooke's law, we can easily obtain the fundamental solutions of the shear stresses from (40). 

It is worth pointing out that the constant element is the most popular approach for the 

Displacement Discontinuity Method (DDM) in engineering by Crouch & Starfield15 and Wen19.  

 To demonstrate the effect due to the gradient coefficients of functionally graded materials, the 

time responses of the shear stress is observed. Consider a unit concentrated shear force acting at 

the origin, )()( 0 tHPtQ = , 0=α  and β  is chosen as 0, 0.5 and 1 respectively. The normalized 

shear stress 0/ Payτ  versus the normalized time at the observing point ),( aa  is shown in Figures 

4(a), 4(b) and 4(c) with different material properties. The effect by the gradient parameter β  is 

shown in Figure 4(a) when constants 1 ,0 == εα . The effect by parameter  α  is also presented in 

Figure 4(b) in the case of 1 ,0 == εβ . In Figure 4(c), the response of stress is shown when 

1== βα  for different ratio of ε . Obviously the stress is kept at zero until the shear elasticity 

wave arrived travelling from the load acting point. There is no oscillation for isotropic 

homogenous material ( 0== βα ) at the observing point from Figures 4(a) and 4(b). However, the 

oscillations are seen for functionally graded materials in these figures. Obviously the oscillation 

caused by the gradient of materials is significant. In addition, the frequency of the oscillation 

increases when the gradient parameters α and β  increase.  
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`                                    

Figure 4. Effects of the FGM constants. (a) 1 ,0 == εα  and β is variable; (b) 1 ,0 == εβ  and α is 

variable;  (c) 1== βα  and ε is variable. 
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Thus the shear stress is obtained 
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Therefore, the shear stress along the axis x, by letting ξ=0x  and 00 == yy  in (42) above 

becomes 









−

−
+−

−
== + )/)(()/)((

2
),,(~),0,0,,(~

10
2)(

0

εξλ
ξ

λεξλβ
επ

µ
ξξτ ξα xK

x
xKepxYpx xyD

y   

                        (43) 

Obviously the hyper-singular term in the shear stress above is 
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which is independent of the orthotropic parameter ε . Consider a straight crack of length 2a with 

the density of the discontinuity displacement =∆= Wx ~)((~ψ  ])~~[ −+ −WW  on its surface in the 

region axa ≤≤− , as shown in Figure 1(a). The boundary integral equation can be written as 

∫
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≤≤−−=
a

a

axapxdpxY         ),,(~)(~),,(~
0τξξψξ             (45) 

where ),(~
0 pxτ  is the applied anti-plane shear force. Taking the second degree of the Hadamard’s 

finite part in Eq. (45) yields 
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in which the function )(xE  is of weak singular )(ln rO . Because of the shear stress being of 

singularity )( 2/1−rO  at the crack tips ax ±= , we assume that 

∑
=

−−=
K

k
kk

x axUcexapx
0

22 )/(),(~ αψ ,              (47) 

where kc represents the coefficient, )/( axUk are the Chebyshev polynomials of the second kind i.e. 
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)]/(sin[arccos
)]/arccos()1sin[()/(

ax
axkaxUk

+
= .               (48) 

Due to the integral formula given by Kaya and Erdogan33,  

( )
)/()1()/(

2

22

axUkd
x

aUa
ik

a

a i

k +−=
−

−
∫
−

πξ
ξ

ξξ ,            (49) 

where the collocation points ix are chosen as 

Ki
K
iaxk ,...,2,1,0  ,

)1(2
)12(cos/ =








+
+

= π ,              (50) 

Then, Eq.(46) at the collocation point ix  becomes 

.,...,1,0 ,),(~2)/(),,()/()1( 0
0

0

22 KipxdaUapxEaxUkec
y

i
K

k

a

a
kiik

x
k ==








−++−∑ ∫

= − µ
τπξξξξπα    

                        (51) 

In order to cancel the weak singularity in ),( ξixE , a coordinate transformation is introduced i.e. 

ix−= ξξ ' . Eq.(51) provides a set of linear system of equations with K + 1 unknowns kc to be 

determined. As the displacement field at the crack tips for FGMs is the same as isotropic materials 

near the crack tip i.e. 

r
paa

aK

r
a
aKpa

r

y
III

y

III
r

2
),(~

lim
2

)(
)(~

2
)(
)(~2lim),(~

0

0

±±
=±

±
±

=±

→

→

ψµπ

π
πµ

ψ
               (52) 

where IIIK~ indicates the stress intensity factor. Therefore, the stress intensity factors can be 

determined directly by the displacement discontinuity, from Eq.(47), as 

aUc
e

paK
K

k
kk

a
y

III π
µ α

∑
=

±

±=±
0

0

)1(
2

),(~ ,              (53) 

From the properties of the Chebyshev polynomials, 1)1( +=+ kUk  and )1()1()1( +−=− kU k
k . In 

the following numerical examples, the number K in Eq.(50) is taken to 15 in this example. 

 By selecting (L+1) samples in the Laplace space Llpl ,...,1,0 , = , ),(~
lIII paK ±  is evaluated for 

each Laplace parameter from Eq.(53). Thereafter, the time-dependent function IIIK~  in the time 

domain can be determined by the Laplace inversion techniques. By selecting 
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Tilpl /)2( πσ += )1( −=i , an accurate inverse method proposed by Durbin34 is adopted here, 

as follows 

{ }







+−= ∑

=

L

l

Ttil
lIIIIII

Tt

III epKpK
T

etK
0

/2
0

/

)(~Re)(~
2
12)(~ π

σ

                (54) 

In the Durbin's inverse formula in Eq.(54), there are two free parameters σ  and T. In fact, the 

parameter T depends on the observing period of time and σ  is taken to 5 in all examples below.  

 

4. Numerical examples and discussion 

Example 4.1 Functionally graded media under static load on crack surface   

 First we consider a straight crack between ),( aa− subjected to a uniform shear load 0τ  on the 

crack surfaces. In the static analysis of the functionally graded materials, there are two material 

parameters including two gradient parameters α and β when the orthotropic parameter 1=ε . 

Numerical results of the normalized stress intensity factor aKIII πτ 0
)( /±  are shown in Table 1 and 

Table 2 for different material parameters, i.e. the gradient parameters α and β are selected as 0, 

0.25, 0.5, 0.75 and 1 respectively. The same problems were studied by Li et al 27 analytically and 

by Zhang et al.31 using the Boundary Integral Equation Method (BIEM) which can be used to 

examine the degree of accuracy in this paper. It shows that the difference between the BIEM and 

the DDM is very small (see the numerical results for static case listed in Table 1 and Table 2 by 

Zhang el at.31) and they are identical when 0=α , as shown in these tables.  

 Second, we consider a slant crack in FGMs, as shown in Figure 5 with 1',0' == εα and 'β is 

free variable in the coordinate )''( oyx . Therefore, in the new coordinate system ),( yx , one has 
)cossin(20 θθβµµµ yx

yyx e +==                  (55) 

So we have two gradient parameters in the new system )(xoy  

θβα sin'= ,  θββ cos'=  , 1=ε .               (56) 

The normalized stress intensity factors are presented in Table 3 for different gradient parameters 

'β  and crack orientations θ .   
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    Figure 5. A slant crack with orientation θ  in two coordinates.  

 

Table 1. Stress intensity factors aaKIII πτ 0/)(  while 1=ε . 

α\β 0.00  0.25  0.50  0.75  1.00  1.25  1.50  1.75  2.00  2.25  2.50  

0.00  1.0000  1.0280  1.0762  1.1308  1.1875  1.2444  1.3007  1.3559  1.4099  1.4625  1.5137  

0.25  1.0906  1.1234  1.1865  1.2565  1.3277  1.3983  1.4675  1.5348  1.6002  1.6637  1.7253  
0.50  1.1438  1.1722  1.2396  1.3219  1.4078  1.4931  1.5764  1.6570  1.7350  1.8103  1.8830  
0.75  1.1765  1.2002  1.2625  1.3465  1.4395  1.5348  1.6291  1.7211  1.8102  1.8963  1.9793  
1.00  1.1974  1.2174  1.2725  1.3518  1.4445  1.5432  1.6433  1.7424  1.8394  1.9336  2.0248  

1.25  1.2114  1.2286  1.2770  1.3495  1.4378  1.5350  1.6363  1.7384  1.8396  1.9388  2.0354  
1.50  1.2213  1.2362  1.2790  1.3447  1.4271  1.5202  1.6195  1.7214  1.8239  1.9254  2.0251  
1.75  1.2285  1.2417  1.2798  1.3394  1.4156  1.5036  1.5992  1.6990  1.8006  1.9024  2.0033  
2.00  1.2340  1.2457  1.2801  1.3343  1.4047  1.4873  1.5784  1.6750  1.7745  1.8752  1.9757  
2.25  1.2382  1.2488  1.2800  1.3296  1.3947  1.4722  1.5587  1.6514  1.7479  1.8466  1.9460  
2.50  1.2416  1.2513  1.2797  1.3254  1.3859  1.4584  1.5403  1.6290  1.7223  1.8184  1.9158  

 

Table 2. Stress intensity factors aaK III πτ 0/)(−  while 1=ε . 

α\β 0.00  0.25  0.50  0.75  1.00  1.25  1.50  1.75  2.00  2.25  2.50  

0.00  1.0000  1.0280  1.0762  1.1308  1.1875  1.2444  1.3007  1.3559  1.4099  1.4625  1.5137  

0.25  0.8570  0.8775  0.9178  0.9631  1.0099  1.0568  1.1031  1.1486  1.1930  1.2363  1.2786  
0.50  0.7291  0.7406  0.7683  0.8030  0.8401  0.8777  0.9151  0.9519  0.9880  1.0232  1.0576  
0.75  0.6309  0.6373  0.6544  0.6780  0.7050  0.7333  0.7622  0.7910  0.8194  0.8474  0.8748  
1.00  0.5576  0.5614  0.5719  0.5874  0.6061  0.6266  0.6480  0.6698  0.6917  0.7135  0.7350  

1.25  0.5025  0.5048  0.5115  0.5218  0.5347  0.5493  0.5650  0.5814  0.5981  0.6149  0.6318  
1.50  0.4599  0.4615  0.4660  0.4730  0.4820  0.4926  0.5042  0.5165  0.5293  0.5424  0.5556  
1.75  0.4262  0.4273  0.4304  0.4354  0.4419  0.4497  0.4584  0.4678  0.4778  0.4880  0.4985  
2.00  0.3989  0.3996  0.4019  0.4056  0.4104  0.4163  0.4229  0.4303  0.4380  0.4462  0.4546  
2.25  0.3761  0.3767  0.3784  0.3811  0.3849  0.3894  0.3946  0.4004  0.4066  0.4131  0.4200  
2.50  0.3568  0.3573  0.3586  0.3607  0.3636  0.3672  0.3713  0.3760  0.3810  0.3864  0.3920  

 

x' 

y' 

x 

y 

O 

θ 

 
''20' y

yy e βµµ =  
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Table 3. Stress intensity factors aKIII πτ 0
)( /±  for isotropic FGMs while 0'=α . 

β'\θ 
aKIII πτ 0/+  aKIII πτ 0/−  

00  300  450  60  900  00  300  450  60  900  

0.00  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  1.0000  
0.25  1.0280  1.0777  1.0878  1.0910  1.0906  1.0280  0.9500  0.9125  0.8826  0.8570  
0.50  1.0762  1.1685  1.1726  1.1618  1.1438  1.0762  0.9062  0.8302  0.7740  0.7291  
0.75  1.1308  1.2643  1.2530  1.2195  1.1765  1.1308  0.8629  0.7563  0.6843  0.6309  
1.00  1.1875  1.3616  1.3288  1.2682  1.1974  1.1875  0.8200  0.6921  0.6128  0.5576  
1.25  1.2444  1.4584  1.4000  1.3106  1.2114  1.2444  0.7785  0.6374  0.5562  0.5025  
1.50  1.3007  1.5534  1.4671  1.3487  1.2213  1.3007  0.7390  0.5910  0.5111  0.4599  
1.75  1.3559  1.6459  1.5306  1.3837  1.2285  1.3559  0.7022  0.5518  0.4746  0.4262  
2.00  1.4099  1.7354  1.5911  1.4164  1.2340  1.4099  0.6683  0.5185  0.4445  0.3989  
2.25  1.4625  1.8219  1.6489  1.4475  1.2382  1.4625  0.6373  0.4901  0.4193  0.3761  
2.50  1.5137  1.9053  1.7045  1.4772  1.2416  1.5137  0.6092  0.4655  0.3979  0.3568  

 

Example 4.2 Functionally graded media under dynamic load on crack surface  

 Consider the same crack of length 2a in FGMs, subjected to dynamic shear force )(0 tHτ  in 

time domain and p/0τ  in the Laplace domain. The number of samples in the Laplace space is 

chosen as 200=L  with two free parameters 20,5 == Tσ  in the Durbin's inversion method. 

Several FGMs are considered as follows  

 Case 1: Gradient parameter 1,0 === εβθ  and α  varies from 0 to 1;  

 Case 2: Gradient parameter 1,0 === εαθ  and β  varies from 0 to 1;  

 Case 3: Gradient parameter 1,5.0,0 === εβα  and crack orientation θ  is variable;  

 Case 4: Orthotropic parameter ε  varies from 0.25 to 4 when 0,1 === θβα .  

 The normalized stress intensity factors atKIII πτ 0/)(  for each case are presented from Figure 

6 to Figure 9 versus dimensionless time act / . These results show that the gradient parameters 

have significant influences on the transient dynamic stress intensity factors, particularly at the tip 

of the right-hand-side. In Case 1, the normalized dynamic stress intensity factors at the right crack-

tip are larger than that at left crack-tip, when the gradient parameter α  is large than zero. In other 

words, the normalized dynamic stress intensity factors at the right crack-tip )(+
IIIK  increase when 

the gradient parameter α  increases. However, the normalized factors at the left crack-tip )-(
IIIK  

decrease when α  increases. Because the shear modulus at the right crack-tip is always larger than 

that at the left crack-tip when the gradient parameter 0>α , it is shown that the stress intensity 

factor is bigger as expected. Similar to the shear stress response for a concentrated shear force 
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shown in Figure 4, the oscillation for the dynamic stress intensity factor at the right crack-tip is 

obvious when the parameter α is larger. However, the oscillation is relatively weaker at the left 

crack-tip, as shown in Figures 6(a) and 6(b). In Case 2, the stress intensity factors are the same at 

two crack tips, due to symmetry. It can be observed that the oscillation is huge when β   is taken 

to 1, as shown in Figure 7. Again, the normalized dynamic stress intensity factor at the right crack-

tip IIIK  increases when the gradient parameter β  increases. However, the oscillation of the curve 

IIIK  versus the normalized time caused by the gradient parameter is significant when 75.0>β . In 

Case 3, the results are similar to Case 1 and the influence caused by the orientation of the crack is 

significant from Figures 8(a) and 8(b). In Case 4, the effect of the orthotropic parameter ε  can be 

seen clearly from Figures 9(a) and 9(b). Since the arrival times of the shear elasticity wave 

travelling from the left crack-tip to the right crack-tip are different for different orthotropic 

parameters, the corresponding times for the picks are also different. However, the maximum 

values of the dynamic stress intensity factors at each crack-tip are almost the same. In addition, for 

each case, the picks are collocated at time ε2/ =act , as expected. From these numerical 

examples, it can be concluded as following 

(1) The gradient parameters of material α , β  and the ratio ε  may have significant influence on 

the stress intensity factor and causes oscillations. The peak value of the normalized stress intensity 

factors increases with increasing gradient parameters α and β ; 

(2) The stress intensity factor at the crack tip with the bigger shear modulus (right crack-tip) is 

larger than that with smaller modulus (left crack-tip), i.e. )()( −+ > IIIIII KK ; 

(3) For isotropic FGMs under both static and dynamic load, the degree of accuracy is observed 

with semi-analytical solutions given by Zhang et al 31 and analytical solution by Li et al 27. It is 

shown that the difference is very small compared with different approaches.  

 Finally, it is worth to mention that the FGMs are innovative composite materials whose 

composition and microstructure vary in space following a predetermined law35,36. The gradual 

change in composition and microstructure gives place to a gradient of properties and performances. 

The investigation in this paper concentrated on the evaluation of stress intensity factors under 

dynamic loading with three free parameters, i.e. α , β  and the ratio ε . If two coordinate axes  are 

normalized to the crack length a, the gradient parameters can be treated as dimensionless 



Anti-plane fundamental solutions of FGMs and applications to fracture mechanics                                                                    Li, Huang, Yue, Shi, Wen 

 - 19 - 

parameters. The computational strategy and solutions are valid for any gradient parameters of 

FGMs. 

                      

                      

Figure 6, Normalized dynammic stress intensity factors of Case 1: (a) right crack-tip; (b) left 

crack-tip.  
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          Figure 7, Normalized dynammic stress intensity factors of Case 2.  
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               Figure 8. Normalized dynammic stress intensity factors of Case 3: (a) right crack-tip; 

(b) left crack-tip.  
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Figure 9. Normalized dynammic stress intensity factors of Case 4: (a) right crack-tip; (b) left 

crack-tip.  

 

5. Conclusion 

 The fundamental solutions with anti-plane concentrated force and dislocation were derived in 

this paper for orthotropic FGMs. The influences of the material properties on the time- dependent 

shear stresses with a concentrated shear force were observed. For larger gradient parameters, 

oscillations occur for the shear stresses. For the application of these fundamental solutions, the 

first kind Fredholm integral equation was formulated for fracture problems with the Chebyshev 

series to determine the stress intensity factor for both static and dynamic loads. Dynamic anti-

plane fracture problems were studied in the Laplace transformed domain and the Durbin's inverse 

transform method was employed. The static and the dynamic stress intensity factors were 

presented for different material parameters.  
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