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Essential oils (EOs) are one of the most interesting natural products extracted from
different aromatic plants. For centuries, EOs have been considered an essential part of
the traditional pharmacopeia. Many plant EOs have been reported as possible effective
alternatives for commercial pesticides, and their single constituents have been used
efficiently in food preservation for their promising anti-QS activity against several food
pathogenic microorganisms. The current mini review gives a general overview over the
microbicide effect as well as anti-quorum sensing and the anti-biofilm formation of some
common plant EOs, especially those of Lamiaceae and Verbanaceae families; these are
commonly grown in the Mediterranean region and are effective against some serious
food phytopathogenic bacteria.
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INTRODUCTION

Essential oils (EOs) are considered important natural products extracted from aromatic plants and
have been used for centuries in traditional pharmacopeia (Elshafie and Camele, 2017). EOs can be
identified as concentrated hydrophobic liquids containing volatile aromatic compounds (Camele
et al., 2012; Elshafie et al., 2015b). They have several biological, nutritional, and pharmaceutical
properties. Historically, they represent an important part of the traditional pharmacopeia (Elshafie
et al., 2015a). In addition, several EOs have demonstrated interesting antimicrobial effects against
many serious phytopathogenic fungi and bacteria, both in vitro and in vivo, as well as an effective
use in the production of pharmaceutical drugs for plant and human diseases (Mancini et al.,
2014; Elshafie and Camele, 2017). Bacterial biofilm is considered a severe hygiene problem in the
environment, plant and human health, and in the food industry. Biofilms make bacteria more
resistant to disinfectants and different antimicrobial agents (Jamal et al., 2018). Many plant EOs
have showed promising anti-biofilm formation and quorum sensing (QS) effects (Poli et al., 2018).
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In this review, we give some more information about
biofilm formation and the QS phenomenon, especially in
food pathogenic bacteria. Moreover, this review illustrates the
potential use of some plant EOs as anti-QS and biofilm agents to
prevent bacterial infection and avoid the drug-resistance ability
of many pathogenic bacteria.

BIOFILM FORMATION AND QUORUM
SENSING

Biofilm formation is considered one of the most essential causes
of bacterial resistance toward different traditional chemical and
physical treatments and antimicrobial agents (Ivanova et al.,
2018). Several animal and human microbial infections are related
to microbial biofilm ability, which has recently become a real
challenge (Coenye and Nelis, 2010).

Biofilm formation is highly related to the density-
dependent cell communication called QS that plays
an essential role in the biofilm development of many
pathogenic microorganisms and triggers their resistance
and virulence (Habeck, 2003). QS enables bacterial cells to
have a multicellular behavior in prokaryotes and helps in
regulating the virulence process, production of secondary
metabolites, symbiosis, biofilm formation, induction of
stationary phase responses, and motility for colony escape
(Withers et al., 2001). QS allows bacteria cells to monitor
their local population densities and regulate the timing of
communal activities.

The most common bacterial food pathogens produce biofilms
such as the Pseudomonas species, which are able to survive at
high temperatures and reduce the shelf-life of foods and fish
processing. In addition, Bacillus cereus, Escherichia coli, and
Staphylococcus aureus were isolated from dairy processing lines,
as reported by Kerekes et al. (2013).

Quorum sensing is a intercellular communication system
that regulates microbe–microbe interactions (Nazzaro et al.,
2019). The QS phenomenon regulates gene expression in
response to the bacterial cell population size (Steindler and
Venturi, 2007) and is expected to be the main function
responsible for different bacterial phenotypes (Kumari et al.,
2006; Duerkrop et al., 2007). Furthermore, most bacterial
bioactive secondary metabolites are synthesized by stimulating
some signal molecules that mediate the process of QS
(Withers et al., 2001).

Several studies have shed light on the QS phenomenon in
many gram-negative (G-ve) bacteria, including those pathogenic
to plants and animals as well as human, such as the genus of
Agrobacterium, Aeromonas, Burkholderia, Chromobacterium,
Citrobacter, Enterobacter, Erwinia, Hafnia, Nitrosomonas,
Obesumbacterium, Pantoea, Pseudomonas, Rahnella, Ralstonia,
Rhodobacter, Rhizobium, Serratia, and Yersinia. In pathogenic
species, the system may also enable coordination against the host,
as in case of Pseudomonas aeruginosa infections in cystic fibrosis
patients (Withers et al., 2001). Regarding P. aeruginosa, the
opportunistic human pathogen, it secretes multiple extracellular
virulence factors that cause extensive host tissue damage,

FIGURE 1 | Schematic representation of quorum sensing: bacteria produce
autoinducers molecules and detect the same molecules with specific
receptors that coordinate their behavior.

and these factors are regulated by the QS phenomenon, as
reported by Gera and Srivastava (2006).

SIGNAL MOLECULES MEDIATED
QUORUM SENSING

The QS system is based on different key elements, such
as autoinducers, signal synthase, autoinducers receptors, and
regulated genes (Figure 1). In general, G-ve bacteria use the Lux-
R/I-type and gram-positive (G + ve) bacteria use the peptide
signaling system (Nazzaro et al., 2019). Signals molecules that
mediate QS are oligopeptides in G + ve, N-Acyl-homoserine
Lactones (N-AHLs) in G-ve, and a family of autoinducers known
as autoinducer-2 (AI-2) in both G-ve and G + ve (Miller and
Bassler, 2001). In particular, the formation and the activation of
N-AHLs are directly proportional to the bacterial density that
enables them to act as a multicellular organism and become ready
to make behavioral decisions (Withers et al., 2001).

N-AHLs are considered the main player in the bacterial
pathogenesis (Miller and Bassler, 2001) as well as disease
suppression by certain plant beneficial bacteria (Zhou et al.,
2003). When the production of N-AHLs reaches a specific
threshold concentration, corresponding to a critical population
density, these signals serve as co-inducers to regulate the
transcription of bacterial target genes that are responsible for
the pathogenicity and production of bioactive secondary
metabolites. On the other hand, autoinducers can also
regulate the transcription of some bacterial genes as much
as the cell density (Smith et al., 2003). Autoinducers are
able to coordinate a suite of virulence factors: antibiotic
production (Stead et al., 1996), biofilm formation (Van Delden
and Iglewski, 1998), luminescence, and swarming motility
(Rasmussen et al., 2000).

ANTI-BIOFILM AND QUORUM SENSING
EFFECTS OF EOs

EOs are composed mainly from two groups of single substances,
terpenoids (monoterpene, sesquiterpene and di-terpene)
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and phenylpropanoids (Nieto, 2017). The terpenoid group
includes several compounds commonly present in the
chemical composition of many plant EOs with different
percentages, such as p-cymene, pinene, limonene, sabinene,
and terpinene (Kerekes et al., 2015), geraniol, menthol,
linalool, citronellol, carvone, thymol, carvacrol, geranyl acetate,
eugenyl acetate, geranial, neral, and 1,8-cineole (Ayala-Zavala
et al., 2007; Nieto, 2017). In addition, phenylpropanoids
include several aromatic compounds such as cinnamyl alcohol,
cinnamaldehyde, eugenol, and methyl cinnamate (Hyldgaard
et al., 2012). Since not all of the above compounds have
anti-QS activity, an overview of the principal constituents
of some common plant EOs extracted from different
aromatic plants and that display anti-QS activity are reported
in Table 1.

In particular, the family Lamiaceae is considered one
of the most important families of medicinal and aromatic
plants; it includes Origanum vulgare L., Majorana hortensis
L., Thymus vulgaris L., Salvia officinalis L., Lavandula stoechas
L., Hyptis suaveolens L., and Rosmarinus officinalis L. Besides
that, Verbena officinalis L. (Verbenaceae), Carum carvi L.
(Apiaceae), Citrus clementina Hort. ex Tan. (Rutaceae),
Murraya koenigii (L.), and Sprengel (Rutaceae) are also
considered important aromatic plants where their single
constituents have promising anti-QS properties to combat

different food pathogenic microorganisms, as reported
in Table 1.

Origanum vulgare, one of the most efficient plant EOs, is
able to counteract biofilm formation and the QS mechanism
with its main bioactive constituents (carvacrol), which has
explicated a promising effect against different food and
human pathogenic bacteria, such as Salmonella enterica subsp.
typhimurium and S. aureus (Asfour, 2018). In addition, other
single constituents of oregano EO, such as linalool, limonene,
(E)-citral, γ-terpinene, 1,8-cineole, and eugenol, have exhibited
anti-QS effects, as reported in several studies (Raal et al., 2012;
Al-Haidari et al., 2016).

Moreover, clary sage, juniper, lemon, and marjoram EOs have
been examined in the food industry and showed an effective
anti-QS effect by preventing biofilm formation, especially against
B. cereus, E. coli, and Pichia anomala (Kerekes et al., 2013;
Luciardi et al., 2016).

Benzaid et al. (2019) studied the anti-biofilm formation
effect of mint EO on Candida albicans and concluded that
this EO has reduced the biofilm formation of C. albicans.
Marjoram EO also showed a promising anti-QS effect
against Chromobacterium violaceum, the positive sensor
strains for AHL-mediated QS (Kerekes et al., 2013). Poli
et al. (2018) reported that Mentha suaveolens ssp. insularis
acts as an inhibitor of violacein production and the biofilm

TABLE 1 | List of common plant EOs and their single constituents that display anti-QS activity.

Plant
scientific
name

Family Essential oils Raw materials Principal bioactive constituents References

Carum carvi (L.)
Sprengel

Apiaceae Caraway Fruits Limonene 51%, sabinene 0.3%, β-myrcene 0.4%,
β-pinene 0.2%, linalool 0.2%, Bornyl acetate

Raal et al., 2012; Al-Haidari
et al., 2016

Origanum
vulgare L.

Lamiaceae Oregano Leaves Carvacrol 75%, linalool 1.3%, limonene 1.3%, (E)-citral
2.5%, γ-terpinene 0.1%, 1,8-cineole 0.2%, eugenol
1.2%

Mancini et al., 2014; Elshafie
et al., 2017; Asfour, 2018

Majorana
hortensis L.

Lamiaceae Marjoram Flowers α-pinene 9%, β-pinene 3.8%, limonene 6.4%,
1,8-cineole 33.5%, γ-terpinene 0.1%, linalol 9.8%

Kerekes et al., 2013; Elshafie
et al., 2016a; Luciardi et al.,
2016

Thymus
vulgaris L.

Lamiaceae Thyme Leaves Carvacrol 3.5%, p-cymene 11.2%, terpinene 4.8% Elshafie et al., 2015a; Asfour,
2018

Salvia officinalis
L.

Lamiaceae Sage Leaves Camphor 13.9%, limonene 1.4%, α-pinene 4.4%,
1,8-cineole 4.2%

Elshafie et al., 2016a; Asfour,
2018

Verbena
officinalis L.

Verbenaceae Vervain Leaves Limonene 2.3%, 1.8-cineole, cis-Anethole 0.2%, linalol
0.1%, camphor 0.2%

Duke, 1992; Rehecho et al.,
2011; Chalchat and Garry,
1995

Lavandula
stoechas L.

Lamiaceae Lavender Flowers Fenchone 34.9%, camphone 28.9% Poli et al., 2018

Citrus
clementina
Hort. ex Tan.

Rutaceae Clementina Peel Sabinene 31.4%, linalool 20.4% Kerekes et al., 2013; Luciardi
et al., 2016; Poli et al., 2018

Murraya
koenigii (L.)
Sprengel

Rutaceae Curry tree Leaves Caryophyllene 9.49%, caryophyllene oxide 1.02%, α-
and β-phellandrene 0.07%, α-Terpinene 2.37%, linalool
0.19%

Chowdhury et al., 2008; Bai
and Vittal, 2014

Hyptis
suaveolens L.

Lamiaceae Pignut Leaves Trans-β-caryophyllene 11.3%, α-pinene (2.3),
camphene 2.6%, β-myrcene 1.5%, p-cymene (11.2),
limonene (7.2), γ-terpinene (1.5)

Stashenko et al., 2013

Rosmarinus
officinalis L.

Lamiaceae Rosemary Leaves α-pinene (26%), 1,8-cineole (25%), camphor 12% Alvarez et al., 2012; Melito
et al., 2019
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formation of C. violaceum, and the Carum copticum EO
showed anti-QS activity against C. violaceum (Snoussi
et al., 2018). Szabó et al. (2010) reported that EOs extracted
from lavender, citrus, and rosemary plants can also inhibit
QS and concluded that these EOs can be used in the
pharmaceutical industry for discovering new therapy for
serious human infections.

MICROBICIDE EFFECT OF PLANT
ESSENTIAL OILS

Many foodborn pathogenic bacteria (FBPB) produce
serious toxins that lead to food spoilage and human
infection. Some of FBPB are characterized by the
abovementioned phenomena of QS, such as E. coli, Listeria
monocytogenes, Clostridium spp., S. enterica, and S. aureus
(Martinoviæ et al., 2016).

In general, the use of antibiotics are the most common
substances for the direct controlling of whole bacteria (Poli
et al., 2018); however its use in the food industry sector for
controlling FBPB is prohibited in most developed countries to
avoid creating different resistant human strains. Furthermore,
many synthetic preservatives used in the food industry
with antimicrobial effects may causing allergies, intoxications,
cancer, and other degenerative diseases (Aminzare et al.,
2016). For instance, the scientific research has continuously
been carried out to present new substances that can be
effectively used in controlling FBPB, particularly as biofilm
preventers and for the inactivation of QS in the food industry,
against physical, chemical, and/or natural substances such as
nanoparticles, antimicrobial polymers, hydrogel, ozone, and
extracellular hydrolytic enzymes (Elshafie and Camele, 2017;
Jiang et al., 2019).

Recently, there has been a great revolution in scientific
research regarding the importance of using plant EOs in
combating many pathogenic bacteria, especially against food
spoilage and for human health (Khan et al., 2009; Olivero et al.,
2010; Camele et al., 2012; Nieto, 2017).

In particular, many interesting EOs and their single
components, extracted from oregano, sage, marjoram, and
vervain in particular, have been used effectively against
some post-harvest diseases (Mancini et al., 2014; Elshafie
et al., 2015a, 2016a, 2017). The three EOs extracted from
V. officinalis, M. hortensis, and S. officinalis (Elshafie et al.,
2016a) and those extracted from leaves and fruits of Schinus
terebinthifolius (Elshafie et al., 2016b) showed promising
antimicrobial activity against some serious phytopathogens
such as Colletotrichum acutatum, Botrytis cinerea, Clavibacter
michiganensis, Xanthomonas campestris, and Pseudomonas
syringae pv. phaseolicola.

Other plant Eos, such as O. vulgare, O. heracleoticum,
and O. majorana, showed effective microbicide effects against
some post-harvest pathogenic fungi (Aspergillus sp., Penicillium
sp., Monilinia sp., and B. cinerea) and some phytopathogenic
bacteria (Bacillus megaterium, C. michiganensis, X. campestris,
and P. syringae pv. phaseolicola) (Della Pepa et al., 2019).

MODE OF ACTION

Many researchers have hypothesized that the possible mechanism
behind the bioactivity of many EOs is due to their principal
bioactive single molecules. In particular, the use of single
components to control biofilm formation could be, in some
cases, sufficient, such as B. cereus and E. coli (Kerekes
et al., 2013); however, other studies explained that the
synergism between different single components display better
effects, like in case of the Listeria monocytogenes biofilm,
where the synergism between a-pinene, limonene, and linalool
substances can be more effective than each single component
(Sandasi et al., 2009).

In addition, the synergic effect between different single
constituents could trigger the antimicrobial effectiveness
of EOs and may reduce the resistance of many pathogenic
microorganisms (Elshafie et al., 2015b). Some single constituents
can damage the cell walls and plasma membranes of microbial
cells, alter morphology, and increase cell permeability
(Elshafie et al., 2019). Adebayo et al. (2012) reported that
carvacrol, γ -terpinene, and p-cymene could be effective
on their own and also have a synergic effect when they
are combined. This synergistic effect is due to the action
of p-cymene, which works as mediator for transportation
of carvacrol and γ -terpinene across the cell wall and
cytoplasmic membrane of pathogenic microorganisms. On
the other hand, the lipophilic properties of many single
components play a role in degrading the microbe plasma
membrane and, thus, lead to the lyses of the hypha wall
(Elshafie and Camele, 2017).

CONCLUSION

The biofilm formation of pathogenic bacteria is considered
a big challenge for the food industry and human/animal
health. The QS mechanism regulates the bacterial biofilm
formation; thus, destroying and/or disrupting this mechanism
can help to prevent biofilm formation and then solve many
health problems. Many plant EOs display promising anti-
QS properties by preventing biofilm formation, which
could be very important in reducing the virulence and
pathogenicity of drug-resistant bacteria, especially for
those that are food pathogenic. In fact, the use of plant
EOs in food industry do not change the organoleptic
properties of foods, and their use could thus be a promising
natural alternative for several synthetic food preservatives.
Finally, many plant EOs can represent a possible substitute
for many traditional antimicrobial drugs, which have
a significant negative impact on the environment and
human/animal health.
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