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Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection produces B
cell responses that continue to evolve for at least one year. During that time, memory
B cells express increasingly broad and potent antibodies that are resistant to
mutations found in variants of concern'. As aresult, vaccination of coronavirus
disease 2019 (COVID-19) convalescent individuals with currently available mRNA
vaccines produces high levels of plasma neutralizing activity against all variants
tested? Here we examine memory B cell evolution 5 months after vaccination with
either Moderna (mRNA-1273) or Pfizer-BioNTech (BNT162b2) mRNA vaccinesina
cohort of SARS-CoV-2 naive individuals. Between prime and boost, memory B cells
produce antibodies that evolve increased neutralizing activity, but there is no further
increase in potency or breadth thereafter. Instead, memory B cells that emerge 5
months after vaccination of naive individuals express antibodies that are similar to
those that dominate the initial response. While individual memory antibodies
selected over time by natural infection have greater potency and breadth than
antibodies elicited by vaccination, the overall neutralizing potency of plasmais
greater following vaccination. These results suggest that boosting vaccinated
individuals with currently available mRNA vaccines will increase plasma neutralizing
activity but may not produce antibodies with equivalent breadth to those obtained by
vaccinating convalescent individuals.

BetweenJanuary 21and July 20,2021, we recruited 32 volunteers with
no history of prior SARS-CoV-2 infection receiving either Moderna
(mRNA-1273; n=8) or Pfizer-BioNTech (BNT162b2; n=24) mRNA vaccines
for sequential blood donation. Matched samples were obtained at 2 or
3time points. Individualsindicatedas “prime” were sampled an average
of 2.5 weeks after receiving their first vaccine dose. Individuals who
completed their vaccination regimen were sampled after an average
of 1.3 months after the boost (median=35.5 days) which is not statisti-
cally different from the 1.3 month sampling in our naturally infected
cohort®(median=38.5 days, p=0.21). Individuals sampled at 1.3 months
were sampled again approximately 5 months after the second vaccine
dose. The volunteers ranged in age from 23-78 years (median=34.5
years), 53% were male and 47% female (for details see Methods and
Supplementary Tables1and 2).

Plasma binding and neutralization assays

Plasma IgM, IgG, and IgA responses to SARS-CoV-2 receptor binding
domain (RBD) were measured by enzyme linked immunosorbent assay

(ELISA)®. As reported by others***® there was a significant increase in
IgG reactivity to RBD between prime and boost (p<0.0001, Fig. 1a).
IgM and IgA titers were lower than IgG titers and remained low after
the second vaccine dose (Extended Data Fig. 1a, b). The magnitude of
theresponse wasinversely correlated with age after the prime (r=-0.54,
p=0.005), butinthis limited sample set the age difference was nolonger
significantat1.3 or 5months after the second vaccine dose (Extended
DataFig. 1c, d). Between 1.3 and 5 months after the boost, anti-RBD
titers of IgG and IgA decreased significantly. IgG titers decreased by
an average of 4.3-fold (range: 1.7- to 10.2-fold) and the loss of activity
was directly correlated to the time after vaccination (p<0.0001, Fig. 1a,
Extended DataFig.1a,b, e).

Neutralizing activity was measured using HIV-1 pseudotyped with the
SARS-CoV-2spike*”8, Naive individuals showed variable responses to
the initial vaccine dose with a geometric mean half-maximal neutral-
izing titer (NT5,) of 171 (Fig. 1b, Supplementary Table 2). The magnitude
ofthe neutralizing responses to the initial vaccine dose in naive volun-
teers was inversely correlated with age (r=-0.39, p=0.05, Fig. 1c). Both
binding and neutralizing responses to the second vaccine dose were
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correlated to the prime (r=0.46, p=0.02, Extended Data. Fig. 1f; r=0.54,
p=0.003, Extended Data Fig. 1g) and produced anearly 12-fold increase
inthe geometric mean neutralizing response that was similarin males
and females and eliminated the age-related difference in neutralizing
activity intheindividualsin this cohort (Fig.1b, Extended DataFig. 1h,
Fig. 1c, Extended Data Fig. 1i). 1.3 and 5 months after the boost naive
vaccinees had 4.9-and 3.6 fold higher neutralizing titers than a cohort
of infected individuals measured 1.3*- and 6.2”-months after symptom
onset, respectively (p<0.0001, Fig. 1b). Neutralizing responses were
directly correlated toIgG anti-RBD titers (r=0.96, p<0.0001, Extended
DataFig.1j). Thus, the data obtained from this cohort agree with prior
observations showing a significant increase in plasma neutralizing
activity that are correlated with improved vaccine efficacy in naive
individuals that receive the second dose of mRNA vaccine?***° and
higher neutralizing titers in fully vaccinated than infected individuals®®.

The 28 individuals assayed 5 months after vaccination had a 7.1-fold
decrease in geometric mean neutralizing titer from their 1.3-month
measurement (p<0.0001, Fig. 1b), witharange of 1.4- to 27-fold. Neutral-
izing activity was inversely correlated with the time from vaccination
(r=-0.82, p<0.0001, Fig. 1d), and directly correlated to IgG anti-RBD
binding titers when assessed 5 months after vaccination (Extended
Data. Fig. 1k). Asreported by others", the ratio of binding to neutralizing
serum titers was significantly higher in vaccinated than convalescent
individuals at the 1.3-month time point (p<0.0001, Extended Data
Fig. 11). However, the difference was no longer apparent at the later
time point (Extended Data Fig. 1I).

We and others showed that the neutralizing responses elicited by
mRNA vaccination are more potent against the original Wuhan Hu-1
strain than for some of the currently circulating variants of con-
cern®™, To confirm these observations, we measured the neutralizing
activity of 15 paired plasmas from naive individuals 1.3 and 5 months
after the second vaccine dose against B.1.1.7 (alpha variant), B.1.351
(betavariant), B.1.526 (iota variant), P.1(gamma variant) and B.1.617.2
(deltavariant). Consistent with previous reports™* " the neutralizing
activity against the variants was lower than against the original Wuhan
Hu-1strain (Fig. 1e, Supplementary Table 3). Initial geometric mean
neutralizing titers at 1.3 months against B.1.351,B.1.1.7, B.1.526, P.1and
B.1.617.2were5.7,1.8,1.1,1.4 and 2.7-fold lower than against Wuhan-Hu
respectively (Fig.1e). In the months following vaccination therewas a
decrease in neutralizing activity against Wuhan Hu-1 (R683G) and all
the variants with geometric mean neutralizing titers for WT, B.1.351,
B.1.1.7,B.1.526,P.1and B.1.617.2 decreasing by 2.9-,1.8-,2.3-,2.9-,2.4-and
2.6-fold, respectively (Fig. 1e, Supplementary Table 3).

Monoclonal Antibodies

Circulating antibodies produced by plasma cells can prevent infec-
tion if present at sufficiently high concentrations at the time of expo-
sure. In contrast, the memory B cell compartment contains long
lived antigen-specific B cells that mediate rapid recall responses that
contribute to long term protection’. To examine the nature of the
memory compartment elicited by one or two mRNA vaccine doses
andits evolution after 5months we used flow cytometry to enumerate
B cellsexpressing receptors that bind to Wuhan Hu-1 (wild type, WT)
andthe B.1.351 K417N/E484K/N501Y variant RBDs (Fig. 2a, b, Extended
DataFig. 2). Although neutralizing antibodies develop to other parts
of the spike (S) protein we focused on RBD because it is the dominant
target of the memory antibody neutralizing response'*. Wuhan-Hu
RBD-specific memory B cells developed after the primeinall volunteers
examined and their numbers increased for up to 5 months after vac-
cination (Fig.2a). Memory B cells binding to the B.1.351 K417N/E484K/
N501Y variant RBD were detectable but in lower numbers than wild
type RBD-binding B cellsin all samples examined (Fig. 2b). Whereas IgG
memory cellsincreased after the boost, IgM-expressing memory B cells
that made up 23% of the memory compartment after the prime were
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nearly absent after boosting (Extended Data Fig. 3a). Finally, circulat-
ing RBD-specific plasmablasts were readily detected after the prime
but were infrequent after the boost (Extended Data Fig. 2d, Extended
DataFig. 3b).

The memory compartment continues to evolve up to one year after
natural infection with selective enrichment of cells producing broad
and potent neutralizing antibodies'. To determine how the memory
compartment evolves after vaccination, we obtained 2327 paired
antibody sequences from 11 individuals sampled at the time points
described above (Fig. 2¢, Extended Data Fig. 3c—e, Supplementary
Table 4). As expected IGHV3-30 and IGHV3-53 were over-represented
after thefirstand second vaccine dose and remained over-represented
5months after vaccination”?* (Extended Data Fig. 4).

Allindividuals examined showed expanded clones of memory B cells
thatexpressed closelyrelated IGHV and IGHL genes (Fig.2c, Extended
DataFig.3c-e, Extended DataFig. 4). Paired prime and 1.3 month post
boost samples showed expanded clones of memory B cells some of
which were shared across plasmablasts, IgM and IgG prime, and IgG
boost memory cells (Extended DataFig. 3cand 5). Thus, the cell fate
decision controlling the germinal center versus plasmablast decisionis
notentirely affinity dependent since cells with the same initial affinity
can enter both compartments to produce clonal relatives?.

Therelative fraction of memory cells found in expanded clones varied
between prime and boost and between individuals and decreased over
time (Fig. 2c, Extended Data Fig. 3d-f). Overall, clones represented
30%,21%, and 9.7% of all sequences after prime, 1.3-and 5-month time
points respectively (Extended Data Fig. 3f). Nevertheless, clones of
memory B cells continued to evolve for up to 5 months in vaccinated
individualsas evidenced by the appearance of unique clones. Notably,
unique clones appearing after 1.3 and 5 months represent a greater
or equal fraction of the total memory B cell pool than the persisting
clones (Fig.2c, Extended DataFig.3d, e, g,16%vs 9.6% and 5.1% vs 4.7%,
respectively). Finally, memory B cells emerging after the boost showed
significantly higher levels of somatic mutations than plasmablasts or
memory B cells isolated after the prime, and they continue to accu-
mulate mutations up to 5 months post-boost (Fig. 2d, Extended Data
Fig.3h,i).In conclusion the memory B cell compartment continues to
evolve for up to 5 months after mRNA vaccination.

Neutralizing Activity of Monoclonal Antibodies

We performed ELISAs to confirm that the antibodies isolated from
memory B cells bind to RBD (Extended Data Fig. 6). 458 antibodies
were tested by ELISA including: 88 isolated after the first vaccine dose;
210isolated after the boost; and 160 isolated fromindividuals that had
beenfully vaccinated 5months earlier. Among the 458 antibodies tested
430 (94%) bound to the Wuhan Hu-1RBD indicating that the method
used toisolate RBD-specific memory B cells was highly efficient (Sup-
plementary Table 5-6). The geometric mean ELISA half-maximal con-
centration (EC,,) of the antibodies obtained after prime, and 1.3- and
5-months after the second dose was 3.5,2.9 and 2.7 ng/mlrespectively,
suggesting no major change in binding over time after vaccination
(Extended DataFig. 6, Supplementary Table 5-6).

430 RBD-binding antibodies were tested for neutralizing activ-
ity using HIV-1 pseudotyped with the SARS-CoV-2 spike®®, The geo-
metric mean half-maximal inhibitory concentration (ICs,) of the
RBD-specific memory antibodiesimproved from 376 ng/mlto 153 ng/ml
between the first and second vaccine dose (p=0.0005, Fig. 3a). The
improvement was reflected in all clones (IC5, 377 vs.171 ng/ml, p=0.01
Extended Data Fig. 7a), persisting clones (IC5,311vs. 168, Fig. 3b, Sup-
plementary Table 6), unique clones (ICs, 418 vs. 165 ng/ml, p=0.03,
Fig. 3c), and single antibodies (IC5, 374 vs. 136 ng/ml, Extended Data
Fig. 7b). The increase in neutralizing activity between the first and
second vaccine dose was associated with a decrease in the percent-
age of non-neutralizing antibodies (defined as IC50 >1000 ng/ml)



and increased representation of neutralizing antibodies (p=0.003,
Fig.3a).In conclusion,memory B cellsrecruited after the second dose
account for most of the improvement in neutralizing activity in this
compartment between the 2 vaccine doses. Thus, in addition to the
quantitative improvement in serum neutralizing activity there is also
animprovement in the neutralizing activity of the antibodies expressed
inthe memory compartment after boosting.

In contrast, there was no significant improvement in neutralizing
activity of the monoclonal antibodies obtained between 1.3 and 5
months after vaccination (p>0.99, Fig. 3a). Although there was some
improvement among B cell clones, which was accounted for by the
small minority of persisting clones, neither was significant (p=0.58 and
0.46,Extended DataFig.7a, Fig.3b, Supplementary table 6). Incontrast,
memory antibodies obtained from convalescent individuals showed
improved neutralizing activity between1.3* and 6.2 months’ with ICs,
of171ng/mlto 116 ng/ml (Fig. 3a), whichimproved further after 1year'.
This improvement was due to increased neutralizing activity among
persisting clones (p=0.003, Fig. 3b).

Affinity, Epitopes and Neutralization Breadth

To examine affinity maturation after vaccination, we performed bio-
layerinterferometry (BLI) experiments using the Wuhan Hu-1RBD?. 147
antibodies were assayed, 30 obtained after the prime, 74 1.3-months
after boosting, and 43 5-months after the boost. Geometric mean 1Csys
were comparable for the antibodies obtained from the 1.3-and 5-month
time points (Extended DataFig. 8a). Overall, there was a3-and 7.5 fold
increase in affinity between the antibodies obtained between the first
2, and second 2 time points respectively (Fig. 4a). After 5 months the
affinity of the antibodies obtained from vaccinated individuals was sim-
ilar to antibodies obtained from naturally infected voluteers (Fig 4a).
However, there was no correlation between affinity and neutralizing
activity of the antibodies tested at any of the 3 time points (Extended
DataFig. 8b).

We also compared the affinities of pairs of antibodies obtained from
persisting clones between 1.3 and 5 months after vaccination. Persisting
clonesobtained at1.3 and 5months from vaccinated individuals showed
amedian 4.5-fold increase in affinity (p<0.0001, Fig.4b). In contrast,
a comparable group of persisting clonal antibodies obtained from
convalescent individuals 1.3 and 6.2 months after infection showed a
median 11.2-fold increase in affinity (p=0.002, Fig. 4b).

To determine whether the epitopes targeted by the monoclonal
antibodies were changing over time, we performed BLI experiments
inwhichapreformed antibody-RBD complex was exposed toasecond
monoclonal targeting one of 4 classes of structurally defined epitopes'
(see schematic in Extended Data Fig. 8c). There was no significant
change in the distributionof targeted epitopes among 52 randomly
selected antibodies with comparable neutralizing activity obtained
from the 1.3- and 5-month time points (Extended Data Fig. 8d, e,
Extended DataFig. 9).

In addition to the increase in potency, the neutralizing breath of
memory antibodies obtained from persisting clones from convales-
cent individuals increases with time after infection*”*, To determine
whetherthereis asimilar increase in breadth with time after vaccina-
tion, we selected 20 random antibodies from the prime or 1.3 months
after boost, with representative levels of activity against the original
Wuhan Hu-1strain, and measured their neutralization potency against
apanel of pseudotypes encoding RBD mutations which were selected
forresistance to different RBD antibody classes and/or are associated
with circulating variants of concern (Extended Data Table 1). There was
little change inbreadth between prime and 1.3 months after boost, with
only asmallincrease in resistance to K417N and A475V substitutions
(Extended Data Table 1, Supplementary Table 7).

Inaddition, we assayed 19 pairs of neutralizing antibodies expressed
by persisting clones obtained 1.3 and 5months after vaccination against

the same mutant pseudotype viruses (Fig. 4c, Supplementary Table 8).
They were compared to 7 previously reported®, plus 9 additional
pairs of antibodies obtained from convalescent individuals at 1.3-
and 6.2-month time points (Fig. 4d, Supplementary Table 8). Whereas
only 36 of 190 (19%) of the vaccinee antibody-mutant combinations
showed improved potency, 95 of the 160 (59%) convalescent pairs did
50 (p<0.0001, Fig.4c-e). Moreover, only 4 of the 19 (21%) vaccine anti-
body pairs showed improved potency against pseudotypes carrying
B.1.617.2 (delta variant)-specific RBD amino acid substitutions (L452R/
T478K), while 11 out of 16 (69%) of the convalescent antibody pairs
showed improved activity against this virus (p=0.007, Fig.4c-e). We
conclude thatthereislessincreaseinbreadthinthe months after mRNA
vaccinationthaninasimilar interval in naturally infected individuals.

Circulating antibodies are produced by aninitial burst of short-lived
plasmablasts**?, and maintained by plasma cells with variable longev-
ity?®?°, SARS-CoV-2 infection or mRNA vaccination produces an early
peak antibody response that decreases by 5-10-fold after S months”° 34,
Notably, neutralization titres elicited by vaccination exceed those of
COVID-19recovered individuals at allcomparable time points assayed.
Nevertheless, neutralizing potency against variants is significantly
lower than against Wuhan Hu-1, with up to 5-10-fold reduced activity
against the B.1.351 variant>*>*3 Taken together with the overall decay
inneutralizing activity there can be 1-2 orders of magnitude decrease
inserumneutralizingactivity after 5or 6 months against variants when
compared to the peak of neutralizing activity against Wuhan Hu-1.
Thus, antibody mediated protection against variants is expected to
wane significantly over aperiod of months, consistent with reports of
reinfectionin convalescentindividuals and breakthroughinfection by
variantsin fully vaccinated individuals® .

Incontrast tocirculating antibodies, memory B cells are responsible
for rapid recall responses*®*?, and the number of cells in this compart-
ment is relatively stable over the first 5-6 months after mRNA vacci-
nation or natural infection”*. In both cases memory B cells continue
to evolve as evidenced by increasing levels of somatic mutation and
emergence of unique clones.

The memory response would be expected to protect individuals that
suffer breakthrough infection from developing serious disease. Both
natural infection and mRNA vaccination produce memory antibod-
ies that evolve increased affinity. However, vaccine-elicited memory
monoclonal antibodies show more modest neutralizing potency and
breadth than those that developed after natural infection'”. Notably,
the difference between the memory compartment that developsin
response to natural infection vs mRNA vaccination reported above is
consistent with the higher level of protection from variants conferred
by natural infection®.

There are innumerable differences between natural infection and
mRNA vaccination that could account for the differences in antibody
evolution over time. These include but are not limited to: 1. Route of
antigen delivery, respiratory tract vs. intra-muscular injection***; 2.
The physical nature of the antigen, intact virus vs. conformationally
stabilized prefusion S protein*®; 3. Antigen persistence, weeks in the
case of natural infection’ vs. hours to days for mRNA*. Each of these
couldimpacton B cell evolution and selection directly, and indirectly
through differential T cell recruitment.

The increase in potency and breadth in the memory compartment
that develops after natural infection accounts for the exceptional
responses to Wuhan Hu-1and its variants that convalescent individuals
develop whenboosted with mRNA vaccines'’. The expanded memory
B cell compartmentin mRNA vaccinees should also produce hightiters
of neutralizing antibodies when vaccinees are boosted or when they
arere-exposed to the virus*®. Boosting vaccinated individuals with cur-
rently available mRNA vaccines should produce strong responses that
mirror or exceed their initial vaccine responses to Wuhan-Hu but with
similarly decreased coverage against variants. Whether an additional
boost with Wuhan-Hu-based or variant vaccines or re-infection will also
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elicit development of memory B cells expressing antibodies showing
increased breadth remains to be determined. Finally, timing an addi-
tional boost for optimal responses depends on whether the objective
isto preventinfection or disease*. Given the current rapid emergence
of SARS-CoV-2 variants, boosting to prevent infection would likely be
needed on atime scale of months. The optimal timing for boosting to
prevent serious disease will depend on the stability and further evolu-
tion of the memory B cell compartment.
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Fig.1|PlasmaELISAs and neutralizing activity. a, Graph shows areaunder
the curve (AUC) for plasma IgG antibody binding to SARS-CoV-2 RBD after
prime, and 1.3 months (m) and 5 months (m) post-second vaccination for n=32
paired samples. Samples without a prime value are showninblack.b, NT50
valuesin plasma from pre-pandemic controls (ctr,n=3), convalescent
individuals 1.3m?and 6.2m’ after infection (grey), and vaccinated individuals
(n=32) after prime, and 1.3-and 5-months after receiving 2 doses of mRNA
vaccination. Samples without a prime value are shownin black. ¢, NT50 values
(Y-axis) vs. age (years, X-axis) inn=32individuals after prime (black), or1.3
months (1.3m, orange) or 5Smonths (5m, green) after boosting with an mRNA
vaccine.d, Graph shows NT50 values (Y-axis) vs. days after boost (X-axis) in
n=32individuals receiving two doses of an mRNA vaccine. Samples withouta
prime value areshowninblack. e, Plasma neutralizing activity against
indicated SARS-CoV-2 variants of interest/concern (n=15 paired samplesat 1.
3-and 5-months after full vaccination). Refer to Methods for alist of all
substitutions/deletions/insertionsin the spike variants. Allexperiments were
performed atleastinduplicate.Red barsandvaluesina, b,and erepresent
geometric mean values. Statistical significanceina, b, and e was determined by
two-tailed Kruskal-Wallis test with subsequent Dunn’s multiple comparisons,
andincand dby two-tailed Spearman correlation test.
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Fig.2|Anti-SARS-CoV-2 RBD B cells after vaccination.a, b, Graphs
summarizing a, the number of Wuhan-Hu RBD (WT)-specific memory B cells or
b, the number of antigen-specific memory B cells cross-reactive withboth WT
and K417N/E484K/N501Y RBD mutant per 10 million B cells for n=32 individuals
after prime, 1.3- and 5-months after full vaccination. Samples without a prime
value are showninblack. ¢, Pie charts show the distribution of IgG antibody
sequences obtained frommemory B cells from 3 representative individuals
after prime and 1.3-months or 5-months post-boost. Additional pie charts can
be foundin Extended DataFig.3. The number inside the circle indicates the
number of sequences analyzed for the individual denoted above the circle, with
Pfizer vaccineesindicated by (P) and Modernaby (M). Pie slice size is
proportional to the number of clonally related sequences. The black outline
and associated numbersindicate the percentage of clonally expanded
sequences detected at each time point. Colored slices indicate persisting
clones (same /GHV and IGLV genes, with highly similar CDR3s) found at more
than one timepoint within the sameindividual. Greyslicesindicate clones
uniqueto the timepoint. White slices indicate repeating sequencesisolated
only once per time point.d, Number of nucleotide somatic hypermutations
(SHM)inthe /GHVand IGLV combined (n=2050, Supplementary Table 4) in the
antibodiesillustrated in cand Extended DataFig. 3, compared to the number of
mutations obtained after1.3% or 6.2” months after infection (grey). Horizontal
barsand red numbersindicate mean value at each time point. Samples without
aprimevalueare showninblack. Statistical significanceina, b,and d was
determined by two-tailed Kruskal Wallis test with subsequent Dunn’s multiple
comparisons.
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Fig.3|Anti-SARS-CoV-2 RBD monoclonal antibodies. a-c, Graphs show
anti-SARS-CoV-2 neutralizing activity of monoclonal antibodies measured by a
SARS-CoV-2 pseudotype virus neutralization assay using wild-type (Wuhan
Hu-1°°) SARS-CoV-2 pseudovirus*®. Half-maximal inhibitory concentration
(ICs,) values for all antibodies (a), persisting clones (b), and unique clones (c)
isolated from convalescentindividuals1.3*and 6.2” months after infection or
fromvaccinated individuals after prime, and 1.3- or 5-months post-boost. Each
dotrepresents one antibody, where 451 total antibodies were tested including
the430reported herein (Supplementary Table 5), and 21 previously reported
antibodies®. Antibodies isolated from samples withouta prime value are
showninblack. Pie chartsillustrate the fraction of non-neutralizing
(IC50>1000 ng/ml) antibodies (grey slices), inner circle shows the number of
antibodies tested per group. Horizontal bars and red numbersindicate
geometric mean values. Statistical significance was determined by two-tailed
Kruskal Wallis test with subsequent Dunn’s multiple comparisons, and forring
plots by two-tailed Fisher’s exact test with subsequent Bonferroni-correction.
Allexperiments were performed atleast twice.
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Fig.4|Affinity and Breadth. a, b, Graphs show antibody K,s for Wuhan-Hu
RBD measured by BLI. a, antibodies isolated from convalescent individuals
1.3%- (n=42) and 6.2-months’ (n=45) after infection or from vaccinees after
prime (n=36), and 1.3- (n=74) and 5-months (n=43) post-second vaccination.

b, Clonally-paired antibodies isolated from convalescentindividuals 1.3*- and
6.27-months after infection (n=15) or vaccinated individuals between prime and
1.3 month (n=3), prime and 5 months (n=3), or 1.3-and 5-months after full
vaccination (n=26). Antibodiesisolated from samples without a prime value are
showninblack. Red horizontal bars and numbersindicate median values.

¢, d, Heat-maps show inhibitory concentrations of antibodies isolated Smafter
vaccination (c) or 6.2m’ after infection (d) normalized to their shared clone
isolated 1.3mafter vaccination (c) or1.3m?>after infection (d), expressed as
%IC50, againstindicated mutant SARS-CoV-2 pseudoviruses (Supplementary
Table 8). Antibodies withimproved (<30%) IC50 compared totheirclonal
relativeisolated at an earlier timepoint are colored inshades of green with most
improved antibodiesin darkest green. Antibodies with worse (>300%) IC50
thantheir clonalrelativeisolated at an earlier timepointare colored in red with
themost worsened antibodiesindarkred. Antibodies that did not change their
IC50 by more than -3-fold are showninyellow. e, Pie chartsillustrate the
fraction of antibodies showingimproved (<30%, green) vs. notimproved
(yellow) ICs, compared to their clonal relativeisolated at an earlier timepoint.
Inner circle shows the number of antibody-mutant combinations analyzed per
group. Statistical significanceinaand bwas determined using two-tailed
Kruskal Wallis test with subsequent Dunn’s multiple comparisons, and in e by
two-tailed Fisher’s exact test with subsequent Bonferroni-correction.



Methods

Study participants

Participants were healthy volunteers receiving either the Moderna
(mRNA-1273) or Pfizer-BioNTech (BNT162b2) mRNA vaccines against
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) who
were recruited for serial blood donations at Rockefeller University
Hospitalin New York betweenJanuary 21andJuly 20,2021. The major-
ity of participants (n=28) were de novo recruited for this study, while a
subgroup of individuals (n=4) were from a long-term study cohort®.
Eligible participants were healthy adults with no history of infection
with SARS-CoV-2, as determined by clinical history and confirmed
through serology testing, receiving one of the two Moderna (mRNA-
1273) or Pfizer-BioNTech (BNT162b2), according to current dosing
and interval guidelines. Exclusion criteria included incomplete vac-
cination status, presence of clinical signs and symptoms suggestive
of acuteinfection with or a positive reverse transcription polymerase
chainreaction (RT-PCR) results for SARS-CoV-2 in saliva, or a positive
(coronavirus disease 2019) COVID-19 serology. Seronegativity for
COVID-19 was established through the absence of serological activ-
ity toward the nucleocapsid protein (N) of SARS-CoV-2. Participants
presented to the Rockefeller University Hospital for blood sample col-
lection and were asked to provide details of their vaccination regimen,
possible side effects, comorbidities and possible COVID-19 history.
Clinical data collection and management were carried out using the
software iRIS by iMedRIS (v. 11.02). All participants provided written
informed consent before participationin the study and the study was
conducted in accordance with Good Clinical Practice. The study was
performed in compliance with all relevant ethical regulations and
the protocol (DRO-1006) for studies with human participants was
approved by the Institutional Review Board of the Rockefeller Uni-
versity. For detailed participant characteristics see Supplementary
Tables1and 2.

Blood samples processing and storage

Peripheral Blood Mononuclear Cells (PBMCs) obtained from samples
collected at Rockefeller University were purified as previously reported
by gradient centrifugation and stored inliquid nitrogenin the presence
of Fetal Calf Serum (FCS) and Dimethylsulfoxide (DMSO)*’. Heparinized
plasmaand serum samples were aliquoted and stored at-20 °C or less.
Prior to experiments, aliquots of plasma samples were heat-inactivated
(56 °Cfor1hour) and thenstored at 4 °C.

ELISAs

Enzyme-Linked Immunosorbent Assays (ELISAs)*"* to evaluate anti-
bodies binding to SARS-CoV-2 RBD were performed by coating of
high-binding 96-half-well plates (Corning 3690) with 50 pul per well of
alpg/mlproteinsolutionin Phosphate-buffered Saline (PBS) overnight
at 4 °C. Plates were washed 6 times with washing buffer (1x PBS with
0.05% Tween-20 (Sigma-Aldrich)) and incubated with 170 pl per well
blocking buffer (1x PBS with 2% BSA and 0.05% Tween-20 (Sigma)) for
1houratroomtemperature. Immediately after blocking, monoclonal
antibodies or plasma samples were added in PBS and incubated for
1houratroom temperature. Plasma samples were assayed at a1:66
starting dilution and 10 additional threefold serial dilutions. Mono-
clonal antibodies were tested at 10 pg/ml starting concentration and
10 additional fourfold serial dilutions. Plates were washed 6 times with
washing buffer and then incubated with anti-human IgG, IgM or IgA
secondary antibody conjugated to horseradish peroxidase (HRP) (Jack-
son Immuno Research 109-036-088 109-035-129 and Sigma A0295)
in blocking buffer at a1:5,000 dilution (IgM and IgG) or 1:3,000 dilu-
tion (IgA). Plates were developed by addition of the HRP substrate,
3,3',5,5-Tetramethylbenzidine (TMB) (ThermoFisher) for 10 minutes
(plasmasamples) or 4 minutes (monoclonal antibodies). The develop-
ingreaction was stopped by adding 50 pl of 1M H,SO, and absorbance

was measured at 450 nm with an ELISA microplate reader (FluoStar
Omega, BMG Labtech) with Omega and Omega MARS software for
analysis. For plasma samples, a positive control (plasma from par-
ticipant COV72, diluted 66.6-fold and ten additional threefold serial
dilutions in PBS) was added to every assay plate for normalization.
The average of its signal was used for normalization of all the other
values on the same plate with Excel software before calculating the
area under the curve using Prism V9.1(GraphPad). Negative controls
of pre-pandemic plasma samples from healthy donors were used for
validation (for more details please see?). For monoclonal antibodies,
the ELISA half-maximal concentration (EC50) was determined using
four-parameter nonlinear regression (GraphPad Prism V9.1). EC50s
above 2000 ng/mL were considered non-binders.

Proteins

The mammalian expression vector encoding the Receptor Binding-
Domain (RBD) of SARS-CoV-2 (GenBank MN985325.1; Spike (S) protein
residues 319-539) was previously described™®.

SARS-CoV-2 pseudotyped reporter virus

A panel of plasmids expressing RBD-mutant SARS-CoV-2 spike proteins
in the context of pSARS-CoV-2-S 4, has been described'>***, Variant
pseudoviruses resembling variants of interest/concern B.1.1.7 (first
isolated inthe UK), B.1.351 (firstisolated in South-Africa), B.1.526 (first
isolated in New York City), P.1 (firstisolated in Brazil) and B.1.617.2 (first
isolated inIndia) were generated by introduction of substitutions using
synthetic gene fragments (IDT) or overlap extension PCR mediated
mutagenesis and Gibson assembly. Specifically, the variant-specific
deletions and substitutions introduced were:

B.1.1.7: AH69/V70, AY144,N501Y,A470D, D614G, P681H, T7611,S982A,
D118H

B.1.351: DSOA, D215G, L242H, R2461, K417N, E484K, N501Y, D614G,
A701V

B.1.526: L5F, T951, D253G, E484K, D614G, A701V.

P.1: L18F, T20N, P26S, D138Y, R190S, K417T, E484K, N501Y, D614G,
H655Y, T10271, V116 7F

B.1.617.2: TI9R, A156-158, L452R, T478K, D614 G, P681R, D950N

The E484K, K417N/E484K/N501Y, L452R/E484Q and L452R/T478K
substitution, as well as the deletions/substitutions corresponding
to variants of concern listed above were incorporated into a spike
proteinthatalso includes the R683G substitution, which disrupts the
furin cleaveage site and increases particle infectivity. Neutralizing
activity against mutant pseudoviruses were compared to a wildtype
(WT) SARS-CoV-2 spike sequence (NC_045512), carrying R683G where
appropriate.

SARS-CoV-2 pseudotyped particles were generated as previously
described*®. Briefly, 293T (CRL-11268) and HT1080 (CCL-121) cells
were obtained from ATCC, and the cells were transfected with pNL4-
3AEnv-nanoluc and pSARS-CoV-2-S,,,, particles were harvested 48
hours post-transfection, filtered and stored at -80 °C to propogate
293T/ACE2 and HT1080/AC2.cl14 cells. Cells lines were checked for
mycoplasma contamination by Hoeschst staining, and confirmed
negative.

Pseudotyped virus neutralization assay

Fourfold serially diluted pre-pandemic negative control plasma from
healthy donors, plasma from COVID-19-convalescent individuals or
monoclonal antibodies were incubated with SARS-CoV-2 pseudotyped
virus for 1 hour at 37 °C. The mixture was subsequently incubated
with 293T, ., cells® (for all WT neutralization assays) or HTI080Ace2
cl14 (for all mutant panels and variant neutralization assays) cells®
for 48 hours after which cells were washed with PBS and lysed with
Luciferase Cell Culture Lysis 5% reagent (Promega). Nanoluc Lucif-
erase activity in lysates was measured using the Nano-Glo Luciferase
Assay System (Promega) with the Glomax Navigator (Promega). The



Article

relative luminescence units were normalized to those derived from
cells infected with SARS-CoV-2 pseudotyped virus in the absence of
plasma or monoclonal antibodies. The half-maximal neutralization
titers for plasma (NTs,) or half-maximal and 90% inhibitory concentra-
tions for monoclonal antibodies (IC;,and IC,,) were determined using
four-parameter nonlinear regression (least squares regression method
without weighting; constraints: top=1, bottom=0) (GraphPad Prism).

Biotinylation of viral protein for use in flow cytometry

Purified and Avi-tagged SARS-CoV-2 RBD or SARS-CoV-2 RBD K417N/
E484K/N501Y mutant was biotinylated using the Biotin-Protein
Ligase-BIRA kit according to manufacturer’s instructions (Avidity) as
described before?. Ovalbumin (Sigma, A5503-1G) was biotinylated using
the EZ-Link Sulfo-NHS-LC-Biotinylation kit according to the manufac-
turer’s instructions (Thermo Scientific). Biotinylated ovalbumin was
conjugated to streptavidin-BV711 (BD biosciences, 563262) and RBD
to streptavidin-PE (BD Biosciences, 554061) and streptavidin-AF647
(Biolegend, 405237)°.

Flow cytometry and single cell sorting

Single-cell sorting by flow cytometry was described previously.
Briefly, peripheral blood mononuclear cells were enriched for B cells
by negative selection using a pan-B-cell isolation kit according to
the manufacturer’s instructions (Miltenyi Biotec, 130-101-638). The
enriched B cellswereincubated in Flourescence-Activated Cell-sorting
(FACS) buffer (1x PBS, 2% FCS, 1 mM ethylenediaminetetraacetic acid
(EDTA)) with the following anti-human antibodies (all at 1:200 dilu-
tion): anti-CD20-PECy7 (BD Biosciences, 335793), anti-CD3-APC-eFluro
780 (Invitrogen, 47-0037-41), anti-CD8-APC-eFluor 780 (Invitrogen,
47-0086-42), anti-CD16-APC-eFluor 780 (Invitrogen, 47-0168-41),
anti-CD14-APC-eFluor 780 (Invitrogen, 47-0149-42), as well as Zombie
NIR (BioLegend, 423105) and fluorophore-labeled RBD and ovalbu-
min (Ova) for 30 min onice. Single CD3-CD8-CD14-CD16-CD20+0va—
RBD-PE+RBD-AF647+ B cells were sorted intoindividual wells of 96-well
plates containing 4 pl of lysis buffer (0.5x PBS, 10 mM Dithiothreitol
(DTT), 3,000 units/ml RNasin Ribonuclease Inhibitors (Promega,
N2615) per well using a FACS Aria Ill and FACSDiva software (Becton
Dickinson) for acquisition and FlowJo for analysis. The sorted cells
were frozenondryice, and thenstored at—80 °C orimmediately used
for subsequent RNAreverse transcription. For plasmablastsingle-cell
sorting, inaddition to above antibodies, B cells were also stained with
anti-CD19-BV605 (Biolegend, 302244), and single CD3-CD8-CD14-CD
16-CD19+CD20-Ova-RBD-PE+RBD-AF647+ plasmablasts were sorted as
described above. For B cell phenotype analysis, in addition to above
antibodies, B cells were also stained with following anti-human anti-
bodies (all at 1:200 dilution): anti-IgD-BV421 (Biolegend, 348226),
anti-CD27-FITC (BD biosciences; 555440), anti-CD19-BV605 (Bio-
legend, 302244), anti-CD71- PerCP-Cy5.5 (Biolegend, 334114), anti-
IgG-PECF594 (BD biosciences, 562538), anti-IgM-AF700 (Biolegend,
314538), anti-IgA-Viogreen (Miltenyi Biotec, 130-113-481).

Antibody sequencing;, cloning and expression

Antibodieswere identified and sequenced as described previously
Inbrief, RNA fromsingle cells was reverse-transcribed (SuperScript Il
Reverse Transcriptase, Invitrogen, 18080-044) and the cDNA was stored
at-20 °Corused for subsequent amplification of the variable IGH, IGL
andIGK genes by nested PCR and Sanger sequencing. Sequence analysis
was performed using MacVector. Amplicons from the first PCR reaction
were used as templates for sequence- and ligation-independent cloning
into antibody expression vectors. Recombinant monoclonal antibodies
were produced and purified as previously described®.
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Biolayer interferometry
Biolayer interferometry assays were performed as previously
described®. Briefly, we used the Octet Red instrument (ForteBio) at 30 °C

withshaking at1,000 r.p.m. Affinity measurement of anti-SARS-CoV-2
IgGs binding were corrected by subtracting the signal obtained from
traces performed with IgGs in the absence of WT RBD. The kinetic
analysis using protein A biosensor (ForteBio 18-5010) was performed
asfollows: (1) baseline: 60secimmersionin buffer. (2) loading: 200sec
immersioninasolutionwithIgGs 10 pg/ml. (3) baseline: 200secimmer-
sionin buffer. (4) Association: 300sec immersion in solution with WT
RBD at 20,10 or 5 ug/ml (5) dissociation: 600sec immersion in buffer.
Curve fitting was performed using a fast 1:1 binding model and the
Dataanalysis software (ForteBio). Mean equilibrium dissociation con-
stant (K;,) values were determined by averaging all binding curves that
matched the theoretical fit with an R? value > 0.8.

Computational analyses of antibody sequences

Antibody sequences were trimmed based on quality and annotated
using Igblastn v.1.14. with IMGT domain delineation system. Annota-
tion was performed systematically using Change-O toolkit v.0.4.540%.
Heavy and light chains derived from the same cell were paired, and
clonotypes were assigned based on their Vand ] genes using in-house
R and Perl scripts. All scripts and the data used to process antibody
sequences are publicly available on GitHub (https://github.com/stra-
tust/igpipeline/tree/igpipeline2_timepoint_v2).

The frequency distributions of human V genes in anti-SARS-CoV-2
antibodies from this study was compared to 131,284,220 IgH and IgL
sequences generated by’ and downloaded from cAb-Rep*, a database
of human shared BCR clonotypes available at https://cab-rep.c2b2.
columbia.edu/. Based onthe 112 distinct V genes that make up the 7936
analyzed sequences fromIgrepertoire of the 11 participants presentin
this study, we selected the IgH and IgL sequences from the database that
are partially coded by the same V genes and counted them according
totheconstantregion. The frequencies shown in Extended DataFig. 4
arerelative tothe source andisotype analyzed. We used the two-sided
binomial test to check whether the number of sequences belongingtoa
specific/GHV or IGLV gene inthe repertoire is different according to the
frequency of the sameIgV gene inthe database. Adjusted p-values were
calculated using the false discovery rate (FDR) correction. Significant
differences are denoted with stars.

Nucleotide somatic hypermutation and Complementarity-
Determining Region (CDR3) length were determined usingin-house R
and Perl scripts. For somatic hypermutations, /GHVand /GLVnucleotide
sequences were aligned against their closest germlines using Igblastn
and the number of differences were considered nucleotide mutations.
The average number of mutations for V genes was calculated by divid-
ing the sum of all nucleotide mutations across all participants by the
number of sequences used for the analysis.

Data presentation
Figures arranged in Adobe Illustrator 2020.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this paper.

Data availability

Data are provided in Supplementary Tables 1-8. The raw sequenc-
ing data and computer scripts associated with Fig. 2 and Extended
Data Fig. 3 have been deposited at Github (https://github.com/stra-
tust/igpipeline/tree/igpipeline2_timepoint_v2). This study also uses
data from “A Public Database of Memory and Naive B-Cell Receptor
Sequences” (https://doi.org/10.5061/dryad.35ks2), PDB (6VYB and
6NB6), cAb-Rep (https://cab-rep.c2b2.columbia.edu/), Sequence
Read Archive (accession SRP010970), and from “High frequency of
shared clonotypes in human B cell receptor repertoires” (https://doi.
org/10.1038/s41586-019-0934-8).
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Code availability

Computer code to process the antibody sequences is available at
GitHub (https://github.com/stratust/igpipeline/tree/igpipeline2_time-
point_v2).
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Extended DataFig.1|PlasmaELISA and neutralization.a,b, Graphshows
areaunder the curve (AUC, Y-axis) for plasmaIgM (a) or IgA (b) antibody

binding to SARS-CoV-2 RBD after prime, and 1.3- and 5-months post-boost for

paired samples fromn=32 vaccinated individuals.Samples without a prime
value are showninblack. ¢, Graph shows plasmalgG antibody binding (AUC,

Y-axis) plotted against age (X-axis) after prime (black), and 1.3 months (orange)
and 5months (green) post-second vaccination in n=32 vaccinated individuals.
d, Graph shows age (years, X-axis) vs. fold-change of IgG-binding titers (AUC,

Y-Axis) between prime and 1.3m (orange) or 5Sm (green) post-boost in n=32
vaccinated individuals. e, Graph shows plasmalgG antibody binding AUC
values (Y-axis) plotted against timeafter vaccination (day, X-axis) from n=32

vaccinated individuals. Samples without a prime value are shown inblack.f, 1IgG

antibody binding after prime (AUC, X-axis) vs.IgG antibody binding after1.3

months post-boost (AUC, Y-axis) (n=26). g, NT50 values after prime (X-axis) vs.
NT50 values after 1.3 months post-boost (Y-axis) inindividuals receiving two
doses of an mRNA vaccine (n=26). h, NT50 values after prime and 1.3 months

post-boost in females and males receiving 2 doses of an mRNA vaccine (n=26).
i, Graph shows age (years, X-axis) vs fold-change of NT50 (X-axis) between
prime and 1.3m (orange) or 5m (green) post-boost (n=26).j, NT50 values
(Y-axis) vs.IgG antibody binding (AUC, X-axis) 1.3 months after 2 doses of an
mRNA vaccine (n=26).k, NT50 values (Y-axis) vs.IgG antibody binding (AUC,
X-axis) 5months after boostinindividuals receiving two doses of an mRNA
vaccine (n=28).1, Ratio of anti-RBD IgG antibody (AUC) to NT50 values (Y-axis)
plotted for convalescentinfected individuals (grey) 1.3m>?or 6.2m’ after
infection, and from n=32 vaccinated individuals after the prime, and 1.3mand
Sm after receiving 2 doses of an mRNA vaccine. Samples without a prime value
areshowninblack. All experiments were performed at leastin duplicate. Red
valuesorbarina,b,handlrepresentgeometric mean values. Statistical
significanceina, b, h,and I was determined by two-tailed Kruskal-Wallis test
withsubsequent Dunn’s multiple comparisons, or by two-tailed Spearman
correlationtestinc,d, e, f, g,i,j, and k.
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Extended DataFig.2|See next page for caption.
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Extended DataFig.2|Flow Cytometry. a, Gating strategy for phenotyping.

Gatingwas onsinglets that were CD19* or CD20"* and CD3-CD8-CD16-Ova-. Anti-

1gG, 1gM, IgA, IgD,CD71and CD27 antibodies were used for B cell phenotype
analysis. Antigen-specific cells were detected based on binding to RBD WT-PE*
and RBD WT/KEN (K417N/E484K/N501Y)-AF647". b-c, Flow cytometry plots
showing the frequency of b, RBD WT-binding memory B cells, and ¢, RBD-
binding memory B cells cross-reactive with WT and K417N/E484K/N501Y
mutantRBDin5selected individuals, after prime, 1.3 months, and 5months
post-second vaccination.d, Flow cytometry plots showing frequency of RBD-

binding plasmablasts, in10 selected vaccinees after prime or 1.3 months post-
boost. e, Gating strategy for single-cell sorting for CD20+ memory B cells (top
panel) or CD19+CD20- plasmablasts (bottom panel) which were double
positive for RBD-PE and RBD-AF647. f-g, Representative flow cytometry plots
showing dual AlexaFluor-647-RBD and PE-RBD-binding, single-cell sorted B
cellsfromf, 6 individuals after prime and 1.3 months or S months post-boost
and g, Sindividuals from1.3- or 5-months post-boost. Percentage of RBD-
specificBcellsisindicated.
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Extended DataFig.3|anti-SARS-CoV-2 RBD-specific plasmablast and
memory B cells responses after vaccination. a-b, Graph showing thea,
frequency of IgM, IgG, or IgA isotype expression by Wuhan-Hu RBD-specific
memory B cells after primeor 1.3 months post-boost (n=10), and b, number of
Wuhan-Hu RBD-binding plasmablasts per 10 million B cells (n=26) after prime
or1.3 months post-boost.Red numbersindicate geometric means. Gating
strategyisin Extended DataFig.2. c-e, Pie charts show the distribution of 1IgG
antibody sequences obtained from ¢, 6 individuals after prime (upper panel) or
1.3 months post-boost (lower panel). Sequences derived from IgG plasmablast
(PB), IgM memory B cells (MBC), and IgG MBC compartments were analyzed
afterprime, whileonly IgG MBCs were analyzed at 1.3 months after boost, as
indicated to the left of the plots. Pie charts showing only IgG memory B cells
from 8individuals (in additional to the 3 vaccinees showninFig.2c) afterd,
primeand 1.3-months post-boost and e, 1.3- and 5-months post-boost. The
number inside the circle indicates the number of sequences analyzed for the
individual denoted above the circle, with Pfizer vaccinees indicated by (P) and
Modernaby (M). Pieslice sizeis proportional to the number of clonally related
sequences. Theblack outline and associated numbersindicate the percentage
of clonally expanded sequences detected at each time point. Colored slices
indicate persisting clones (same /GHV and IGLV genes, with highly similar
CDR3s) found at more than one timepoint within the same individual. Grey
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slicesindicate clones unique to the timepoint. White slices indicaterepeating
sequencesisolated only once per time point. f, Graph shows the relative
percentage of clonal sequences of IgG memory B cells at each time point from
n=11vaccinatedinvidualsillustrated in Fig.2c and Extended DataFig.3d,e. The
red numbersindicate the geometric means. Samples without a prime value are
showninblack. g, Graph shows the percentage of total paired-sequences from
IgGmemory B cells (n=2050) analyzed ateither prime, 1.3- or 5-months
post-boost, that canbe found as part of all clones (black bars), persisting clones
(red bars), unique clones (grey bars), or singlets (white bar). h-i, Ratio of the
number of somatic nucleotide mutations over the nucleotide length of the V
geneinthelgheavy andlight chains, separately, inantibodies detectedinh,
different B cellcompartments after prime or 1.3 months post-boost (n=1565)
andi,IgGmemoryBcellsat1.3 or 5months post-boost (n=1610) compared to
convalescentinfected (grey) individuals after1.3*and 6.2’ months
post-infection (also Supplementary Table 4). Horizontal bars and red numbers
indicate meanratioin each compartment at each time point. Sequences
derived from samples without a prime value are shown in black. Statistical
significanceinaand bwas determined using a two-tailed Wilcoxon
matched-pairssigned rank test. f, h, and i was determined by two-tailed Kruskal
Wallis test with subsequent Dunn’s multiple comparisons.
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from3individuals for which plasmablasts, IgM memory B cells, and IgG
memoryBcells were analyzed after prime, and IgG memory B cells were

analyzed after 1.3 months post-boost (as described in Extended Data Fig. 3).

The number of somatic nucleotide mutations found in shared clonal families

foundinatleast2 different compartmentsisgraphed totheright ofeach donut

plot. Color of dot plots match the color of pie slices within the donut plot, which
indicate persisting clones. nd - clone was Not Detected in the indicated
compartment. Black horizontal lineindicates median number of SHM.
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Extended DataFig. 6 | Anti-SARS-CoV-2 RBD monoclonal antibodies second dose of mRNA vaccination (right panel). Each dot represents one
ELISAs. a-e, Graphs show anti-SARS-CoV-2 binding activity of n=458 antibody. Antibodiesisolated from samples without a prime value are shownin
monoclonal antibodies measured by ELISA against RBD. ELISA half-maximal black.Red horizontal barsand numbersindicate geometric mean values.
concentration (ECs,) values for all antibodies (a), all clones (b), persisting Statistical significance was determined by two-tailed Mann-Whitney test (left
clones (c), unique clones (d) and singlets (e) isolated from COVID-19 panelsofa, b, dand e), two-tailed Kruskal-Wallis test with subsequent Dunn’s
convalescentindividuals1.3*and 6.2’ months after infection (left panel) or multiple comparisons (right panels of a-e) or by two-tailed Wilcoxon test (left

fromvaccinatedindividuals after prime, or1.3m or 5m after receiving the panelofc). Allexperiments were performed at least twice.
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Extended DataFig.7|Anti-SARS-CoV-2 RBD monoclonal antibodies.

a-b, Graphs show anti-SARS-CoV-2 neutralizing activity of monoclonal
antibodies measured by a SARS-CoV-2 pseudotype virus neutralization assay
using wild-type (Wuhan Hu-1°°) SARS-CoV-2 pseudovirus*®. Half-maximal
inhibitory concentration (ICs,) values for antibodies from a, all clonesand b,
singletsisolated from COVID-19 convalescentindividuals1.3*and 6.2” months
afterinfection or fromvaccinated individuals after prime, and 1.3- or 5-months
after2doses of vaccine. Each dot represents one antibody, where 451 total
antibodies were tested including the 430 reported herein (Supplementary

convalescent vaccinated

Table 5), and 21 previously reported antibodies™. Antibodiesisolated from
samples without a prime value are shown in black.Pie chartsillustrate the
fraction of non-neutralizing (IC50 >1000 ng/ml) antibodies (grey slices), inner
circleshows the number of antibodies tested per group. Horizontal bars and
red numbersindicate geometric mean values. Statistical significance was
determined by two-tailed Kruskal Wallis test with subsequent Dunn’s multiple
comparisons, and for ring plots by two-tailed Fisher’s exact test with
subsequent Bonferroni-correction. Allexperiments were performed at least
twice.
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Extended DataFig. 8| Affinity and Epitope targeting of anti-SARS-CoV-2
RBD antibodies. a, IC,, values for randomly selected antibodiesisolated from
convalescents1.3m?(n=42) and 6.2m’ (n=45) after infection or from vaccinees
after prime (n=36), and 1.3m (n=74) and 5m (n=43). Red horizontal lines and
numbersindicate geometric mean. Antibodies isolated from samples without
aprimevalue areshowninblack. b, Graphs show affinities (K, Y-axis) plotted
against neutralization activity (ICs,, X-axis) for antibodies isolated after prime
(black), or1.3m (orange) or 5m (green) post-boost vaccination for antibodies
showinina.c,Schematicrepresentation of the BLIexperiment for randomly
selected antibodies isolated from vaccinees1.3-and S5months after full
vaccination (each presented group shows n=26 antibodies). d. Heat-map of

relative inhibition of Ab2 binding to the preformed Abl-RBD complexes
(grey=no binding, yellow=low binding, orange=intermediate binding,
red=highbinding). Values are normalized through the subtraction of the
autologous antibody control. BLItraces can be found in Extended Data Fig. 9.
e.Piechartsindicate the fraction of antibodies that are assigned to different
classesaccordingto their binding patternasshownind and Extended data
Fig.9.Numberininner circle shows number of antibodies tested. Statistical
significance was determined using a two-tailed Kruskal Wallis test with
subsequent Dunn’s multiple comparisonsinaand two-tailed Spearman
correlationtestinb, and atwo-tailed Chi-squaretestine.
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Extended DataFig. 9 |BLItraces from epitope mappingofanti-SARS-CoV-2 RBD antibodies. a, b, BLI traces from competition experiments used to determine
epitopetargetsof anti-SARS-CoV-2 RBD antibodies isolated from vaccineesat1.3m (a) or 5m (b) post-boost, asillustrated in Extended Data Fig. 8.



Extended Data Table 1| Breadth of anti-SARS-CoV-2 RBD antibodies elicited after prime and 2 doses of vaccination
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ranging from O (white) to 1000 ng/ml (red).
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Antibodies

Antibodies used 1. Mouse anti-human CD20-PECy7 (BD Biosciences, 335793), clone L27

2. Mouse anti-human CD3-APC-eFluro 780 (Invitrogen, 47-0037-41), clone OKT3

3. Mouse anti-human CD8-APC-421eFluro 780 (Invitrogen, 47-0086-42), clone OKT8
4. Mouse anti-human CD16-APC-eFluro 780 (Invitrogen, 47-0168-41), clone eBioCB16
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7. Mouse anti-human 1gD-BV421 (Biolegend, 348226), clone I1A6-2
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10. Mouse anti-human CD71-PerCPCy5.5 (Biolegend, 334114), clone CY1G4

11. Mouse anti-human 1gG-PECF594 (BD Bioscience, 562538), clone G18-145

12. Mouse anti-human IgM-AF700 (Biolegend, 314538), clone MHM-88

13. Mouse anti-human IgA-VioGreen (Miltenyi Biotec, 130-113-481), clone IS11-8E10
14. Peroxidase Goat anti-Human 1gG Jackson Immuno Research 109-036-088

15. Peroxidase Goat anti-Human IgM Jackson Immuno Research 109-035-129

16. Peroxidase Goat anti-Human IgA Sigma A0295

Validation All antibodies are commercially available and validated by manufacturers. Additionally information can be found on product website,
listed below.
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1. https://www.bdbiosciences.com/en-us/products/reagents/flow-cytometry-reagents/clinical-discovery-research/single-color-
antibodies-ruo-gmp/pe-cy-7-mouse-anti-human-cd20.335793

2. https://https://www.biolegend.com/en-us/products/zombie-nir-fixable-viability-kit-8657www.thermofisher.com/antibody/
product/CD3-Antibody-clone-OKT3-Monoclonal/47-0037-42

3. https://www.thermofisher.com/antibody/product/CD8a-Antibody-clone-OKT8-OKT-8-Monoclonal/47-0086-42

4. https://www.thermofisher.com/antibody/product/CD16-Antibody-clone-eBioCB16-CB16-Monoclonal/47-0168-42

5. https://www.thermofisher.com/antibody/product/CD14-Antibody-clone-61D3-Monoclonal/47-0149-42

6. https://www.biolegend.com/en-us/products/zombie-nir-fixable-viability-kit-8657

7. https://www.biolegend.com/en-us/search-results/brilliant-violet-421-anti-human-igd-antibody-8215

8. https://www.bdbiosciences.com/en-ca/products/reagents/flow-cytometry-reagents/research-reagents/single-color-antibodies-
ruo/fitc-mouse-anti-human-cd27.555440

9. https://www.biolegend.com/en-us/products/brilliant-violet-605-anti-human-cd19-antibody-8483?GrouplD=BLG5913

10. https://www.biolegend.com/en-us/products/percp-cyanine5-5-anti-human-cd71-antibody-9387?GrouplD=BLG4836

11. https://www.bdbiosciences.com/en-us/products/reagents/flow-cytometry-reagents/research-reagents/single-color-antibodies-
ruo/pe-cf594-mouse-anti-human-igg.562538

12. https://www.biolegend.com/fr-lu/products/alexa-fluor-700-anti-human-igm-antibody-12507

13. https://www.miltenyibiotec.com/US-en/products/iga-antibody-anti-human-is11-8e10.html#gref

14. https://www.jacksonimmuno.com/catalog/products/109-036-088

15. https://www.jacksonimmuno.com/catalog/products/109-035-129

16. https://www.sigmaaldrich.com/US/en/product/sigma/a0295

Eukaryotic cell lines

Policy information about cell lines

Cell line source(s)

Authentication

293T (CRL-11268) and HT1080 (CCL-121) were originally obtained from ATCC. Based on these cell lines, we generated the
following cells:

293T/ACE2* (Robbiani, D. et al. Nature 584, doi.org/10.1038/s41586-020-2456-9)

HT1080/ACE2.cl14 (Schmidt, F. et al. J Exp Med 217, doi:10.1084/jem.20201181)

Both the 293T/ACE2 and HT1080/ACE2.cl14 cell lines are obtained from the Laboratory of Retrovirology, Rockefeller
University.

Not authenticated after purchase from ATCC.

Mycoplasma contamination The cells were checked for mycoplasma contamination by Hoechst staining, and confirmed negative.

Commonly misidentified lines  No commonly misidentified cell lines were used.

(See ICLAC register)

Human research participants

Policy information about studies involving human research participants

Population characteristics

Recruitment

Ethics oversight

Participants were healthy volunteers receiving either the Moderna (mRNA-1273) or Pfizer-BioNTech (BNT162b2) mRNA
vaccines against SARS-CoV-2 who were recruited for serial blood donations at Rockefeller University Hospital in New York
between January 21 and July 20, 2021. Participants indicated as “Prime/1.3 post-Boost” were individuals who were de novo
recruited for this study, while a subgroup of individuals (indicated as “1.3m/5m”) were from a long-term study cohort12.
Eligible participants were healthy adults with no history of infection with SARS-CoV-2, as determined by clinical history and
confirmed through serology testing, receiving one of the two Moderna (mRNA-1273) or Pfizer-BioNTech (BNT162b2),
according to current dosing and interval guidelines. Exclusion criteria included incomplete vaccination status, presence of
clinical signs and symptoms suggestive of acute infection with or a positive RT-PCR results for SARS-CoV-2 in saliva, or a
positive COVID-19 serology. Seronegativity for COVID-19 was established through the absence of serological activity toward
the nucleocapsid protein (N) of SARS-CoV-2. Volunteers rnaged in age from 23-78 years old (median = 34.5 years). 53% were
male and 47% female.

Participants presented to the Rockefeller University Hospital for blood sample collection and were asked to provide details of
their vaccination regimen, possible side effects, comorbidities and possible COVID-19 history. Recruitment was open to all
eligible adults receiving an mRNA vaccine against SARS-CoV-2. Other than the criteria listed herein, no other parameters
were used to exclude or include patients. Therefore, we cannot identify any factors that would lead to self-selection bias. All
participants provided written informed consent before participation in the study and the study was conducted in accordance
with Good Clinical Practice.

Institutional Review Board (IRB) at the Rockefeller University, protocol DRO-1006.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Flow Cytometry

Plots

Confirm that:
|X| The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

|X| The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).
|X| All plots are contour plots with outliers or pseudocolor plots.

|X| A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation Whole blood samples were obtained from study participants recruited through Rockefeller University Hospital. Peripheral
blood mononuclear cells (PBMCs) were separated by Ficoll gradient centrifugation. Prior to sorting, PBMCs were enriched for
B cells using a Miltenyi Biotech pan B cell isolation kit (cat. no. 130-101-638) and LS columns (cat. no. 130-042-401).
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Instrument FACS Aria Ill (Becton Dickinson)
Software BD FACSDiva Software Version 8.0.2 and FlowJo 10.6.2
Cell population abundance Sorting efficiency ranged from 40% to 80%. This is calculated based on the number of IgG-specific antibody sequences that

could be PCR-amplified successfully from single sorted cells from each donor.

Gating strategy Cells were first gated for lymphocytes in FSC-A (x-axis) versus SSC-A (y-axis). We identify single cells in FSC-A versus FSC-H,
and then SSC-A versus SSC-W. We then select for CD20+ Dump- B Cells in dump (anti-CD3-eFluro 780, anti-CD16-eFluro 780,
anti-CD8-eFluro 780, anti-CD14-eFluro 780, Zombie NIR) versus CD20 (anti-CD20-PE-Cy7); dump-negative was considered to
be signal less than 250, and CD20-positive was taken to be signal greater than 100. We then gate for Ova- B cells in FSC-A
versus Ova-BV711; Ova-negative was considered to be all cells with signal less than 100. Select for Sars-CoV-2 RBD double-
positive cells in RBD PE versus RBD AlexaFluor 647; this gate was made along the 45° diagonal, above 1000 on both axes.

|X| Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.
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