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1 Introduction

We begin with some well-known facts from Riemannian geometry. Given an oriented
Riemannian 4-manifold .M; g/, the Hodge-� operator is an involution on 2-forms. This
induces a decomposition

ƒ2 D ƒ2C ˚ƒ2� (1)

of 2-forms into self-dual and anti-self-dual components, which only depends on the
conformal class Œg�. Now choose g 2 Œg�. The Riemann tensor has the index symmetry
Rabcd D RŒab�Œcd� so can be thought of as a map R W ƒ2 ! ƒ2. This map decomposes
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under (1) as follows:
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The C˙ terms are the self-dual and anti-self-dual parts of the Weyl tensor, the � terms
are the tracefree Ricci curvature, and s is the scalar curvature which acts by scalar
multiplication. The Weyl tensor is conformally invariant, so can be thought of as being
defined by the conformal structure Œg�. An anti-self-dual conformal structure is one
withCC D 0. Such structures have a global twistor correspondence [3] which has been
studied intensively; they have also been studied from a purely analytic point of view
using elliptic techniques [51].

What happens in other signatures? In Lorentzian signature .CCC�/, the Hodge-�
is not an involution (it squares to �1 instead of 1) and there is no decomposition of
2-forms. In neutral .CC ��/ signature, the Hodge-� is an involution, and there is a
decomposition exactly as in the Riemannian case, depending on Œg�. Thus anti-self-
dual conformal structures exist in neutral signature. This article is devoted to their
properties.

At the level of PDEs, the difference between neutral and Riemannian is that in the
neutral case the gauge-fixed anti-self-duality equations are ultrahyperbolic, whereas in
the Riemannian case they are elliptic. This results in profound differences, both locally
and globally. Roughly speaking, the neutral case is far less rigid than the Riemannian
case. For instance, any Riemannian anti-self-dual conformal structure must be analytic
by the twistor construction. In the neutral case there is no general twistor construction,
and in fact neutral conformal structures are not necessarily analytic. This lack of
analyticity provides scope for rich local behaviour, as wave like solutions exists.

Assuming symmetries in the form of Killing vectors, one often finds that the equa-
tions reduce to integrable systems. Different integrable systems can be obtained by
combining symmetries with geometric conditions for a metric in a conformal class.
The story here in some sense parallels the case of the self-dual Yang–Mills equations
in neutral signature, where imposing symmetries leads to many well-known integrable
systems [37].

The subject of this review is the interplay between the ultrahyperbolic differential
equations, and the anti-self-duality condition. We shall make a historical digression,
and note that both concepts arouse separately in mid 1930s.

Indeed, the ultrahyperbolic wave equation appears naturally in integral geometry,
where the X-ray transform introduced in 1938 by John [25] can be used to construct
all its smooth solutions. This takes a smooth function on RP 3 (a compactification of
R3) and integrates it over an oriented geodesic. The resulting function is defined on
the Grassmannian Gr2.R4/ of two-planes in R4 and satisfies the wave equation for
a flat metric in .C C ��/ signature. To see it explicitly consider a smooth function
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f W R3 ! R which satisfies suitable decay conditions at infinity. For any oriented line
L � R3 define  .L/ D R

L
f , or

 .x; y;w; z/ D
Z 1

�1
f .xs C z; ys � w; s/ds; (3)

where we have chosen an explicit parametrisation of all lines which are not perpendic-
ular to the x3 axis. The dimension of the space of oriented lines is 4. This is greater
than the dimension of R3, and one does not expect  to be arbitrary. Differentiating
under the integral sign shows that must satisfy the wave equation in neutral signature

@2 

@x@w
C @2 

@y@z
D 0: (4)

John has demonstrated that equation (4) is the only condition constraining the range of
the integral transform in this case, and that all smooth solutions to (4) arise by (3) from
some f . One can regard the X -ray transform as the predecessor of twistor theory. In
this context RP 3 should be regarded as a totally real submanifold of a twistor space
CP 3. In fact Woodhouse [56] showed that any local solution of (4) can be generated
from a function on the real twistor space of R2;2. The twistor space is the set of totally
null self-dual 2-planes and is three-dimensional, so we are again dealing with a function
of three variables. To obtain the value  at a point p, one integrates f over all the
planes through p. This was motivated by the Penrose transform with neutral reality
conditions.

It is less well known that the ASD equation on Riemann curvature dates back to the
same period as the work of John (at least 40 years before the seminal work of Penrose
[45] and Atyiah–Hitchin–Singer [3]). It arose in the context of Wave Geometry –
a subject developed in Hiroshima during the 1930s. Wave Geometry postulates the
existence of a privileged spinor field which in the modern super-symmetric context
would be called a Killing spinor. The integrability conditions come down to the ASD
condition on a Riemannian curvature of the underlying complex space time. This
condition implies vacuum Einstein equations. The Institute at Hiroshima where Wave
Geometry had been developed was completely destroyed by the atomic bomb in 1945.
Two of the survivors wrote up the results in a book [40]. In particular in [50] it was
shown that local coordinates can be found such that the metric takes the form

g D @2�

@x@w
dxdw C @2�

@y@z
dydz C @2�

@y@w
dydw C @2�

@x@z
dxdz (5)

and ASD vacuum condition reduces to a single PDE for one function �:

@2�

@x@w

@2�

@y@z
� @2�

@x@z

@2�

@y@w
D 1: (6)

This is nowadays known as the first heavenly equation after Plebanski who rediscovered
it in 1975 [47]. If .�; x; y; w; z/ are all real, the resulting metric has neutral signature.
The flat metric corresponds to � D wx C zy. Setting

� D wx C zy C  .x; y;w; z/
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we see that up to the linear terms in  the heavenly equation reduces to the ultrahyper-
bolic wave equation (4). Later we shall see that the twistor method of solving (6) is a
non-linear version of John’s X-Ray transform. This concludes our historical digression.

The article is structured as follows. In Section 2 we introduce the local theory of
neutral anti-self-dual conformal structures. It is convenient to use spinors, which for
us will be a local tool to make the geometric structures more transparent. In Section 3
we explain how neutral ASD conformal structures are related to Lax pairs and hence
integrable systems. We review various curvature restrictions on a metric in a conformal
class (Ricci-flat, scalar flat Kähler etc), and show how these can be characterised in terms
of their Lax pair. Section 4 is devoted to symmetries; in this section we make contact
with many well known integrable systems. We discuss twistor theory in Section 5,
explaining the differences between the Riemannian and neutral case, and describing
various twistor methods of generating neutral ASD conformal structures. Despite the
ultrahyperbolic nature of the equations, some strong global results have been obtained
in recent years using a variety of techniques. We discuss these in Section 6.

The subject of neutral anti-self-dual conformal structures is rather diverse. We hope
to present a coherent overview, but the different strands will not all be woven together.
Despite this, we hope the article serves a useful purpose as a path through the literature.

2 Local geometry in neutral signature

2.1 Conformal compactification. We shall start off by describing a conformal com-
pactification of the flat neutral metric. Let R2;2 denote R4 with a flat .CC��/metric.
Its natural compactification is a projective quadric in RP 5. To describe it explicitly
consider Œx;y� as homogeneous coordinates on RP 5, and set Q D jxj2 � jyj2. Here
.x;y/ are vectors on R3 with its natural inner product. The cone Q D 0 is projectively
invariant, and the freedom .x;y/ � .cx; cy/, where c ¤ 0 is fixed to set jxj D jyj D 1
which is S2 � S2. We need to quotient this by the antipodal map .x;y/! .�x;�y/

to obtain the conformal compactification1

R2;2 D .S2 � S2/=Z2:

Parametrising the double cover of this compactification by stereographic coordinates
we find that the flat metric jdxj2 � jdyj2 on R3;3 yields the metric

g0 D 4 d�d N�
.1C � N�/2 � 4

d�d N�
.1C � N�/2 (7)

on S2�S2. To obtain the flat metric on R2:2 we would instead consider the intersection
of the zero locus of Q in R3;3; with a null hypersurface x0 � y0 D 1.

The metric g0 is conformally flat and scalar flat, as the scalar curvature is the
difference between curvatures on both factors. It is also Kähler with respect to the
natural complex structures on CP 1 � CP 1 with holomorphic coordinates .�; �/. In

1This compactification can be identified with the Grassmannian Gr2.R4/ arising in the John transform (3).
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Section 6.2 we shall see that g0 admits nontrivial scalar-flat Kähler deformations [53]
globally defined on S2 � S2.

2.2 Spinors. It is often convenient in four dimensions to use spinors, and the neutral
signature case is no exception. The relevant Lie group isomorphism in neutral signature
is

SO.2; 2/ Š SL.2;R/ � SL.2;R/=Z2: (8)

We shall assume that the neutral four manifold .M; g/has a spin structure. Therefore
there exist real two-dimensional vector bundles S; S 0 (spin-bundles) over M equipped
with parallel symplectic structures �; �0 such that TM Š S ˝ S 0 is a canonical bundle
isomorphism, and

g.v1 ˝ w1; v2 ˝ w2/ D �.v1; v2/�
0.w1; w2/

for v1; v2 2 �.S/ and w1; w2 2 �.S 0/. The two-component spinor notation [46] will
used in the paper. The spin bundles S and S 0 inherit connections from the Levi-Civita
connection such that �, �0 are covariant constant. We use the standard convention in
which spinor indices are capital letters, unprimed for sections of S and primed for
sections of S 0. For example 	A denotes a section of S�, the dual of S , and 
A0

a
section of S 0.

The symplectic structures on spin spaces �AB and �A0B0 (such that �01 D �0010 D 1)
are used to raise and lower indices. For example given a section 	A of S we define a
section of S� by 	A WD 	B�BA.

Spin dyads .oA; �A/ and .oA0

; �A
0

/ span S and S 0 respectively. We denote a nor-
malised null tetrad of vector fields on M by

eAA0 D
�

e000 e010

e100 e110

�
:

This tetrad is determined by the choice of spin dyads in the sense that

oAoA0

eAA0 D e000 ; �AoA0

eAA0 D e100 ; oA�A
0

eAA0 D e010 ; �A�A
0

eAA0 D e110 :

The dual tetrad of one-forms by eAA0

determine the metric by

g D �AB�A0B0eAA0 ˝ eBB0 D 2.e000 ˇ e110 � e100 ˇ e010

/ (9)

where ˇ is the symmetric tensor product. With indices, the above formula2 for g
becomes gab D �AB�A0B0 .

The local basis †AB and †A0B0

of spaces of ASD and SD two-forms are defined
by

eAA0 ^ eBB0 D �AB†A0B0 C �A0B0

†AB : (10)

2Note that we drop the prime on �0 when using indices, since it is already distinguished from � by the
primed indices.
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A vector V can be decomposed as V AA0

eAA0 , where V AA0

are the components of V
in the basis. Its norm is given by det.V AA0

/, which is unchanged under multiplication
of the matrix V AA0

by elements of SL.2;R/ on the left and right

V AA0 �! ƒA
BV

BB0

ƒ0A0

B0 ; ƒ 2 SL.2;R/; ƒ
0 2 SL.2;R/

0

giving (8). The quotient by Z2 comes from the fact that multiplication on the left and
right by �1 leaves V AA0

unchanged.
Spinor notation is particularly useful for describing null structures. A vector V is

null when det.V AA0

/ D 0, so V AA0 D 	A
A0

by linear algebra. In invariant language,
this says that a vector V is null iff V D 	˝ 
 where 	; 
 are sections of S; S 0.

The decomposition of a 2-form into self-dual and anti-self-dual parts is straightfor-
ward in spinor notation. Let FAA0BB0 be a 2-form in indices. Now

FAA0BB0 D F.AB/.A0B0/ C FŒAB�ŒA0B0� C F.AB/ŒA0B0� C FŒAB�.A0B0/

D F.AB/.A0B0/ C c�AB�A0B0 C �AB�A0B0 C  A0B0�AB :

Here we have used the fact that in two dimensions there is a unique anti-symmetric
matrix up to scale, so whenever an anti-symmetrized pair of spinor indices occurs we
can substitute a multiple of �AB or �A0B0 in their place. Now observe that the first
two terms are incompatible with F being a 2-form, i.e. FAA0BB0 D �FBB0AA0 . So we
obtain

FAA0BB0 D �AB�A0B0 C  A0B0�AB ; (11)

where �AB and  A0B0 are symmetric. This is precisely the decomposition of F into
self-dual and anti-self dual parts. Which is which depends on the choice of volume
form; we choose  A0B0�AB to be the self-dual part. Invariantly, we have

ƒ2C Š S 0� ˇ S 0�; ƒ2� Š S� ˇ S�: (12)

2.3 ˛- and ˇ-planes. Suppose at a point x 2 M we are given a spinor 
A0 2 S 0
x .

A two-plane …x is defined by all vectors of the form V AA0 D 	A
A0

, with varying
	A 2 S . Now suppose V;W 2 …x . Then g.V;W / D 
A0


B0

�A0B0�A	B�AB D 0

since �A0B0 is antisymmetric. Therefore we say the two-plane is totally null. Further-
more, the 2-form VŒaWb� is proportional to 	A0	B0�AB ; i.e. the two-plane is self-dual.
In summary, a spinor in S defines a totally null self-dual two-plane, which is called an
˛-plane. Similarly a spinor in S defines a totally null anti-self-dual two-plane, called
a ˇ-plane.

2.4 Anti-self-dual conformal structures in spinors. A neutral conformal structure
Œg� is an equivalence class of neutral signature metrics, with the equivalence relation
g � ef g for any function f . Another way of viewing such a structure is as a line-
bundle valued neutral metric; we will not need this description because in most cases
we will be working with particular metrics within a conformal class.
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Choose a g 2 Œg�. Then there is a Riemann tensor, which possesses certain sym-
metries under permutation of indices. In the same way that we deduced (11) for the
decomposition of a 2-form in spinors, the Riemann tensor decomposes as [46]

RAA0BB0CC 0DD0 D CABCD�A0B0�C 0D0 C CA0B0C 0D0�AB�CD

C �ABC 0D0�A0B0�CD C �A0B0CD�AB�C 0D0

C s

12
.�AC �BD�A0B0�C 0D0 C �AB�CD�A0D0�B0C 0/:

This is the spinor version of (2). Here CA0B0C 0D0 , CABCD are totally symmetric,
and correspond to CC, C� in (2). The spinor �A0B0CD is symmetric in its pairs of
indices, and corresponds to � in (2). An anti-self-dual conformal structure is one for
which CA0B0C 0D0 D 0. In the next section we explain the geometric significance of this
condition in more detail. It is appropriate here to recall the Petrov–Penrose classification
[46] of the algebraic type of a Weyl tensor. In split signature this applies separately
to CABCD and CA0B0C 0D0 . In our case CA0B0C 0D0 D 0 and we are concerned with the
algebraic type of CABCD . One can form a real polynomial of fourth order P.x/ by
defining 	A D .1; x/ and setting P.x/ D 	A	B	C	DCABCD . The Petrov–Penrose
classification refers to the position of roots of this polynomial, for example if there
are four repeated roots then we say CABCD is type N. If there is a repeated root the
metric is called algebraically special indexalgebraically special. There are additional
complications in the split signature case [32] arising from the fact that real polynomials
may not have real roots.

3 Integrable systems and Lax pairs

In this section we show how anti-self-dual conformal structures are related to integrable
systems and Lax pairs. Let g 2 Œg� and let r denote the Levi-Civita connection on M.
This connection induces spin connections on spin bundles which we also denoter. Let
us consider S 0. The connection coefficients � C 0

AA0B0 of r are defined by

rAA0	C 0 D eAA0.	C 0

/C � C 0

AA0B0 	
B0

;

where 	A0

is a section of S 0 in coordinates determined by the basis eAA0 . The � C 0

AA0B0

symbols can be calculated in terms of the Levi-Civita connection symbols. They can
also be read off directly from the Cartan equationsdeAA0 D eBA0^�B

ACeAB0^�B0
A0

,
where �B0

C 0 D � C 0

AA0B0 eAA0

. See [46] for details. Now given a connection on a vector
bundle, one can lift a vector field on the base to a horizontal vector field on the total
space. We follow standard notation and denote the local coordinates of S 0 by 
A0

.
Then the horizontal lifts QeAA0 of eAA0 are given explicitly by

QeAA0 WD eAA0 C � C 0

AA0B0 

B0 @

@
C 0
:

Now we can state a seminal result of Penrose:
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Theorem 1 ([45]). Given a neutral metric g, define a two-dimensional distribution on
S 0 by D D spanfL0; L1g, where

LA WD 
A0 QeAA0 : (13)

Then D is integrable iff g is anti-self-dual.

So when g is ASD, S 0 is foliated by surfaces. Since the LA are homogeneous in
the 
A0

coordinates, D defines a distribution on PS 0, the projective version of S 0.
The push down of D from a point 
A0 D 
A0

in a fibre of S 0 to the base is the
˛-plane defined by 
A0

, as explained in Section 2.3. So the content of Theorem 1 is
that g is ASD iff any ˛-plane is tangent to an ˛-surface, i.e. a surface that is totally null
and self-dual at every point. Any such ˛-surface lifts to a unique surface in PS 0, or a
one parameter family of surfaces in S 0.

3.1 Curvature restrictions and their Lax pairs. A more recent interpretation of
Theorem 1 is to regard LA as a Lax pair for the ASD conformal structure. Working
on PS 0, with inhomogeneous fibre coordinate � D 
10

=
00

, the condition that D

commutes is the compatibility condition for the pair of linear equations

L0f D . Qe000 C � Qe010/f D 0
L1f D . Qe100 C � Qe110/f D 0

to have a solution f for all � 2 R, where f is a function on PS 0. In integrable systems
language, � is the spectral parameter.

Here we describe various conditions that one can place on a metric g 2 Œg� on top
of anti-self-duality. This provides a more direct link with integrable systems as in each
case described below one can choose a spin frame, and local coordinates to reduce the
special ASD condition to an integrable scalar PDE with corresponding Lax pair.

3.1.1 Pseudo-hyperhermitian structures. This is the neutral analogue of Rieman-
nian hyperhermitian geometry. The significant point for us is that in four dimensions,
pseudo-hyperhermitian metrics (defined below) are necessarily anti-self-dual.

Consider a structure .M; I; S; T /, where M is a four-dimensional manifold and
I; S; T are anti-commuting endomorphisms of the tangent bundle satisfying

S2 D T 2 D 1; I 2 D �1; ST D �TS D 1: (14)

This is called the algebra of para-quaternions [24] or split quaternions [12]. Consider
the hyperboloid of almost complex structures on M given by aICbSCcT , for .a; b; c/
satisfying a2 � b2 � c2 D 1. If each of these almost complex structures is integrable,
we call .M; I; S; T / a pseudo-hypercomplex manifold.

So far we have not introduced a metric. A natural restriction on a metric given a
pseudo-hypercomplex structure is to require it to be hermitian with respect to each of
the complex structures. This is equivalent to the requirement:

g.X; Y / D g.IX; IY / D �g.SX; SY / D �g.TX; T Y /; (15)
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for all vectors X; Y . A metric satisfying (15) must be neutral. To see this consider
the endomorphism S , which squares to the identity. Its eigenspaces decompose into
C1 and �1 parts. Any eigenvector must be null from (15). So choosing an eigen-
basis one can find 4 null vectors, from which it follows that the metric is neutral.
Given a pseudo-hypercomplex manifold, we call a metric satisfying (15) a pseudo-
hyperhermitian metric.

Given a local pseudo-hypercomplex structure in four dimensions one can construct
many pseudo-hyperhermitian metrics for it as follows. Take a vector field V and let
.V; IV; SV; T V / be an orthonormal basis in which the metric has diagonal components
.1; 1;�1;�1/. The fact that these vectors are linearly independent follows from (14).
It is easy to check that (15) holds for any two vectors in the above basis, and hence by
linearity for any .X; Y /. By varying the length of V one obtains a different conformal
class. However, even the conformal class is not uniquely specified. To see this take a
vectorW that is null for the metric specified by V , and form a new metric by the same
procedure using W . Then W is not null in this new metric, so this metric must be in a
different conformal class.

As mentioned above, it turns out that pseudo-hyperhermitian metrics are necessarily
anti-self-dual. One way to formulate this is via the Lax pair formalism as follows:

Theorem 2 ([14]). Let eAA0 be four independent vector fields on a four-dimensional
real manifold M. Put

L0 D e000 C �e010 ; L1 D e100 C �e110 :

If

ŒL0; L1� D 0 (16)

for every value of a parameter �, then g given by (9) a pseudo-hyperhermitian metric
on M. Given any four-dimensional pseudo-hyperhermitian metric there exists a null
tetrad such that (16) holds.

Interpreting � as the projective primed spin coordinate as in Section 3, we see that a
pseudo-hyperhermitian metric must be ASD from Theorem 1. Theorem 2 characterises
pseudo-hyperhermitian metrics as those which possess a Lax pair containing no @�

terms.
We shall now discuss the local formulation of the pseudo-hyperhermitian condition

as a PDE. Expanding equation (16) in powers of � gives

ŒeA00 ; eB00 � D 0; ŒeA00 ; eB10 �C ŒeA10 ; eB00 � D 0; ŒeA10 ; eB10 � D 0: (17)

It follows from (17), using the Frobenius theorem and the Poincaré lemma that one can
choose coordinates .pA; wA/ (A D 0; 1) in which eAA0 take the form

eA00 D @

@pA
; eA10 D @

@wA
� @‚

B

@pA

@

@pB
;
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where ‚B are a pair of functions satisfying a system of coupled non-linear ultra-
hyperbolic PDEs.

@2‚C

@pA@wA
C @‚B

@pA

@2‚C

@pA@pB

D 0: (18)

Note the indices here are not spinor indices, they are simply a convenient way of
labelling coordinates and the functions‚A. We raise and lower them using the standard
antisymmetric matrix �AB , for example pA WD pB�BA, and the summation convention
is used.

3.1.2 Scalar-flat Kähler structures. Let .M; g/ be an ASD four manifold and let
J be a (pseudo-)complex structure such that the corresponding fundamental two-form
is closed. This ASD Kähler condition implies that g is scalar flat, and conversely all
scalar flat Kähler four manifolds are ASD [13].

In this section we shall show that in the scalar-flat Kähler case the spin frames can
be chosen so that the Lax pair (13) consists of volume-preserving vector fields on M

together with two functions on M. The following theorem has been obtained in a joint
work of Maciej Przanowski and the first author. We shall formulate and prove it in the
holomorphic category which will allow both neutral and Riemannian real slices.

Theorem 3. Let eAA0 D .e000 ; e010 ; e100 ; e110/ be four independent holomorphic vec-
tor fields on a four-dimensional complex manifold M and let f1; f2 W M ! C be two
holomorphic function. Finally, let 
 be a nonzero holomorphic four-form. Put

L0 D e000 C �e010 � f0�
2 @

@�
; L1 D e100 C �e110 � f1�

2 @

@�
: (19)

Suppose that for every � 2 CP 1

ŒL0; L1� D 0; LLA

 D 0; (20)

where LV denotes the Lie derivative. Then

OeAA0 D c�1eAA0 ; where c2 WD 
.e000 ; e010 ; e100 ; e110/;

is a null-tetrad for an ASD Kähler metric. Every such metric locally arises in this way.

Proof. First assume that there exists a tetrad eAA0 and two functions fA D .f0; f1/ such
that equations (20) are satisfied. For convenience write down equations ŒL0; L1� D 0

in full
ŒeA00 ; eB00 � D 0; (21)

ŒeA00 ; eB10 �C ŒeA10 ; eB00 � D 0; (22)

ŒeA10 ; eB10 � D �ABf
C eC10 ; (23)

eA
00fA D 0; (24)

eA
10fA D 0: (25)
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Define the almost complex structure J by

J.eA10/ D �ieA10 ; J.eA00/ D ieA00 :

Equations (21), and (23) imply that this complex structure is integrable. Let g be a
metric corresponding to OeAA0 by (9). To complete this part of the proof we need to
show that a fundamental two-form ! defined by !.X; Y / D g.X; J Y / is closed. First
observe that

! D @

@�
.
.L0; L1; � ; � //j�D0:

It is therefore enough to prove that † D 
.L0; L1; �: :; �: / is closed for each fixed �.
We shall establish this fact using equations (20), and d
 D 0. Let us calculate

d† D d.
.L0; L1; � ; � // D d.L0 .
.L1; � ; � ; � ///
D LL0

.
.L1; � ; � ; � // � L0 .d
.L1; � ; � ; � //
D ŒL0; L1� 
 C L1 LL0

.
/ � L0 .L1 d
/

D �L0 .LL1

 � L0 .L1 d.
/// D 0:

Therefore ! is closed which in the case of integrable J also implies r! D 0 [31].

Converse. The metric g is Kähler, therefore there exist local coordinates .wA; QwA/ and
a complex valued function � D �.wA; QwA/ such that g is given by

g D @2�

@wA@ QwB
dwAd QwB : (26)

Choose a spin frame .oA0 ; �A0/ such that the tetrad of vector fields eAA0 is

eA00 D oA0

eAA0 D @

@wA
; eA10 D �A0

eAA0 D @2�

@wA@ QwB

@

@ QwB

:

The null tetrad for the metric (26) is OeAA0 D G�1eAA0 , where

G D det.g/ D 1

2

@2�

@wA@ QwB

@2�

@wA@ QwB
: (27)

The Lax pair (13) is

LA D @

@wA
� � @2�

@wA@ QwB

@

@ QwB

C lA @

@�
:

Consider the Lie bracket

ŒL0; L1� D l2 @2�

@wA@ QwB

@3�

@wA@ QwB@ QwC

@

@ QwC

C lA @2�

@wA@ QwB

@

@ QwB

C
�
@lA

@wA
� � @2�

@wA@ QwB

@lA

@ QwB

C lA @l
A

@�

�
@

@�
:
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The ASD condition is equivalent to integrability of the distribution LA, therefore

ŒLA; LB � D �AB˛
CLC

for some ˛C . The lack of @=@wA term in the Lie bracket above implies ˛C D 0.
Analysing other terms we deduce the existence of f D f .wA; QwA/ 2 ker � such that
lA D �2@f=@wA, and

@2�

@wA@ QwB

@

@ QwC

�
@2�

@wA@ QwB

�
D @f

@wA

@2�

@wA@ QwC
: (28)

The real-analytic .CC��/ slices are obtained if eAA0 ; 
; f1; f2 are all real. In this
case we alter our definition of J by

J.eA10/ D �eA10 ; J.eA00/ D eA00 :

Therefore J 2 D 1, and g is pseudo-Kähler.
In the Euclidean case the quadratic-form g and the complex structure

J D i.eA00 ˝ eA00 � eA10 ˝ eA10/

are real but the vector fields eAA0 are complex.
As a corollary from the last theorem we can deduce a formulation of the scalar-

flat Kähler condition [44] . Scalar-flat Kähler metric are locally given by (26) where
�.wA; QwA/ is a solution to a 4th order PDE (which we write as a system of two second
order PDEs ):

@f

@wA
D @2�

@wA@ QwB

@ lnG

@ QwB

; (29)

�f D @2�

@wA@ QwB

@2f

@wA@ QwB

D 0: (30)

Moreover (29,30) arise as an integrability condition for the linear system L0‰ D
L1‰ D 0, where ‰ D ‰.wA; QwA; �/ and

LA D @

@wA
� � @2�

@wA@ QwB

@

@ QwB

C �2 @f

@wA

@

@�
: (31)

To see this note that in the proof of Theorem 3 we have demonstrated thatf 2 ker �.
In the adopted coordinate system

� D @2�

@wA@ QwB

@2

@wA@ QwB

;

which gives (33). Solving the algebraic system (28) for @f=@wA yields (30).
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3.1.3 Null-Kähler structures. A null-Kähler structure on a real four-manifold M

consists of an inner product g of signature .CC��/ and a real rank-two endomorphism
N W TM! TM parallel with respect to this inner product such that

N 2 D 0 and g.NX; Y /C g.X;NY / D 0
for all X; Y 2 TM. The isomorphism ƒ2C.M/ Š Sym2.S 0/ between the bundle of
self-dual two-forms and the symmetric tensor product of two spin bundles implies that
the existence of a null-Kähler structure is in four dimensions equivalent to the existence
of a parallel real spinor. The Bianchi identity implies the vanishing of the curvature
scalar.

In [8] and [15] it was shown that null-Kähler structures are locally given by one
arbitrary function of four variables, and admit a canonical form3

g D dwdx C dzdy �‚xxdz
2 �‚yydw

2 C 2‚xydwdz; (32)

with N D dw ˝ @=@y � dz ˝ @=@x.
Further conditions can be imposed on the curvature of g to obtain non-linear PDEs

for the potential function ‚. Define

f WD ‚wx C‚zy C‚xx‚yy �‚2
xy : (33)

• The Einstein condition implies that

f D xP.w; z/C yQ.w; z/CR.w; z/;
where P;Q and R are arbitrary functions of .w; z/. In fact the number of the
arbitrary functions can be reduced down to one by redefinition of ‚ and the
coordinates. This is the hyper-heavenly equation of Plebański and Robinson
[48] for non-expanding metrics of type ŒN ��[Any]. (Recall that .M; g/ is called
hyper-heavenly if the self-dual Weyl spinor is algebraically special).

• The conformal anti-self-duality (ASD) condition implies a 4th order PDE for ‚

�f D 0; (34)

where � is the Laplace–Beltrami operator defined by the metric g. This equation
is integrable: It admits a Lax pair

L0 D .@w �‚xy@y C‚yy@x/ � �@y C fy@�;

L1 D .@z C‚xx@y �‚xy@x/C �@x C fx@�:

and its solutions can in principle be found by twistor methods [15], or the dressing
approach [7].

3The local form (32) is a special case of Walker’s canonical form of a neutral metric which admits a
two-dimensional distribution which is parallel and null [54]. Imposing more restrictions on Walker’s metric
leads to examples of conformally Osserman structures, i.e. metrics for which the eigenvalues of the operator
Y a ! C a

bcd
XbY cXd are constant on the unit pseudo-sphere fX 2 T M; g.X; X/ D ˙1g. These

metrics are all SD or ASD according to [6].
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• Imposing both conformal ASD and Einstein condition implies (possibly after
a redefinition of ‚) that f D 0, which yields the celebrated second heavenly
equation of Plebański [47]:

‚wx C‚zy C‚xx‚yy �‚2
xy D 0: (35)

ASD

�������������

Null-Kähler

�����������

���
��

��
��

��
Pseudo-hyper-Kähler

Einstein

�������������

3.1.4 Pseudo-hyper-Kähler structures. Suppose we are given a pseudo-hypercom-
plex structure as defined in the previous section, i.e. a two-dimensional hyperboloid of
integrable complex structures. In the previous section we defined a pseudo-hyperher-
mitian metric to be a metric that is hermitian with respect to each complex structure in
the family. If we further require that the 2-forms

!I . � ; � / D g. � ; I � /; !S . � ; � / D g. � ; S � /; !T . � ; � / D g. � ; T � /; (36)

be closed, we call say g is pseudo-hyper-Kähler . These define three symplectic forms,
and Hitchin has termed such structures hypersymplectic4 [23].

It follows from similar arguments to those in standard Riemannian Kähler geometry
that .I; S; T / are covariant constant, and hence so are !I ; !S ; !T .

As in the Riemannian case, pseudo-hyper-Kähler metrics are equivalent to Ricci-flat
anti-self-dual metrics. One can deduce this by showing that the 2-forms (36) are self-
dual, and since they are also covariant constant there exists a basis of covariant constant
primed spinors. Then using the spinor Ricci identities one can deduce anti-self-duality
and Ricci-flatness. See for details.

The Lax pair formulation for a pseudo-hyper-Kähler metric is as follows:

Theorem 4 ([1], [36]). Let eAA0 be four independent vector fields on a four-dimensional
real manifold M, and 
 be a 4-form. Put

L0 D e000 C �e010 ; L1 D e100 C �e110 :

If
ŒL0; L1� D 0 (37)

for every � 2 RP 1, and
LLA


 D 0; (38)

then f �1eAA0 is a null tetrad for a pseudo-hyper-Kähler metric on M, where f 2 D

.e000 ; e00 ; e100 ; e110/. Given any four-dimensional pseudo-hyper-Kähler metric such
a null tetrad and 4-form exists.

4Other terminology includes neutral hyper-Kähler [28] and hyper-para-Kähler [24].
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The extra volume preserving condition (38) distinguishes this from Theorem 2.
Alternatively Theorem 4 arises as a special case of Theorem 3 with fA D 0.

The Heavenly equations. It was shown by Plebański [47] that one can always put
a pseudo-hyper-Kähler metric into the form (5), where � satisfies the first Heavenly
equation (6). The function � can be interpreted as the Kähler potential for one of the
complex structures. Plebański also gave the alternative local form. The metric is given
by (32), and the potential‚ satisfies the second Heavenly equation (35). The Heavenly
equations are non-linear ultrahyperbolic equations. These formulations are convenient
for understanding local properties of pseudo-hyper-Kähler metrics, as they only depend
on a single function satisfying a single PDE.

4 Symmetries

By a symmetry of a metric, we mean a conformal Killing vector, i.e. a vector field K
satisfying

LKg D c g; (39)

where c is a function. If c vanishes, K is called a pure Killing vector, otherwise it is
called a conformal Killing vector. If c is a nonzero constantK is called a homothety. If
we are dealing with a conformal structure Œg�, a symmetry is a vector fieldK satisfying
(39) for some g 2 Œg�. Then .39/ will be satisfied for any g 2 Œg�, where the function
c will depend on the choice of g 2 Œg�. Such a K is referred to as a conformal Killing
vector for the conformal structure.

In neutral signature there are two types of Killing vectors: non-null and null. Unlike
in the Lorentzian case where non-null vectors can be timelike or spacelike, there is
essentially only one type of non-null vector in neutral signature. Note that a null vector
for g 2 Œg� is null for all g 2 Œg�, so nullness of a vector with respect to a conformal
structure makes sense.

4.1 Non-null case. Given a neutral four-dimensional ASD conformal structure
.M; Œg�/ with a non-null conformal Killing vector K, the three-dimensional space W

of trajectories ofK inherits a conformal structure Œh� of signature .CC�/, due to (39).
The ASD condition on Œg� results in extra geometrical structure on .W ; h/; it becomes
a Lorentzian Einstein–Weyl space. This is called the Jones–Tod construction, and is
described in Section 4.1.2. The next section is an summary of Einstein–Weyl geometry.

4.1.1 Einstein–Weyl geometry. Let W be a three-dimensional manifold. Given a
conformal structure Œh� of signature5 .2; 1/, a connection D is said to preserve Œh� if

Dh D ! ˝ h; (40)

5The formalism in this section works in general dimension and signature but we specialize to the case we
encounter later.
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for some h 2 Œh�, and a 1-form !. It is clear that if (40) holds for a single h 2 Œh� it
holds for all, where ! will depend on the particular h 2 Œh�. (40) is a natural condition;
it is the requirement that null geodesics of any h 2 Œh� are also geodesics of D.

Given D we can define its Riemann and Ricci curvature tensors W i
jkl

, Wij in the
usual way. The notion of a curvature scalar must be modified, because there is no
distinguished metric in the conformal class to contract Wij with. Given some h 2 Œh�
we can formW D hijWij . Under a conformal transformation h! �2h,W transforms
as W ! ��2W . This is because Wij unaffected by any conformal rescaling, being
formed entirely out of the connection D. W is an example of a conformally weighted
function, with weight �2.

One can now define a conformally invariant analogue of the Einstein equation as
follows:

W.ij / � 1
3
W hij D 0: (41)

These are the Einstein–Weyl equations. Notice that the left-hand side is well defined
tensor (i.e. weight 0), since the weights of W and hij cancel. Equation (41) is the
Einstein–Weyl equation for .D; Œh�/. It says that given any h 2 Œh�, the Ricci tensor
of W is tracefree when one defines the trace using h. Notice also that Wij is not
necessarily symmetric, unlike the Ricci-tensor for a Levi-Civita connection.

In the special case that D is the Levi-Civita connection of some metric h 2 Œh�,
(41) reduces to the Einstein equation. This happens when ! is exact, because under
h! �2h, we get! ! !C2d.ln�/, so if! is exact a suitable choice of�will transform
it to 0, givingDh D 0 in (40). All Einstein metrics in 2C1 or 3 dimensions are spaces of
constant curvature. The Einstein–Weyl condition allows non-trivial degrees of freedom.
The general solution to (41) depends on four arbitrary functions of two variables.

In what follows, we refer to an Einstein–Weyl structure by .h; !/. The connectionD
is fully determined by this data using .40/.

4.1.2 Reduction by a non-null Killing vector; the Jones–Tod construction. The
Jones–Tod construction relatesASD conformal structures in four dimensions to Einstein–
Weyl structures in three dimensions. In neutral signature it can be formulated as follows:

Theorem 5 ([26]). Let (M; Œg�) be a neutral ASD four manifold with a non-null con-
formal Killing vector K. An Einstein–Weyl structure on the space W of trajectories
of K is defined by

h WD jKj�2g � jKj�4KˇK; ! D 2jKj�2 �g .K ^ dK/; (42)

where jKj2 WD g.K;K/, K WD g.K; � /, and �g is the Hodge-� of g. All EW structures
arise in this way. Conversely, let .h; !/ be a three-dimensional Lorentzian EW structure
on W , and let .V; �/ be a function and a 1-form on W satisfying the generalised
monopole equation

�h

�
dV C 1

2
!V

� D d�; (43)

where �h is the Hodge-� of h. Then

g D V 2h � .d� C �/2



Anti-self-dual conformal structures in neutral signature 129

is a neutral ASD metric with non-null Killing vector @� .

This is a local theorem, so we may assume W is a manifold. A vector in W is a
vector field Lie-derived along the corresponding trajectory in M, and one applies the
formulae (42) to this vector field to obtain .Œh�; !/ on W . In the Riemannian case it
has been successfully applied globally in certain nice cases [33]. When one performs
a conformal transformation of g, one obtains a conformal transformation of h and the
required transformation of !, so this is a theorem about conformal structures, though
we have phrased it in terms of particular metrics.

The Jones–Tod construction was originally discovered using twistor theory in [26];
since then other purely differential-geometric proofs have appeared [27], [11]; although
these are in Riemannian signature the arguments carry over to the neutral case. In
Section 5 we explain the twistorial argument that originally motivated the theorem.

4.1.3 Integrable systems and the Calderbank–Pedersen construction. Applying
the Jones–Tod correspondence to the special ASD conditions discussed in Section 2
will yield special integrable systems in 2 C 1 dimensions. In each case of interest
we shall assume that the symmetry preserves the special geometric structure in four
dimensions. This will give rise to special Einstein–Weyl backgrounds, together with
general solutions of the generalised monopole equation (43) on these backgrounds. We
can then seek special monopoles such that the resulting ASD structure is conformal to
pseudo-hyper-Kähler.

An elegant framework for this is provided by the Calderbank–Pedersen construction
[11]. In this construction self-dual complex (or null) structures on M correspond to
shear-free geodesic congruences (SFGC) on W . This gives rise to a classification of
three-dimensional EW spaces according to the properties of associated congruences.
Below we shall list the resulting reductions and integrable systems. In each case we
shall specify the properties of the associated congruence without going into the details
of the Calderbank–Pedersen correspondence.

Scalar-flat Kähler with symmetry. The SU.1/-Toda equation. Let .M; g/ be a
scalar-flat Kähler metric in neutral signature, with a symmetry K Lie deriving the
Kähler form !. One can follow the steps of LeBrun [33] to reduce the problem to a
pair of coupled PDEs: the SU.1/-Toda equation and its linearisation. The key step in
the construction is to use the moment map for K as one of the coordinates, i .e. define
a function t W M ! R by dt D K !. Then x; y arise as isothermal coordinates on
two-dimensional surfaces orthogonal to K and dt . The metric takes the form

g D V.eu.dx2 C dy2/ � dt2/ � 1

V
.d� C �/2; (44)

where the function u satisfies the SU.1/-Toda equation

.eu/t t � uxx � uyy D 0; (45)
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and V is a solution to its linearization – the generalised monopole equation (43). The
corresponding EW space from the Jones–Tod construction is

h D eu.dx2 C dy2/ � dt2; ! D 2utdt: (46)

It was shown in [52] that the EW spaces that can be put in the form (45) are precisely
those possessing a shear-free twist-free geodesic congruence. Given the Toda EW
space, any solution to the monopole equation will yield a .CC��/ scalar flat Kähler
metric. The special solution V D cut , where c is a constant, will lead to a pseudo-
hyper-Kähler metric with symmetry.

In [35] solutions to (45) were used to construct neutral ASD Ricci flat metrics
without symmetries.

ASD null-Kähler with symmetry. The dKP equation. Let .M; g;N / be an ASD
null Kähler structure with a Killing vector K such that LKN D 0. In [15] it was
demonstrated that there exist smooth real valued functions H D H.x; y; t/ and W D
W.x; y; t/ such that

g D Wx.dy
2 � 4dxdt � 4Hxdt

2/ �W �1
x .d� �Wxdy � 2Wydt/

2 (47)

is an ASD null-Kähler metric on a circle bundle M! W if

Hyy �Hxt CHxHxx D 0; (48)

Wyy �Wxt C .HxWx/x D 0: (49)

All real analytic ASD null-Kähler metrics with symmetry arise from this construction.
With definition u D Hx the x derivative of equation (48) becomes

.ut � uux/x D uyy ;

which is the dispersionless Kadomtsev–Petviashvili equation originally used in [17].
The corresponding Einstein–Weyl structure is

h D dy2 � 4dxdt � 4udt2; ! D �4uxdt:

This EW structure possesses a covariant constant null vector with weight �1
2

, and in
fact every such EW structure with this property can be put into the above form. The
covariant constancy is with respect to a derivative on weighted vectors that preserves
their weight. Details can be found in [17].

The linear equation (49) is a (derivative of) the generalised monopole equation from
the Jones–Tod construction. Given a dKP Einstein–Weyl structure, any solution to
this monopole equation will yield and ASD Null Kähler structure in four dimensions.
The special monopole V D Hx=2 will yield a pseudo-hyper-Kähler structure with
symmetry whose self-dual derivative is null.
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Pseudo-hypercomplex with symmetry. The hyper-CR equation. Let us assume
that a pseudo-hypercomplex four manifold admits a symmetry which Lie derives all
(pseudo) complex structures. This implies [16] that the EW structure is locally given
by

h D .dy C udt/2 � 4.dx C wdt/dt; ! D uxdy C .uux C 2uy/dt;

where u.x; y; t/ and w.x; y; t/ satisfy a system of quasi-linear PDEs

ut C wy C uwx � wux D 0; uy C wx D 0: (50)

The corresponding pseudo-hypercomplex metric will arise form any solution to this cou-
pled system, and its linearisation (the generalised monopole (43)). The special monopole
V D ux=2 leads to pseudo-hyper-Kähler metric with triholomorphic homothety.

4.2 Null case. Given a neutral four-dimensional ASD conformal structure .M; Œg�/

with a null conformal Killing vector K, the three-dimensional space of trajectories of
K inherits a degenerate conformal structure of signature .C � 0/, and the Jones–Tod
construction does not hold. The situation was investigated in detail in [18] and [10]. It
was shown that K defines a pair of totally null foliations of M, one by ˛-surface and
one by ˇ-surfaces; these foliations intersect along integral curves of K which are null
geodesics. In spinors, if Ka D �AoA0

then an ˛-plane distribution is defined by oA0

,
and a ˇ-plane distribution by �A, and it follows from the Killing equation that these
distributions are integrable.

The main result from [18] is that there is a canonically defined projective structure
on the two-dimensional space of ˇ-surfaces U which arises as a quotient of M by a
distribution �AeAA0 . A more general framework where the distribution �AeAA0 is still
integrable, but �AoA0

is not a symmetry for any oA0 2 �.S 0/ was recently developed
by Calderbank [10] and extended by Nakata [42].

A projective structure is an equivalence class of connections, where two connections
are equivalent if they have the same unparameterized geodesics. In Section 5 we will
explain the twistor theory that led to the observation that projective structures are
involved, and give a new example of a twistor construction.

It turns out that one can explicitly write down allASD conformal structures with null
conformal Killing vectors in terms of their underlying projective structures as follows:

Theorem 6 ([18]). Let .M; Œg�;K/ be a smooth neutral signature ASD conformal struc-
ture with null conformal Killing vector. Then there exist local coordinates .�; x; y; z/
and g 2 Œg� such that K D @� and g has one of the following two forms, according to
whether the twist K ^ dK vanishes or not .K WD g.K; � //:

1. K ^ dK D 0.

g D .d� C .zA3 �Q/dy/.dy � ˇdx/
� .dz � .z.�ˇy C A1 C ˇA2 C ˇ2A3//dx

� .z.A2 C 2ˇA3/C P /dy/dx;
(51)
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where A1, A2, A3, ˇ, Q,P are arbitrary functions of .x; y/.

2. K ^ dK ¤ 0.

g D .d� C A3@zGdy C .A2@zG C 2A3.z@zG �G/ � @z@yG/dx/

� .dy � zdx/ � @2
zGdx.dz � .A0 C zA1 C z2A2 C z3A3/dx/;

(52)

where A0; A1; A2; A3 are arbitrary functions of .x; y/, and G is a function of
.x; y; z/ satisfying the following PDE:

.@x C z@y C .A0 C zA1 C z2A2 C z3A3/@z/@
2
zG D 0: (53)

The functions Ai .x; y/ in the metrics (51) and (52) determine projective structures
on the two-dimensional space U in the following way. A two projective structure in
two dimensions is equivalent to a second-order ODE

d2y

dx2
D A3.x; y/

�
dy

dx

�3

C A2.x; y/

�
dy

dx

�2

C A1.x; y/

�
dy

dx

�
C A0.x; y/; (54)

obtained by choosing local coordinates .x; y/ and eliminating the affine parameter from
the geodesic equation. The Ai functions can be expressed in terms of combinations of
connection coefficients that are invariant under projective transformation. In (52) all
the Ai ; i D 0; 1; 2; 3 functions occur explicitly in the metric. In (51) the function A0

does not explicitly occur. It is determined by the following equation:

A0 D ˇx C ˇˇy � ˇA1 � ˇ2A2 � ˇ3A3: (55)

If the projective structure is flat, i.e.Ai D 0 and ˇ D P D 0 then (51) is Ricci flat
[47], and in fact this is the most general ASD Ricci flat metric with a null Killing
vector which preserves the pseudo-hyper-Kähler structure [4]. More generally, if the
projective structure comes from a Riemannian metric on U then there will always exist
a (pseudo-)Kähler structure in the conformal class Œg� ifG D z2=2C�.x; y/zCı.x; y/
for certain �; ı [9].

It is interesting that integrable systems are not involved in the null case, given their
ubiquity in the non-null case.

5 Twistor theory

In Riemannian signature, given an ASD conformal structure .M; Œg�/ in four dimen-
sions one can form a 2-sphere bundle over it, and endow this with an integrable complex
structure by virtue of anti-self-duality [3]. The resulting complex manifold P T is called
the twistor space. The original manifold is the moduli space of rational curves in P T

preserved under a certain anti-holomorphic involution, and one can recover the con-
formal structure by looking at how the rational curves intersect one another. Hence
the .M; Œg�/ is completely encoded in P T and its anti-holomorphic involution. The
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important feature of a successful twistor construction is that the original geometry be-
comes encoded in the holomorphic geometry of the twistor space, and can be recovered
from this.

Neutral signature ASD conformal structures cannot be encoded purely in holomor-
phic geometry as in the Riemannian case. This is not surprising as generically they
are not analytic. However, there is a recent twistor construction due to LeBrun–Mason
[34] in the neutral case that uses a mixture of holomorphic and smooth ingredients; we
review this in Section 5.2. Let us now review the differences in Riemannian and neutral
signature.

In the Riemannian case, if one expresses the metric in terms of a null tetrad as in
(9) then the basis vectors eAA0 must be complex, as there are no real null vectors. The
spin bundles are complex two-dimensional vector bundles S, S0, with an isomorphism
TCM Š S ˝ S0, at least locally. One then takes the projective bundle PS0, which
has CP 1 fibres. Even if S0 does not exist globally, the bundle PS0 does exist globally,
since the Z2 obstruction to existence of a spin bundle is eliminated on projectivizing.
Concretely, PS0 is the bundle of complex self-dual totally null 2-planes; from this
description it clearly exists globally.

Now one can form theLA vectors as in Theorem 1, where now
A0

are complex (the
homogeneous fibre coordinates of PS0). The connection coefficients in the expression
for QeAA0 will now be complex, and satisfy certain Hermiticity properties that we need
not go into. The LA span a complex two-dimensional distribution on the complexified
tangent space of PS0, and the Riemannian version of Theorem 1 is that this distribution
is complex integrable iff the metric is ASD. Together with @ N�, where � is the inhomo-
geneous fibre coordinate on PS0, we obtain a complex three-dimensional distribution
…, satisfying … \ x… D 0. If the metric is ASD, … is complex integrable and defines
a complex structure on PS0. This construction works globally. It was discovered by
Atiyah, Hitchin and Singer [3].

In the neutral case one can complexify the real spin bundles S , S 0 and obtain
TCM Š SC ˝ S 0

C as in the Riemannian case. One can define a complex distribution
… distribution on PS 0

C , by allowing 
A0

in Theorem 1 to be complex. The key point
is that the vectors LA become totally real when 
A0

is real. So on the hypersurface
PS 0 � PS 0

C , the distribution spanf…; @ N�g no longer satisfies …\ x… D 0, so does not
define an almost complex structure. When 
A0

is not real, the distribution spanned by
LA and @ N� does define an almost complex structure, which is integrable when g is ASD.
We obtain two non-compact regions in PS 0

C , each of which possesses an integrable
complex structure, separated by a hypersurfacePS 0. This is more complicated than the
Riemannian case, where the end result is simply a complex manifold. Nevertheless,
the construction is reversible in a precise sense given by Theorem of LeBrun–Mason
which we review in Section 5.2 (Theorem 7).

Before describing the work of LeBrun–Mason we review the analytic case, where
one can complexify and work in the holomorphic category.
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5.1 The analytic case. In this section we work locally. Standard references for this
material are [55], [22].

Suppose a neutral four-dimensional ASD conformal structure .M; Œg�/ is analytic
in some coordinate system. Then we can complexify by letting the coordinates become
complex variables, and we obtain a holomorphic conformal structure .MC; ŒgC�/. If
each coordinate is defined in some connected open set on R, then one thickens this
slightly on both sides of the axis to obtain a region in C on which the complex coordinate
is defined. The holomorphic conformal structure is obtained by picking a real metric g
and allowing the coordinates to be complex to obtain gC . Then ŒgC� is the equivalent
class of gC up to multiplication by nonzero holomorphic functions.

From Theorem 1, which is valid equally for holomorphic metrics, we deduce that
given any holomorphic ˛-plane at a point, there is a holomorphic ˛-surface through
that point. Assuming we are working in a suitably convex neighbourhood so that
the space of such ˛-surfaces is Hausdorff, we define P T to be this space. P T is a
three-dimensional complex manifold, since the space of ˛-planes at a point is complex
one-dimensional and each surface is of complex codimension two in MC . This is
summarised in the double fibration picture

MC
p � PS 0

C

q�! PT ; (56)

where q is the quotient by the twistor distribution LA.
If we had started with a Riemannian metric this would lead to the same twistor space,

locally, as the Atiyah–Hitchin–Singer construction described above, though we shall
not demonstrate this here. A point x 2M, corresponds to an embedded CP 1 � P T ,
since there is a CP 1 of ˛-surfaces through x. By varying the point x 2 M we obtain
a four complex parameter family of CP 1’s.

P T inherits an anti-holomorphic involution � . To describe � , note that there is an
anti-holomorphic involution � of MC that fixes real points, i.e. points of M � MC .
This is just the map from a coordinate to its complex conjugate, so we can arrange our
complexification regions in which the coordinates are defined so that � maps the regions
to themselves. Now � will map holomorphic ˛-surfaces to holomorphic ˛-surfaces,
so gives an anti-holomorphic involution � on P T . One way to see this is to note that
˛-surfaces are totally geodesic as the geodesic shear free condition


A0


B0rAA0
B0 D 0
is equivalent to CA0B0C 0D0 , and consider the holomorphic geodesic equation. Using the
fact that the connection coefficients are real, one can show that the involution � will
map the null geodesics in an ˛-surface to other null geodesics in another ˛-surface.
The ˛-surfaces fixed by this are the real ˛-surfaces in M.

In terms of P T , this last fact means that � fixes an equator of each of the four
complex parameter family of embedded CP 1’s. Moreover, an ˛-surface through a real
point gets mapped to one through that same point since the point is fixed by � . So the
CP 1’s that are fixed by � are a four real parameter family corresponding to M, we call
these real CP 1’s.
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How does one recover the neutral conformal structure from the data .P T ; �/? As
described above, M is the moduli space of CP 1’s fixed by � . Now a vector at a point
in M corresponds to a holomorphic section of the normal bundle O.1/˚ O.1/ of the
corresponding real CP 1 in P T , such that the section ‘points’ to another real CP 1.
We define a vector to be null if this holomorphic section has a zero. Since vanishing
of a section of O.1/˚ O.1/ is a quadratic condition, this gives a conformal structure.
One can prove that this conformal structure is ASD fairly easily, by showing that the
required ˛-surfaces must exist in terms of the holomorphic geometry.

Moreover, special conditions on a gC 2 ŒgC� can be encoded into the holomorphic
geometry of the twistor space:

• Holomorphic fibration � W P T ! CP 1 corresponds to hyper-hermitian confor-
mal structures [5], [14].

• Preferred section of ��1=2 which vanishes at exactly two points on each twistor
line corresponds to scalar-flat Kähler gC [49].

• Preferred section of ��1=4 corresponds to ASD null-Kähler gC [15].

• Holomorphic fibration � W P T ! CP 1 and holomorphic isomorphism

��O.�4/ Š �

correspond to hyper-Kähler gC [45], [3], [22].

Here � is a holomorphic canonical bundle of P T , and O.�4/ is a power of the tau-
tological bundle on the base of � . To obtain a real metrics the structures above must
be preserved by an anti-holomorphic involutions fixing a real equator of each rational
curve in P T .

It is worth saying a few words about the construction of solutions of integrable
systems using the twistor correspondence. It is shown in Section 4 that a number of
well-known integrable systems 2C 1 dimensions are special cases of ASD conformal
structures. Analytic solutions to these integrable systems therefore correspond6 to
twistor spaces P T . There will be extra conditions on P T , depending on the special
case in question. However, solutions to the integrable systems are not always analytic.

5.1.1 Symmetries and twistor spaces. In Section 4 we discussed the appearance of
Einstein–Weyl structures and projective structures in the cases of a non-null and null
Killing vector respectively. In both cases twistor theory was the key factor in reveal-
ing these correspondences. We shall now explain this briefly. In [22], Hitchin gave
three twistor correspondences. He considered complex manifolds containing embedded
CP 1’s with normal bundles O.1/, O.2/ and O.1/˚O.1/ respectively. Kodaira defor-
mation theory guarantees a local moduli space of embedded CP 1’s, whose complex
dimension is the dimension of the space of holomorphic sections of the corresponding
normal bundle, i.e. 2, 3, 4 respectively. By examining how nearby curves intersect, he

6This correspondence is not one-one due to coordinate freedom.
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deduced that the moduli space inherits a holomorphic projective structure, Einstein–
Weyl structure, or ASD conformal structure respectively. He also showed that the
construction is reversible in each case.

Now given a four-dimensional holomorphic ASD conformal structure, its twistor
space is the space of ˛-surfaces, as described in Section 5.1. A conformal Killing vector
preserves the conformal structure, so preserves ˛-surfaces, giving a holomorphic vector
field on the twistor space.

If the Killing vector is non-null then the vector field on twistor space P T is non-
vanishing. This is because the Killing vector is transverse to any ˛-surface, as it is
non-null. In this case one can quotient the three-dimensional twistor space by the in-
duced vector field, and it can be shown [26] that the resulting two-dimensional complex
manifold contains CP 1’s with normal bundle O.2/. Using Hitchin’s results, this cor-
responds to a three-dimensional Einstein–Weyl structure. This the twistorial version of
the Jones–Tod construction, Theorem 5.

If the Killing vector is null then the induced vector field on the twistor space P T

vanishes on a hypersurface. This is because at each point, the Killing vector is tangent
to a single ˛ surface. Hence it preserves a foliation by ˛-surfaces, and vanishes at the
hypersurface in twistor space corresponding to this foliation. However, one can show
[18] that it is possible to continue the vector field on twistor space to a one-dimensional
distribution yK that is nowhere vanishing. Quotienting P T by this distribution gives
a two-dimensional complex manifold Z containing CP 1’s with normal bundle O.1/.
Using Hitchin’s results, this corresponds to a two-dimensional projective structure. This
is the twistorial version of the correspondence described in Section 4.2. The situation
is illustrated by the following diagram.

M P T

U Z

˛-surface

ˇ-surface

yK˛

˛ ˇ1

ˇ1ˇ1

ˇ1

ˇ2

ˇ2

ˇ2

ˇ2

�

�

Figure 1. Relationship between M, U , P T and Z.



Anti-self-dual conformal structures in neutral signature 137

In M, a one parameter family of ˇ-surface is shown, each of which intersects a one
parameter family of ˛-surfaces, also shown. The ˇ-surfaces correspond to a projective
structure geodesic in U , shown at the bottom left.

The ˇ-surfaces in M correspond to surfaces in P T , as discussed above. These
surfaces intersect at the dotted line, which corresponds to the one parameter family of
˛-surfaces in M. When we quotient P T by yK to get Z, the surfaces become twistor
lines in Z, and the dotted line becomes a point at which the twistor lines intersect;
this is shown on the bottom right. This family of twistor lines intersecting at a point
corresponds to the geodesic of the projective structure.

Example7. Here we give an explicit construction of the twistor space of an analytic
neutral ASD conformal structure with a null Killing vector, from the reduced projective
structure twistor space. We take Z to be the total space of O.1/. This is the twistor
space of the flat projective structure. Now suppose we are given a 1-form ! on U .
We shall complexify the setup and regard ! as holomorphic a holomorphic connection
on a holomorphic line bundle B ! U . This gives rise to a holomorphic line bundle
E ! Z, where the vector space over z 2 Z is the space of parallel sections of B over
the geodesic in U corresponding to z. The twistor lines in Z are the two-parameter
family of embedded CP 1’s, each corresponding to the set of geodesics through a single
point in U . We denote the twistor line corresponding to a point x 2 U by Ox. Now
E restricted to a twistor line Ox is trivial, because to specify a parallel section of B
through any geodesic through x, one need only know its value at x. This is a simple
analogue of the Ward correspondence relating solutions of the anti-self-dualYang–Mills
equations on C4 to vector bundles over the total space of O.1/˚ O.1/ that are trivial
on twistor lines. The situation here is simpler since there are no PDEs involved; this
is because there are no integrability conditions for a space of parallel sections to exist
on a line. As with the Ward correspondence, the construction is reversible, i.e. given
a holomorphic line bundle trivial on twistor lines one can find a connection on U to
which it corresponds in the manner described above. We will not prove this here, it is
simply a case of mimicking the argument for the Ward correspondence [55].

Now to create the twistor space P T , we must tensorE with a line bundleL so that
E ˝ L restricts to O.1/ on the twistor lines in Z. Then the total space of E ˝ L will
have embedded CP 1’s with normal bundle O.1/˚O.1/, so will be a twistor space for
an ASD conformal structure. For L we choose the pull back of O.1/ to the total space
of Z.

Let us now make the above explicit. Let �, Q� be the inhomogeneous coordinate
on the two patches U0, U1 of CP 1. The total space of O.1/ can be coordinatized as
follows. Let 	 be the fibre coordinate overU0, and Q	 the fibre coordinate overU1. The
line bundle transition relation on the overlap is Q	 D 1

�
	.

Now suppose we have a line bundleE ! Z D O.1/, that is trivial on holomorphic
sections of Z ! CP 1. Let � , Q� be the fibre coordinates on the two patches, satisfying
a transition relation Q� D F.�; 	/� , where F.�; 	/ is holomorphic and nonvanishing
on the overlap, i.e. for � 2 C � f0g, 	 2 C. In sheaf terms, F is an element of

7We thank Paul Tod for his help with this example.
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H 1.O.1/;O�/. Now the short exact sequence

0! Z! O ! O� ! 0 (57)

gives rise to a long exact sequence, part of which is:

� � �!H 1.O.1/;Z/!H 1.O.1/;O/!H 1.O.1/;O�/!H 2.O.1/;Z/! � � � (58)

The first term in (58) vanishes and the final term is Z, by topological considerations.
The final term gives the Chern class of the line bundle determined by the element of
H 1.O.1/;O�/. This vanishes for E, since it is trivial on twistor lines. The third
arrow in (57) is the exponential map. Together these facts imply that F can be written
F.�; 	/ D ef .�;�/, where f .�; 	/ is a holomorphic function on the overlap that may
have zeros. After twisting byL, we obtain the following transition function forE˝L,
again using � , Q� as fibre coordinates:

Q� D 1

�
ef .�;�/�: (59)

To find the conformal structure we must find the four parameter family of twistor lines
inE˝L. The two parameter family in O.1/ is given in one patch by	.�/ D X�CY ,
and in the other by Q	. Q�/ D X C Q�Y . Restricting to one of these we can split f :

f .�;X�C Y / D h.X; Y; �/ � Qh.X; Y; 1=�/; (60)

where h and Qh are functions on U �CP 1 holomorphic in � and 1=� respectively. For
fixed .X; Y / there is then a further two parameter family of twistor lines, given by

�.�/ D e�h.X;Y;�/.W � �Z/ (61)

in one patch, and

Q�. Q�/ D e� Qh.X;Y;Q�/. Q�W �Z/: (62)

It is easy to check that (59) is satisfied by (61) and (62).
One must now calculate the conformal structure on the moduli space of lines

parametrised by Xa D .X; Y;W;Z/ by determining the quadratic condition for a
section of the normal bundle to a twistor line to vanish. The sections of the normal
bundle to Ox � P T correspond to tangent vectors in TxM, and sections with one zero
will determine null vectors and therefore the conformal structure.

Using the identity .@X � �@Y /f D 0 together with (60) we deduce (by Liouville
theorem or using power series) that

�
@h

@Y
� @h

@X
D �B.X; Y / � A.X; Y /; (63)

for some analytic functions A,B .
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Now take the variation of 	.�/ and �.�/ for a small change ıXa to obtain

0 D ı	 D ıY C �ıX; (64)

0 D ı� D e�h

�
� @h

@X
ıX � @h

@Y
ıY

�
.W � �Z/C e�h.ıW � �ıZ/: (65)

Substituting � D �ıY=ıX from the first expression to the second, using (63) and
multiplying the resulting expression by ıX we find that the conformal structure is
represented by the following metric:

g D dXdW C dYdZ � .WdX CZdY /.A.X; Y /dX C B.X; Y /dY /: (66)

This conformal structure possesses the null conformal Killing vector K D W @W C
Z@Z , which is twisting. The global holomorphic vector field on P T induced by K is
�@� D Q�@Q� where the equality holds on the intersection of the two coordinate patches.
This vanishes on the hypersurface defined by � D 0 in one patch and Q� D 0 in the other,
which intersects each twistor line at a single point, as we expect from the argument in
Section 5.1.1. The 1-form ! D AdX C BdY in g is the inverse Ward transform of
F 2 H 1.O.1/;O�/.

To compare with (52) one must transform to coordinates .�; x; y; z/ in which
K D @� . Dividing by a conformal factor W , transforming with .�; x; y; z/ D
.logW;Y;�X;Z=W /, and then translating � to eliminate an arbitrary one function
of .x; y/ gives

g D .d� C f .x; y/dx/.dy � zdx/ � dzdx; (67)

which is a special case of (52) with flat projective structure, andG D z2=2�zC.x; y/,
where f D @yC .

If we take the coordinates to be real we obtain a neutral metric. The twistor space
P T fibres over Z D O.1/ and this fibres over CP 1, so P T fibers over CP 1 and (67)
is pseudo-hyperhermitian.

To construct an example of a conformal structure with non-twisting null Killing
vector one uses an affine line bundle over Z D O.1/; see [18] for details.

5.2 LeBrun–Mason construction. Here we describe recent work of LeBrun and
Mason in which a general, global twistor construction is given for neutral metrics. We
will only be able to give a crude paraphrase, and refer the reader to the original paper
[34] for details. Note that their paper uses the opposite duality conventions to ours;
they use self-dual conformal structures with integrable ˇ-plane distributions.

We described above how a neutral ASD conformal structure .M; Œg�/ gives rise to a
complex structure on CP 1 bundle over M, which degenerates on a hypersurface. The
following theorem of LeBrun–Mason is a converse to this, and is the closest one can
come to a general twistor construction in the neutral case:

Theorem 7 ([34]). Let M be a smooth connected 4-manifold, and let $ W X ! M

be a smooth CP 1-bundle. Let % W X ! X be an involution which commutes with $ ,
and has as fixed-point set X% an S1-bundle over M which disconnects X into two
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closed 2-disk bundles X˙ with common boundary X%. Suppose that … � TCX is a
distribution of complex 3-planes on X such that

1. %�… D x…;

2. the restriction of … to XC is smooth and involutive,

3. … \ x… D 0 on X �X%,

4. … \ ker$� is the .0; 1/ tangent space of the CP 1 fibers of $ ,

5. the restriction of … to a fiber of X has first Chern class �4 with respect to the
complex orientation.

Then E D …\TX% is an integrable distribution of real 2-planes on X%, and M admits
a unique smooth split-signature ASD conformal structure Œg� for which the ˛-surfaces
are the projections via $ of the integral manifolds of E .

This theorem provides a global twistor construction for neutralASD four manifolds,
whereas the analytic construction of the last section only works locally.

At first sight the theorem does not seem like a promising method of generating
ASD conformal structures, since the conditions required on the CP 1 bundle over M

are complicated, and it is not clear how one might construct examples. This obstacle
is overcome in [34] by deforming a simple example (another example was given by
Nakata [41]).

Consider the conformally flat neutral metric g0 given by (7) on M D S2 � S2 that
is just the difference of the standard sphere metrics on each factor. The underlying
manifold M can be realised as the space of CP 1’s embedded in CP 3 that are invariant
under the complex conjugate involution, which we call the real CP 1’s; these real
CP 1’s are the fibres of the bundle X. The involution % of X is induced by the complex
conjugate involution of CP 3. The fixed point set X% consists of the invariant equators
of the real CP 1’s, and is therefore a circle bundle over M. The closed disc bundles X˙
are obtained by slicing the real CP 1’s at their invariant equator, and throwing away
one of the open halves. The fixed point set of the complex conjugate involution is the
standard embedding of RP 3, and this is the space of ˛-surfaces in M D S2 � S2.
Taking all the real CP 1’s through a point p 2 RP 3 gives an ˛-surface.

To obtain the… from Theorem 7, take XC and construct a mapf to CP 3 as follows.
On the interior of XC, f is a diffeomorphism onto CP 3 �RP 3. The boundary @XC
gets mapped by f to RP 3, by taking a point in @XC, i.e. a holomorphic disc and a
point p on RP 3 lying on the intersection of the disc with RP 3, to the point p. Let
f

1;0� W TCXC ! T 1;0CP 3 be the .1; 0/ part of the derivative of f . Then the … of
Theorem 7 is defined on XC by

… D kerf 1;0� � TCXC:

Note that f maps the five-dimensional boundary @XC to the three-dimensional space
RP 3; this means that on the boundary… restricts to the complexification of a real two-
plane distribution, direct summed with the complexification of the direction into the
disc. The … here agrees with the one described at the beginning of Section 5, defined
in terms of the twistor distribution LA on PS 0

C .
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The idea for creating new spaces satisfying the conditions of Theorem 7 is to deform
the standard embedding of RP 3 � CP 3 slightly. One forms the bundle XC by taking
the sameS2�S2 family of real holomorphic discs, now with boundary on the deformed
embedding of RP 3. The complex distribution … is formed in the same way as in the
conformally flat case described above. One then patches two copies of XC together
to form the bundle X, and it is shown that this satisfies the conditions of the Theorem.
It is also shown that the resulting conformal structure on S2 � S2 has the property
that all null geodesics are embedded circles; conformal structures with this property
are termed Zollfrei. It turns out that all ASD conformal structures close enough in a
suitable sense to the conformally flat one are Zollfrei, and in fact the twistor description
gives a complete understanding of ASD conformal structures near the standard one.
The embedded RP 3 is the real twistor space, i.e. the space of ˛-surfaces in M, and
a significant portion of [34] is devoted to showing that the for a space-time oriented
Zollfrei 4-manifold the real twistor space must be RP 3, making contact with the picture
of a deformed RP 3 � CP 3.

We mention that there is another twistor-like construction of smoothASD conformal
structures with avoids the holomorphic methods altogether [20]. In this approach one
views the real twistor curves in RP 3 as solutions to a system of two second order
nonlinear ODEs. The ODEs have to satisfy certain conditions (expressed in terms of
point invariants) if their solution spaces are equipped with ASD conformal structures.

6 Global results

In the last section we outlined the global twistor construction for neutral ASD four
manifolds due to LeBrun–Mason, which they used to construct Zollfrei metrics on
S2�S2. In this section we review the known explicit constructions of globally defined
neutral ASD conformal structures on various compact and non-compact manifolds.

6.1 Topological restrictions. Existence of a neutral metric on a four manifold M

imposes topological restrictions on M. A neutral inner product on a four-dimensional
vector V space splits V into a direct sum V D VC ˚ V�, where the inner product is
positive definite on VC and negative definite on V�. So a neutral metric g on a four
manifold M splits the tangent bundle

TM D TCM ˚ T�M; (68)

where T˙ are two-dimensional subbundles of TM. Conversely, given such a splitting
one can construct neutral metrics on M by taking a difference of positive definite metrics
on the vector bundles TCM and T�M.

If M admits a non-vanishing 2-plane field E (a real two-dimensional distribution),
then a splitting of the form (68) can be found by taking E to define TCM, choosing
a Riemannian metric, and letting T�M be the orthogonal complement. So a four
manifold M admits a neutral metric iff it admits a 2-plane field.
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The topological conditions for existence of a 2-plane field were discovered by
Hirzebruch and Hopf and are as follows:

Theorem 8 ([21]). A compact smooth four-manifold M admits a field of 2-planes iff
�ŒM� and �ŒM� satisfy a pair of conditions

3�ŒM�C 2�ŒM� 2 �.M/;

3�ŒM� � 2�ŒM� 2 �.M/;

where

�ŒM� D f	M.w;w/ 2 Z W w are arbitrary elements in H 2.M;Z/=Torg:
Here �ŒM�, �ŒM� are the signature and Euler characteristic respectively, and 	M is

the intersection form on H 2.M;Z/=Tor.
A neutral metric implies that the structure group of the tangent bundle can be reduced

to O.2; 2/, by choosing orthonormal bases in each patch. In fact O.2; 2/ has four
connected components, so there are various different orientability requirements one
can impose. The simplest is to require the structure group to reduce to the identity
component SOC.2; 2/. It is shown in [39] that this is equivalent to the existence of a
field of oriented 2-planes, i.e. an orientable two-dimensional subbundle of the tangent
bundle. The topological restrictions imposed by this were discovered by Atiyah:

Theorem 9 ([2]). Let M be a compact oriented smooth manifold of dimension 4, such
that there exists a field of oriented 2-planes on M. Then

�ŒM� � 0 mod 2; �ŒM� � �ŒM� mod 4: (69)

In fact Matsushita showed [38] that for a simply-connected 4-manifold, (69) are
actually sufficient for the existence of an oriented field of 2-planes. A more subtle
problem is to determine topological obstructions arising from existence of an ASD
neutral metric. This deserves further study.

6.2 Tod’s scalar-flat Kähler metrics on S 2 � S 2. Consider S2 � S2 with the con-
formally flat metric described in Sections 2.1 and 5.2, i.e. the difference of the standard
sphere metrics on each factor. Thinking of each sphere as CP 1 and letting � and �
be non-homogeneous coordinates for the spheres, this metric is given by (7). As we
have already said, g0 is scalar flat, indefinite Kähler. The obvious complex structure
J gives a closed two form and � WD g0.J; � /. Moreover g0 clearly has a high degree
of symmetry, since the 2-sphere metrics have rotational symmetry. In [53], Tod found
deformations of g0 preserving the scalar-flat Kähler property, by using the explicit ex-
pression (44) for neutral scalar-flat Kähler metrics with symmetry. Take the explicit
solution

eu D 4 1 � t2
.1C x2 C y2/2
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to (45), which can be obtained by demanding u D f1.x; y/ C f2.t/. There remains
a linear equation for V . Setting W D V.1 � t2/ and performing the coordinate
transformation t D cos � , � D x C iy gives

g D 4W d�d N�
.1C � N�/2 �Wd�

2 � sin2 �

W
.d� C �/2; (70)

and W must solve a linear equation. This metric reduces to (7) for W D 1, � D 0,
with � , � standard coordinates for the second sphere. Tod shows that on differentiating
the linear equation for W and setting Q D @W

@t
, one obtains the ultrahyperbolic wave

equation
r2

1Q D r2
2Q; (71)

where r1;2 are the Laplacians on the 2-spheres, and Q is independent of �, i.e. is
axisymmetric for one of the sphere angles. Equation (71) can be solved using Legendre
polynomials, and one obtains non-conformally flat deformations of (7) in this way. In
the process one must check thatW behaves in such a way that (70) extends overS2�S2.

The problem of relating these explicit metrics to the Zollfrei metrics on S2 � S2

known to exist by results described in Section 5.2 appears to be open.
In a recent paper, Kamada [29] rediscovered the above metrics, and showed that a

compact neutral scalar-flat Kähler manifold with a Hamiltonian S1 symmetry must in
fact beS2�S2. Here a HamiltonianS1 symmetry is anS1 action preserving the Kähler
form, and which possesses a moment map. In the case of S2�S2 case, there is always
a moment map since the manifold is simply connected. Without the symmetry, there
are other neutral scalar-flat Kähler manifolds. For example, take a Riemann surface †
with a constant curvature metric g. Then on † � †, the metric ��

1g � ��
2g is neutral

scalar-flat Kähler, where �i are the projections onto the first and second factors.

6.3 Compact neutral hyper-Kähler metrics. The only compact four-dimensional
Riemannian hyper-Kähler manifolds are the complex torus with the flat metric andK3
with a Ricci-flat Calabi–Yau metric. In the neutral case, Kamada showed in [28] that a
compact pseudo-hyper-Kähler four manifold must be either a complex torus or a primary
Kodaira surface. In the complex torus case, the metric need not be flat, in contrast to
the Riemannian case. Moreover in both cases one can write down explicit non-flat
examples, in contrast to the Riemannian case where no explicit non-flat Calabi–Yau
metric is known.

To write down explicit examples, consider the following hyper-Kähler metric

g D d�dy � dzdx �Q.x; y/dy2; (72)

for Q and arbitrary function. This is the neutral version of the pp-wave metric of
general relativity [47], and is a special case of (51), where the underlying projective
structure is flat. It is non-conformally flat for generic Q. Define complex coordinates
z1 D �C iz, z2 D xC iy on C2. By quotienting the z1- and z2-planes by lattices one
obtains a product of elliptic curves, a special type of complex torus. If we requireQ to
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be periodic with respect to the z2 lattice, then (72) descends to a metric on this manifold.
Likewise, a primary Kodaira surface can be obtained as a quotient of C2 by a subgroup
of the group of affine transformations, and again by assuming suitable periodicity in
Q the metric (72) descends to the quotient. In our framework [18] we compactify the
flat projective space R2 to two-dimensional torusU D T 2 with the projective structure
coming from the flat metric. Both � and z in (72) are taken to be periodic, thus leading
to O
 W M ! U , the holomorphic toric fibration over a torus. Assume the suitable
periodicity on the function Q W U �! R. This leads to a commutative diagram:

M

T 2

��

O��Q

���
��

��
��

�

U
Q

�� R:

In the framework of [28] and [19] the Kähler structure on M is given by !flat C
i@N@. O
�Q/, where .@; !flat/ is the flat Kähler structure on the Kodaira surface induced
from C2.

As remarked in [28], the existence of pseudo-hyper-Kähler metrics on complex tori
other than a product of elliptic curves is an open problem.

6.4 Ooguri–Vafa metrics. In [43] Ooguri, Vafa and Yau constructed a class of non-
compact neutral hyper-Kähler metrics on cotangent bundles of Riemann surfaces with
genus	 1, using the Heavenly equation formalism. This is similar to (6), but one takes
a different .CC��/ real section of MC . Instead of using the real coordinates we set

w D �; y D N�; z D ip; x D �i Np; �; p 2 C

with � D i.p N� � Np�/ corresponding to the flat metric. Let † be a Riemann surface
with a local holomorphic coordinate �, such that the Kähler metric on † is h	 N	d�d N�.
Suppose that p is a local complex coordinate for fibres of the cotangent bundle T �†.
If ! is the Kähler form for a neutral metric g then gi Nj D @i@ Nj� for a function � on
the cotangent bundle. Then the equation

det gi Nj D �1
is equivalent to the first Heavenly equation (6), and gives a Ricci-flat ASD neutral
metric.

The idea in [43] is to suppose that� depends only on the globally defined function
X D h	 N	p Np, which is the length of the cotangent vector corresponding to p. There is a
globally defined holomorphic .2; 0/-form ! D d�^dp, which is the holomorphic part
of the standard symplectic form on the cotangent bundle, so .�; p/ are the holomorphic
coordinates in the Plebański coordinate system. The heavenly equation reduces to an
ODE for �.X/ and Ooguri–Vafa show that for solutions of this ODE to exist h must
have constant negative curvature, so† has genus greater than one. In this case one can
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solve the ODE to find

� D 2
p
A2 C BX C A ln

p
A2 C BX � Ap
A2 C BX C A;

whereA;B are arbitrary positive constants. The metric g is well behaved whenX ! 0

(orp ! 0), as in this limit�! ln .X/ andg restricts toh	 N	d�d N� on† and�h	 N	dpd Np
on the fibres. In the limit X ! 1 the metric is flat. To see it one needs to chose a
uniformising coordinate � on † so that h is a metric on the upper half plane. Then
make a coordinate transformation �1 D �pp; �2 D pp. The holomorphic two form is
still d�1 ^d�2, and the Kähler potential� D i.�2

N�1� �1
N�2/
p
B yields the flat metric.

Ooguri–Vafa also observed that the pp-wave metric (72) can be put onto T �†, by
requiring Q.x; y/ to satisfy certain symmetries. Globally defined neutral metrics on
non-compact manifolds were also studied by Kamada and Machida in [30], where they
obtained many neutral analogues of well known ASD Riemannian metrics.
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