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Abstract: We study the IIB engineering of N=1 gauge theories with unitary gauge

group and matter in the adjoint and (anti)symmetric representations. We show that

such theories can be obtained as Z2 orientifolds of certain Calabi-Yau A2 fibrations,

and discuss the explicit T-duality transformation to an orientifolded Hanany-Witten

construction. The low energy dynamics is described by a geometric transition of the

orientifolded background. Unlike previously studied cases, we show that the orientifold

5-‘plane’ survives the transition, thus bringing a nontrivial contribution to the effective

superpotential. We extract this contribution by using matrix model results and compare

with geometric data. A Higgs branch of our models recovers the engineering of SO/Sp

theories with adjoint matter through an O5-‘plane’ T-dual to an O6-plane. We show

that the superpotential agrees with that produced by engineering through an O5-‘plane’

dual to an O4-plane, even though the orientifold of this second construction is replaced

by fluxes after the transition.
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1. Introduction

D-brane physics allows for a description of supersymmetric gauge theories leading to

novel insights into strong coupling behavior. A particularly fruitful approach in this

regard is afforded by geometric engineering. This leads one to consider D-branes par-

tially wrapped on cycles of a nontrivial geometry, which realizes the supersymmetric

gauge theory of interest on the uncompactified remnant of the branes’ worldvolume.

A prominent example is given by certain local conifold geometries which implement

the “large N geometric transitions” [1, 2, 3, 4]. The starting point of this construction

is a IIB background whose closed string sector is described by a singular ADE fibration

X0 over a complex plane parameterized by z. The ADE fiber of X0 degenerates above

certain points of the plane, where the total space acquires conifold singularities. The

small resolution X̂ of X0 contains a set of holomorphically embedded two-spheres on

which one can wrap D5-branes. Wrapping Ni D5-branes on the i-th exceptional P1

leads to a four-dimensional N = 1 quiver gauge theory on the uncompactified part of

the branes’ worldvolume. Such theories can be viewed as softly broken N = 2 quiver

gauge theories. The partial supersymmetry breaking is induced by a superpotential

for those chiral multiplets which transform in the adjoint representation of the gauge

group. The precise form of the superpotential is determined by the fibration data.

With a nontrivial superpotential, such theories confine at low energies and lead to

gaugino condensation. In the geometric realization, this corresponds to a transition in

which the exceptional P1’s shrink to zero size and the resolved geometry is replaced by

a ‘log-normalizable’ smoothing X of the singular fibration X0. Thus each exceptional

P1 is replaced by a 3-sphere. In this process the D5-branes disappear but their RR-

flux is still present and supported on the three-cycles of the deformed geometry. This

represents a type IIB background with nontrivial 3-form fluxes and therefore leads to

a superpotential of the form [5]:

Weff =

∫

H ∧ Ω =
∑

i

[

Ni
∂F0
∂Si

+ 2πiαiSi

]

, (1.1)

where Ω is the holomorphic three-form of the deformed Calabi-Yau X, H is the type

IIB three form field strength, Si are the gaugino condensates, Ni the RR-fluxes and αi

the gauge couplings (which are identified with the NS part of the H-flux). Here F0 is

the prepotential of the closed string sector. More precisely, one has:

2πiSi =

∫

Ai

Ω ,
∂F0
∂Si

= Πi :=

∫

Bi

Ω (1.2)

Ni =

∫

Ai

H , αi =

∫

Bi

H , (1.3)
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where Ai, Bi give a symplectic basis of a nonstandard version of H3(X,Z) (note that

the B ‘cycles’ are non-compact and must be regularized 1). Many examples of this

construction have been studied in detail in recent years [3, 4, 7], including the addition

of certain types of orientifolds [8, 9] as well as of fundamental matter which leads

to mesonic branches [10] and baryons [11]. A T-dual approach to such transitions was

developed in [12, 13], where relations (1.2) appear naturally by studying the low energy

dynamics of an M5 brane in MQCD. The MQCD approach [14] is based on lifting a

T-dual type IIA configuration with NS5 branes and D4 branes to M-theory.

The purpose of the present paper is to discuss a modification of the geometric

transitions of [1, 2, 3, 4] which allows us to describe the low energy dynamics of N = 1

U(N) gauge theories with one adjoint chiral multiplet and two additional chiral multi-

plets transforming in either the symmetric or antisymmetric two-tensor representation

and its conjugate. The tree-level superpotential will have the form:

Wtree = tr
[

W (Φ) + Q̃ΦQ
]

(1.4)

where Φ is the adjoint chiral superfield while the symmetric/antisymmetric chiral su-

perfields Q and Q̃ transform as Q → UQUT and Q̃ → U ∗Q̃U †. These fields obey

QT = sQ and Q̃T = sQ̃, where s = ±1. Here W (Φ) =
∑d

k=0
gk
k+1

tr(Φk+1) is a poly-

nomial of degree d + 1. Such theories can be realized in the type IIA set-up though

orientifolded Hanany-Witten constructions [15, 16] and have recently been reconsidered

in the context of the Dijkgraaf-Vafa conjecture [17, 18, 19]. The IIB approach discussed

in this paper will allow us to give the geometric engineering of such theories, which has

been missing until now.

As we shall see below, the IIB realization of such systems requires an A2 fibration

together with a Z2 orientifold . Unlike the cases studied in [22] (which allow one to

engineer the SO(N) and Sp(N/2) gauge theories with one adjoint chiral multiplet),

the orientifold action we consider leads to an orientifold five-‘plane’ which survives the

large N transition. This gives a string-theoretic explanation of the subtle behavior of

such theories which was extracted in [17] and [18, 19] in the context of the matrix-

model conjecture of Dijkgraaf and Vafa [23, 24, 25] as well as through the method of

generalized Konishi anomalies [26].

The paper is organized as follows. In Section 2 we geometrically engineer this class

of gauge theories. The crucial ingredient is the addition of an orientifold 5-‘plane’ to

the resolution of a nontrivial A2 fibration. We also discuss explicitly the T-duality

which maps our geometry to the orientifolded Hanany-Witten construction [20], thus

explaining the relation between our IIB construction and the IIA description of [15, 16].

1A way to work with standard compact cohomology is provided by the geometric regularization

discussed in [6].
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Section 3 considers the geometric transition for such models. Since our O5 ‘plane’

survives the transition, it will contribute to the effective superpotential. We extract

a geometric expression for this contribution by using the matrix model results of [17]

and compare with the proposal of [34].

Section 4 gives a comparative treatment of theories with orthogonal or symplectic

gauge group and adjoint matter, which can be engineered as orientifolds of A1 fibrations

by using two different choices of O5 ‘planes’. The first construction uses an O5-‘plane’

which is T-dual to an O4-plane, and corresponds to the engineering considered in

[22]. The internal part of this 5-‘plane’ is a compact exceptional curve (a P1) of the

resolved fibration. The second construction uses an O5-‘plane’ whose internal part is a

noncompact curve. This is T-dual to an O6-plane in the Hanany-Witten construction.

After the geometric transition, the first construction leads to a pure flux background,

with the orientifold being replaced by a contribution to the R-R flux. For the second

construction, the O5-‘plane’ survives the transition and thus contributes to the effective

superpotential.

Since both constructions engineer the same field theory, the effective superpoten-

tials must agree. We check this agreement by showing that the second construction

can be obtained by considering a certain Higgs branch of the U(N) field theory with

symmetric or antisymmetric matter, which allows us to extract the flux-orientifold su-

perpotential by using the results of [17]. This allows us to show that the spectral curves

of the associated matrix models agree between the two constructions. Our conclusions

are summarized in Section 5.

In Appendix A, we turn off the superpotential for the adjoint chiral multiplet. We

describe the orientifold of the toric resolution of the A2 singularity and show how the

resulting O5 ‘plane’ indeed gives rise to matter in the symmetric or antisymmetric

representation.

2. Geometric engineering with a tree-level superpotential

We start by discussing the geometric engineering of our field theory as an orientifold

of a type IIB background with D5-branes. Without the orientifold, this coincides with

the background used to engineer the N = 1 A2 quiver field theory [3, 4] and we start

by recalling the latter.

2.1 Geometric engineering of the A2 quiver theory

2.1.1 The IIB background

Let us consider IIB string theory on the resolution X̂ of a non-compact Calabi-Yau
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threefold X0 given by a singular A2 fibration over the complex plane. The background

includes a collection of D5-branes wrapping the exceptional P1’s of the resolution.

Explicitly, the singular space X0 can be realized as the hypersurface:

xy = (u− t0(z))(u− t1(z))(u− t2(z)) , (2.1)

where x, y, u, z are the affine coordinates of C4 and the polynomials tj(z) are given by:

t0(z) := −
2W ′

1(z) +W ′
2(z)

3

t1(z) :=
2W ′

2(z) +W ′
1(z)

3
(2.2)

t2(z) := −t0(z)− t1(z) =
W ′
1(z)−W ′

2(z)

3
.

Generically, the affine variety (2.1) has A1 singularities at x = y = 0 and z equal

to one of the double points of the planar algebraic curve:

Σ0 : (u− t0(z))(u− t1(z))(u− t2(z)) = 0 . (2.3)

This curve gives a reducible 3-section of the A2 fibration (2.1) whose three rational

components Cj are given by u = tj(z). The double points of Σ0 sit at the intersection

of two such components. These are obtained when u = ti(z) = tj(z) for i 6= j, which

gives the equations:

t0(z)− t2(z) = −W
′
1(z) = 0, u = −

W ′
2(z)

3

t1(z)− t2(z) = +W ′
2(z) = 0, u =

W ′
1(z)

3
(2.4)

t0(z)− t1(z) = −W
′
1(z)−W ′

2(z) = 0, u = −
W ′
1(z)

3
=

W ′
2(z)

3
.

We let z
(α)
j be the roots of W ′

α(z), z̃j the roots of W
′
1(z)+W ′

2(z), and denote the corre-

sponding exceptional P1’s of the resolution X̂ by D
(α)
j and D̃j respectively. Throughout

the rest of Section 2, we assume that W ′
1(z) and W ′

2(z) have no common zeroes (which

is the generic situation). This means that there is no point in the (z, u)-plane where all

three components Cj intersect, i.e. the curve Σ0 does not have any triple points. With

this assumption, the sets {z(1)j }, {z
(2)
j } and {z̃j} are mutually disjoint. In particular, we

have W ′
α(z

(β)
j ) 6= 0 for α 6= β and W ′

α(z̃j) 6= 0. Thus the singularities of X0 are ordinary

double points of the fibers X0(z
(α)
j ) and X0(z̃j). Then X̂ is obtained by blowing up each

of these double points, thus replacing the singular fibers with their minimal resolutions

X̂(z
(α)
j ) and X̂(z̃j).
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The resolved space X̂ can be described explicitly as follows2 [7]. Consider two

copies of P1 with homogeneous coordinates [αj, βj] and local affine coordinates ξj :=

αj/βj (where j = 1, 2). Then X̂ is realized as the codimension three subspace in

P1[α1, β1]× P1[α2, β2]× C4[z, u, x, y] cut by the equations:

β1(u− t0(z)) = α1x

α2(u− t1(z)) = β2y (2.5)

α1β2(u− t2(z)) = β1α2 ,

(u− t0(z))(u− t1(z))(u− t2(z)) = xy .

The map τ which forgets the coordinates on the two P1 factors implements the resolu-

tion. The exceptional P1’s are simply those fibers of τ which sit above the double points

of X0. One easily checks that D
(1)
j is the factor P1[α1, β1] sitting above the double point

determined by z
(1)
j , D

(2)
j is the factor P1[α2, β2] sitting above the double point of X0

determined by z
(2)
j and D̃j is a ‘diagonal’ P1 in P1[α1, β1]× P1[α2, β2], which sits above

the double point determined by z̃j. More precisely, the exceptional curves are given by

the equations:

D
(1)
j : x = y = 0, z = z

(1)
j , u = −W ′

2(z
(1)
j )/3, ξ2 = 0

D
(2)
j : x = y = 0, z = z

(2)
j , u = +W ′

1(z
(2)
j )/3, ξ1 =∞ (2.6)

D̃j : x = y = 0, z = z̃ , u = −W ′
1(z̃j)/3, ξ2 = −W

′
1(z̃j)ξ1 .

Note that we can use ξ := ξ1 as local affine coordinate on D̃j (remember that W ′
1(z̃j)

does not vanish, due to our genericity assumption).

As explained in [7] (and recalled below), the Hanany-Witten construction arises

upon performing T-duality with respect to the following U(1) action on X̂, which we

denote by ρ̂:

([α1, β1], [α2, β2], z, u, x, y)
ρ̂(θ)
−→ ([e−iθα1, β1], [α2, e

iθβ2], z, u, e
iθx, e−iθy) . (2.7)

This projects as follows on the singular space X0:

(z, u, x, y)
ρ0(θ)
−→ (z, u, eiθx, e−iθy) . (2.8)

The fixed point set of the projected action ρ0 coincides with the 3-section Σ0 given in

(2.3), while the fixed point locus of (2.7) is its proper transform. The latter has three

2Our coordinates differ from those of [7] by the shift u→ u− t0(z).
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disjoint components Ĉj which are the proper transforms of the components Cj of Σ0
(in particular τ(Ĉj) = Cj):

Ĉ0 : x = y = u− t0(z) = 0, α1 = α2 = 0

Ĉ1 : x = y = u− t1(z) = 0, β1 = β2 = 0 (2.9)

Ĉ2 : x = y = u− t2(z) = 0, β1 = α2 = 0

It is easy to see that D
(1)
j touches each of Ĉ0 and Ĉ2 at a single point, while D

(2)
j has

the same behavior with respect to Ĉ1 and Ĉ2. Finally, D̃j touches each of Ĉ0 and Ĉ1
at a single point.

2.1.2 Local description and relation to the Hanany-Witten construction

As recalled in the introduction, the A2 quiver theory can also be obtained through

a Hanany-Witten construction which involves a flat IIA background containing three

types of stacks of D4-branes stretching between three NS5-branes. The relation of this

construction to the geometric engineering given above is implemented by T-duality, as

discussed in a more general context in [7]. To see this explicitly, one considers a local

model X̃ ⊂ X̂ of the resolution, which is obtained by gluing three copies Uj (j = 0 . . . 2)

of C3 (with affine coordinates xj, uj, zj) according to the identifications:

(x1, u1, z1) = (
1

u0
, x0u

2
0 −W ′

1(z0)u0, z0) (2.10)

and:

(x2, u2, z2) = (
1

u1
, x1u

2
1 −W ′

2(z1)u1, z1) . (2.11)

Then the restricted projection τ : X̃ → X is given by:

(z;u;x; y) = (z0; x0u0 + t0(z0); x0; u0[x0u0 −W ′
1(z0)][x0u0 −W ′

1(z0)−W ′
2(z0)])

(z;u;x; y) = (z1; x1u1 + t2(z1); x1[x1u1 +W ′
1(z1)]; u1[x1u1 −W ′

2(z1)]) (2.12)

(z;u;x; y) = (z2; x2u2 + t1(z2); x2[x2u2 +W ′
2(z2)][x2u2 +W ′

1(z2) +W ′
2(z2)]; u2)

In this presentation, it is easy to describe only the exceptional curves D
(α)
j . Namely D

(1)
j

is given by the equations z1 = z
(1)
j , u1 = 0, while D

(2)
j is given by z1 = z

(2)
j , x1 = 0.

The Hanany-Witten construction is recovered [7] by T-duality with respect to the

U(1) action (2.7), which has the following form in local coordinates:

(zj, uj, xj)
ρ̂(θ)
−→ (zj, e−iθuj, eiθxj) . (2.13)

The fixed point set of this action is given by the curves Ĉj, whose local equations are:

Ĉ0 : u0 = x0 = 0 , Ĉ1 : u2 = x2 = 0 , Ĉ2 : u1 = x1 = 0 . (2.14)
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The action (2.13) clearly stabilizes the exceptional curves D
(α)
j . Under T-duality, the

loci Ĉj become three NS5 branes denoted Nj, while the D5-branes wrapping D
(α)
j

are mapped into two stacks of D4 branes, denoted D(α)j . With our indexing, N2 is

the central five-brane, while N0 and N1 are the ‘outer’ five-branes. The intersections

discussed after equations (2.9) show that D(1)j stretch between N2 and N0, while D
(2)
j

stretch between N2 and N1. The D5-branes wrapping D̃j are mapped into D4-branes

D̃j stretching between N0 and N1 (this is possible because the outer NS5 branes are

curved and tilted). This recovers the Hanany-Witten construction of the A2 quiver

theory.

It will be important for our purpose to know the explicit relation between the

flat space coordinates of the T-dual type IIA description and the complex coordinates

x1, u1, z1 used in the type IIB formulation (the relation to the other coordinates xj, uj, zj
follows trivially by gluing). Since we don’t know the explicit metric on the minimal

resolution, we cannot identify the metric data, but we can us a trick3 to determine a

good set of coordinates up to scale factors.

For this, let us combine x1 and u1 into a quaternion coordinate X := x1 + ju1,

where j is the second quaternion imaginary unit. Then (2.13) becomes the standard

U(1) action:

X −→ eiθX . (2.15)

The associated hyperkahler moment map ~µ : C2[x1, u1] −→ R3 gives a fibration of

C2[x1, u1] over R3 whose generic fiber is a circle (the fiber collapses to a point precisely

above the origin of R3). We shall denote the Cartesian coordinates of the R3 base by

x4, x5, x6 and let x7 be the (periodic) coordinate along the S1 fiber. Then x4+ ix5 gives

the complex part of the hyperkahler moment map, while x6 is its real part:

x4 + ix5 = x1u1 , x6 =
1

2
(|x1|

2 − |u1|
2) . (2.16)

The dual type IIA description is realized in the Minkowski space R1,9 with coordinates

x0 . . . x9, where the ‘internal’ coordinates x4 . . . x9 are related to x1, u1, z1 through equa-

tion (2.16) and:

x8 + ix9 = z . (2.17)

3It is non-trivial to give a full justification of the identification (2.16) used below. This is because

in the presence of a superpotential the metric on the resolution need not be compatible with the

hyperkahler structure we introduce for x1, u1. However, the situation is somewhat similar to that of

[27] and we expect that an argument along the lines of that paper can be applied to our situation.

Another approach would be to apply the Buscher formulas [28] to a appropriate supergravity solution

for intersecting NS branes and D4 branes. In any case, the coordinate identification (2.16) does

reproduce the expected physics.
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It is now easy to see that the NS5-brane worldvolumes extend along the directions

x0 . . . x3 and x8, x9, while being localized at x7 = 0. The central NS5-brane N2 is

located at x4 = x5 = x6 = x7 = 0 and extends in the directions x8 and x9. The other

two NS5-branes sit at x6 = ±∞, x7 = 0 and are curved in the x4, x5, x8, x9 directions

according to the equations:

x4 + ix5 = −W ′
1(z) , x6 = +∞ for N0 (2.18)

and:

x4 + ix5 = +W ′
2(z) , x6 = −∞ for N1 . (2.19)

The D4-brane worldvolumes of D(α)j extend along x0 . . . x3 as well as x6 and are local-

ized4 at x4 = x5 = x7 = 0 and z = z
(α)
j .

2.2 Adding the orientifold

2.2.1 The IIB description

In the type IIB set-up, we consider the case when W1(z) = W2(−z) := W (z). Then

W ′
1(z) = −W

′
2(−z) = W ′(z) and we have:

t0(z) =
−2W ′(z) +W ′(−z)

3
:= t(z)

t1(z) =
−2W ′(−z) +W ′(z)

3
= t(−z) (2.20)

t2(z) =
W ′(z) +W ′(−z)

3
= −t(z)− t(−z) .

In this situation, we can index the points z
(α)
j such that z

(1)
j = −z(2)j := z+j , and we let

z−j := z
(2)
j . Then z−j = −z+j and z+j are the roots of W ′(z). We also index the points z̃j

(which are the roots of the polynomial W ′(z)−W ′(−z) ) by positive, zero and negative

integers j such that z̃−j = −z̃j (and in particular z̃0 = 0). With these conventions, the

exceptional curves D
(1)
j and D

(2)
j will be denoted by D+

j and D−
j ; these are distributed

in symmetric pairs with respect to the origin of the z-plane. The curves D̃j are also

distributed in symmetric pairs (D̃j, D̃−j), except for the central curve D̃0 sitting above

z = 0. By our genericity assumption, each of these exceptional curves sits in a distinct

fiber of X̂ over the z-plane.

When (2.20) are satisfied, the resolution X̂ admits a Z2 symmetry κ̂ given by:

([α1, β1], [α2, β2], z, u, x, y)
κ̂
−→ ([−β2, α2], [−β1, α1],−z, u,−y,−x) (2.21)

4Localization in the direction x7 is due to the fact that there is no BNS flux through the exceptional

P1’s.
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which acts as follows on the affine coordinates ξj = αj/βj of the two P1 factors:

ξ1 ←→ −1/ξ2 (2.22)

and projects to the following involution κ0 of X0:

(z, x, y, u)
κ0−→ (−z, − y, − x, u) . (2.23)

The action (2.21) stabilizes the central fiber X̂(0), while (2.23) stabilizes X0(0). Tracing

through the equations, we find that the symmetry interchanges D+
j and D−

j , while

mapping D̃j into D̃−j. In particular, the Z2 action stabilizes D̃0, on which it acts as:

ξ −→
1

W ′(0)
ξ−1 . (2.24)

This fixes two points p± of D̃0, given by the roots ξ± = ±W ′(0)−1/2.

The action (2.21) maps Ĉ0 into Ĉ1 and stabilizes Ĉ2 while fixing the following locus

in X̂:

Ô : y = −x, z = 0, ξ1ξ2 = −1 . (2.25)

Choosing ξ2, u and x as local coordinates, Ô can be described by the equations:

ξ2(u+
W ′(0)

3
) = −x

u−
2W ′(0)

3
= −ξ22 (2.26)

This is a smooth rational curve x = ξ2(ξ
2
2 −W ′(0)) (parameterized by ξ2) which sits

in the fiber X̂(0) above the point z = 0. Its projection is the fixed point locus of the

action (2.23):

O0 : z = 0 , x = −y, x2 + (u+
W ′(0)

3
)2(u−

2W ′(0)

3
) = 0 , (2.27)

which is a nodal curve sitting in X0(0). In fact, Ô is the proper transform of O0

under the blow-up X̂(0) → X0(0) (the singular point (x, u) = (0,−W ′(0)
3

) is replaced

by (x, u, ξ2) = (0,−W ′(0)
3

,±W ′(0)1/2) ).

We shall use κ̂ as an orientifold action on our type IIB theory. Thus our background

will contain an O5-‘plane‘, whose worldvolume spans the directions x0 . . . x3 and the

rational curve (2.25).
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2.2.2 Relation to the orientifolded brane construction in IIA

To understand the T-dual orientifold, we start with the local description of the involu-

tion κ̂ in the patches Uj:

(z1, x1, u1)
κ̂
−→ (−z1, − u1, − x1)

(z0, x0, u0)
κ̂
−→ (−z2, − u2, − x2) , (2.28)

which gives the following local description of the orientifold ‘plane‘:

Ô : z = 0 , x1 = −u1 . (2.29)

We next note the relation:

ρ̂(θ) ◦ κ̂ = κ̂ ◦ ρ̂(−θ) , (2.30)

which shows that the IIB involution inverts the S1 coordinate x7. By T-duality, the

orientifold 5-‘plane‘ must thus become an orientifold 6-plane, whose equations are easily

extracted from the coordinate transformations (2.16) and (2.17):

x6 = x8 = x9 = 0 . (2.31)

Thus the orientifold extends in the directions x4, x5 and x7 and in particular it intersects

orthogonally the central NS5-brane N2. The IIA involution inverts the sign of x6, x8

and x9, while leaving the other coordinates unchanged (see figure 1). This is precisely

the situation considered in [15, 16]5. The IIA orientifold permutes the the stacks D+j
and D−j and the outer NS5 branes N0 and N1. It stabilizes the central five-brane N2
while acting nontrivially on its worldvolume. We stress that the O6-plane is orthogonal

to the central NS5 brane as well as to the D4-branes D+j and D−j . This is quite different

from the situation considered in the papers [29, 30, 31], which discussed an alternate

orientifold construction of the same IIA brane configuration. The latter construction

involves an O6-plane which contains the central NS5 brane and leads to a chiral theory

containing both symmetric and antisymmetric matter as well as eight fundamentals.

The geometric engineering and matrix model relevant for that situation are studied in

[32].

2.3 Geometric interpretation of the moduli space

The brane configurations and their T-dual geometries encode information about the

moduli space of our field theories. A general discussion of deformations for N = 2, Ak

quiver field theories was developed in [7].

5Except that we do not add any 6-branes in our case. Our IIA coordinates are related to those of

[16] by the relabeling (x4, x5)←→ (x8, x9).
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��

O6±

N2N1

x6

x8, x9

N0

D−j

z̃k

z̃−k

z+j

z−j

D+
j

Figure 1: The T-dual brane configuration in IIA on flat R1,9. We show only the coordinates

x6, x8 and x9. The coordinates x4 and x5 point outside of the figure.

Consider first the configuration without the orientifold. In N = 1 language, the

N = 2, U(N1)×U(N2) theory with 2 stacks of N1 and N2 D5 branes wrapped on the two

exceptional P1’s of the resolution of an A2 singularity has the A2 quiver superpotential:

W = tr2(Q12Φ1Q21)− tr1(Q21Φ2Q12) (2.32)

where Φj are the adjoint chiral multiplets obtained by decomposing the N = 2 vector

multiplets and Q12 and Q21 are chiral multiplet bifundamentals in the representations

(N̄1, N2) and (N1, N̄2) respectively. This is deformed to an N = 1 quiver field theory

by adding superpotentials tr1W1(Φ1) and tr2W2(Φ2), which corresponds to fibering the

A2 singularity over the z-plane. Here Wα are polynomials of degrees dα and their

derivatives determine the fibration data as in (2.1), (2.2).

In order to determine the N = 1 moduli space, one solves the F-term equations

and divides by the complexified gauge group [3]. The generic vacuum arises by taking

Φα = diag(z
(α)
1 1

N
(α)
1

. . . z
(α)
dα
1
N

(α)
dα

, z̃11Ñ1
. . . z̃k1Ñ

d̃
) where z

(α)
j are roots of W ′

α, z̃l are

12



the roots of W ′
1(z) + W ′

2(z) (d̃ is the degree of this latter polynomial) and we have
∑

j N
(α)
j +

∑

l Ñl = Nα. This leads to the residual gauge group:

∏

j

U(N
(1)
j )×

∏

j

U(N
(2)
j )×

∏

l

U(Ñl) (2.33)

where U(N
(α)
j ) are embedded in U(Nα) (corresponding to zero eigenvalues for the bi-

fundamentals) and U(Ñl) are diagonally embedded in U(N1) × U(N2) (corresponding

to non-zero eigenvalues for the bifundamentals).

In terms of the geometry discussed above, this corresponds to N
(α)
j D5 branes

wrapped on the curves D
(α)
j and Ñl D5 branes on the curves D̃l. The T-dual brane

configuration contains several stacks of D4 branes. The stacks D(1)j (respectively D(2)j )

contain N
(1)
j (respectively N

(2)
j ) D4 branes and stretch from the central NS5 brane N2

to the left (respectively right) NS5 branes N0 and N1. The stacks D̃j contain Ñl D4

branes and stretch from the left NS5 brane N0 to the right NS5 brane N1.

What happens if one adds an orientifold plane? There are two types of orientifolds

in the IIA construction, either an O4 plane parallel to the D4 branes or an O6 plane

which is orthogonal to the D4 branes. In the T-dual geometry, the O4 plane becomes

an O5 ’plane’ wrapped on one of the P1 cycles (this is the configuration used in [22]).

On the other hand, the O6 plane can be chosen in at least two different ways, which

were discussed in [15, 16] and [29, 30, 31] respectively. The first choice [15, 16] is to

take the O6 plane to be orthogonal not only to the D4 branes but also to the central

NS5 brane. This leads to the non-chiral theories studied in the present paper. With

the second choice [29, 30, 31], the O6 plane is orthogonal to the D4-branes but contains

the central NS5 brane, which leads to the chiral theories studied in [32].

With the first choice of O6 plane, the dual IIB orientifold has the action discussed

above (see also [33], [8] for related though simpler models). As we saw in the previous

subsection, the orientifold symmetry requires W1(z) = W2(−z) := W (z), in which

case the polynomial W ′
1(z) + W ′

2(−z) = W ′(z) − W ′(−z) has degree 2δ + 1, where

δ =
[

d−1
2

]

(see [17]). The orientifold projection forces a symmetric distribution of the

exceptional curves D
(1)
j and D

(2)
j (now denoted by D+

j and D−
j ) and an arrangement of

D̃l into symmetric pairs (D̃l, D̃−l), together with the central curve D̃0. In the IIA brane

construction, this means that we symmetrically identify the N
(1)
j D4 branes D(1)j = D+j

with the N
(2)
j D4 branes D(2)j = D−j . We also identify the D4 branes D̃j with D̃−j which

go from the left NS5 brane to the right NS5 brane and are located at opposite positions

along the middle NS5 brane, except for the stack D̃0 of D4 branes located at z = 0,

which intersects the O6 plane and is mapped to itself under the orientifold action. For

13



these identifications, one enumerates z
(α)
j and z̃j such that z

(1)
j = z+j = −z−j = −z(2)j

and z̃−l = −z̃l. One also takes N1 = N2 = N as well as N
(1)
j = N

(2)
j and Ñ−l = Ñl.

As explained in [15, 16] and [17], the orientifold projection on the bifundamental

fields produces a symmetric or antisymmetric field and its conjugate (the symmetric

field appears if one uses an O6+ plane and the antisymmetric field appears for an O6−

plane). Then, the identified N
(1)
j = N

(2)
j D4 branes D(1)j ≡ D(2)j correspond to zero

vev for the symmetric/antisymmetric field and nonzero vev for the adjoint field. Since

the superpotentials Wj(Φj) correspond to tilting and bending of the outer NS5-branes,

these D4 branes are displaced along the middle NS5 brane N2 and they do not intersect

the O6 plane.

The stacks of identified Ñl = Ñ−l D4 branes D̃l ≡ D̃−l correspond to nonzero vevs

for both the adjoint and symmetric/antisymmetric fields. Such D4 branes are displaced

with respect to the central NS5 brane and the O6 plane and do not touch any of them,

stretching directly between the left and right NS5 branes.

The last stack of D4 branes D̃0 corresponds to zero vev for the adjoint field but

nonzero vev for the symmetric/antisymmetric field. Such D4 branes are displaced along

the O6 plane and touch the left and right NS5 branes, but not the middle NS-brane

N2. Because these D4 branes touch the O6 plane, the projected gauge group is SO(N0)

or Sp(N0/2), depending on whether s = +1 or s = −1.

This discussion agrees with the results of Section 2.1 of [17] and recovers the fact

that in the generic supersymmetric vacuum the adjoint field has a vev:

Φ = diag(0Ñ0
, z+1 1N1 . . . z

+
d 1Nd

, z̃11Ñ1
,−z̃11Ñ1

. . . z̃δ1Ñδ
,−z̃δ1Ñδ

) , (2.34)

while the residual gauge group is6:

d
∏

i=1

U(Ni)×
δ
∏

j=1

U(Ñj)×G0 (2.35)

where
∑d

i=1Ni + 2
∑δ

l=1 Ñl + Ñ0 = N with δ =
[

d−1
2

]

and G0 = SO(Ñ0) if s = +1,

respectively G0 = Sp(Ñ0/2) if s = −1.

3. The geometric transition and the effective superpotential

In this section we consider the geometric transition of [1, 2, 3, 4], which replaces the

D5 branes by fluxes through the 3- cycles of a deformed geometry. The D5 branes

wrapped on the P1 cycles go through the transition in the usual way [1, 2, 3, 4], so it

suffices to concentrate on understanding the orientifold projection after the transition.

6We use the convention that U(0) is the trivial group.
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3.1 The orientifold after the geometric transition

Let X be the smoothing of the singular threefold X0, which is described by the equation:

xy = u3 − p(z)u− q(z) , (3.1)

where (as in [3]) we only consider log-normalizable deformations (the explicit expression

of p, q for such deformations is recalled in equation (4.31) of Section 4.3.2 below).

After the geometric transition X̂ −→ X0 −→ X of [1, 2, 3, 4], the D5-branes

wrapping the exceptional fibers of X̂ will be replaced by fluxes through the S3 cycles

created by smoothing. If one starts with a Z2 symmetric hypersurface X0 (which is

achieved by requiring W1(z) = W2(−z) := W (z)), then one can restrict the smoothing

X by requiring that p and q are even, so that X will admit the Z2 symmetry (2.23).

In this situation, we add the orientifold and ask what happens after the transition.

Since the deformed Calabi-Yau admits the action (2.23), it is clear that the orien-

tifold will survive the transition, being mapped into an orientifold of IIB with geometric

action κ given by equations (2.23). The A2 fibration X admits a multisection Σ (the

deformation of Σ0) given by the equations x = y = 0, which imply:

Σ : u3 − p(z)u− q(z) = 0 . (3.2)

Let us write this Riemann surface as a triple cover of the z-plane:

u3 − p(z)u− q(z) = (u− u0(z))(u− u1(z))(u− u2(z)) (3.3)

where u2(z) = −u0(z) − u1(z) and we index the branches uj(z) such that they are

deformations of tj(z). Then Σ is invariant under the involution and we have u0(−z) =

u1(z) and u2(−z) = u2(z). The smoothing replaces the double points z±i and z̃j of Σ0
with cuts of Σ which we denote by I±i and Ĩj. The cuts Ii connect the branches u0
and u2 if i > 0 and the branches u1 and u2 if i < 0, while each of the cuts Ĩj connects

the branches u0 and u1. As discussed in [17], these cuts are distributed symmetrically

with respect to the origin of the z-plane, i.e. we have I−i = −Ii and Ĩ−j = −Ĩj. In

particular, the central cut Ĩ0 is symmetric under the point reflection z → −z.

The orientifold action (2.23) on X has fixed locus given by:

O : z = 0 , x = −y , (3.4)

which defines a (generically smooth) elliptic curve lying inside the central fiber X(0):

x2 + u3 − p(0)u− q(0) = 0 . (3.5)

This locus corresponds to an O5-‘plane’ which survives the geometric transition.
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Thus we end up with a compactification with NS-NS and R-R fluxes plus an ori-

entifold five-‘plane’ whose internal part is given by (3.5). As explained in [34], such a

compactification will produce a superpotential which receives contributions from fluxes

and from the orientifold fixed locus. Since the geometric transition corresponds to

confinement in the low energy field theory on the noncompact part of the D5-brane

worldvolumes, the flux-orientifold superpotential after the transition can be identified

with the effective superpotential of this theory for the glueball superfields.

3.2 The matrix model prediction for the flux-orientifold superpotential

In order to compute the effective superpotential from geometry, we must calculate

the periods of the holomorphic three-form of the deformed Calabi-Yau X. For this,

recall from [2, 3, 4] that every one-cycle of the Riemann surface Σ defines a 3-cycle

of X obtained by considering a certain S2 fibration associated with that one-cycle.

Accordingly, we consider the following set of three-cycles of X. Let Ai be a three-

cycle which is obtained as an S2 fibration over a one-cycle ai of Σ which surrounds

the cut Ii. We can view Ai as the three-cycle produced by smoothing the singular

point of X0 siting above zi. According to our considerations in the previous section

this corresponds to the U(Ni) component of the unbroken gauge group. We choose

Ai such that the Z2 symmetry κ maps it into the cycle A−i, and we consider the κ-

invariant linear combination Ai+A−i for i = 1 . . . d. Similarly, we consider κ-invariant

cycles Ãj + Ã−j for j = 1 . . . δ, where the 3-cycles Ãj correspond to one-cycles ãj of Σ

surrounding the branch cut of type Ĩj and to the component U(Ñj) of the unbroken

gauge group. They are produced by smoothing the singular point of X0 which sits

above z̃j, and are chosen such that κ(Ãj) = Ã−j. Finally, we consider a three-cycle Ã0

which is invariant under κ. It corresponds to a one-cycle ã0 on Σ which surrounds the

cut Ĩ0 and arises by smoothing the singular point of X0 sitting above the origin. This

3-cycle also corresponds to the component G0 = SO(Ñ0) or Sp(Ñ0/2) of the unbroken

gauge group.

We are thus led to consider two classes of A-periods of the holomorphic 3-form.

The first class is given by:

2πiSi =
1

2

∫

Ai+A−i

Ω =

∫

Ai

Ω , (3.6)

where the last equality holds because of the invariance of Ω under κ. We also have the

periods:

2πiS̃j =
1

2

∫

Ãj+Ã−j

Ω =

∫

Ãj

Ω , (3.7)
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and

2πiS̃0 =
1

2

∫

Ã0

Ω . (3.8)

The cycles which define the periods Si for i = 1 . . . d and S̃j for j = 1 . . . δ will be called

long invariant cycles, whereas Ã0 is a short invariant cycle
7.

The fluxes of the three-form H are:

Ni =

∫

Ai

H , i = −d · · · − 1, 1 . . . d

Ñj =

∫

Ãj

H , j = −δ . . . δ . (3.9)

The collection Ai, Ãj can be completed by considering a set of 3-cycles Bi(Λ) and

B̃j(Λ̃) with intersection numbers:

〈Ai, Bj〉 = δij, for i, j = −d · · · − 1, 1 . . . d (3.10)

〈Ãi, B̃j〉 = δij, for i, j = −δ . . . δ

and zero otherwise.

The B-cycles depend explicitly on two complex cutoffs Λ, Λ̃ whose absolute values

we take to be large. Then Bi(Λ) and B̃i(Λ̃) are constructed as certain S2 fibrations

over one-cycles bi(Λ) and b̃j(Λ̃) on Σ which are constrained to pass through the points

of Σ obtained by lifting Λ and Λ̃ from the z-plane. Namely, bi(Λ) connects the lifts of

Λ to the branches u0 and u2 (if i > 0) respectively u1 and u2 (if i < 0), while b̃j(Λ̃)

connects the two lifts of Λ̃ to the branches u0 and u1. Mathematically, this amounts to

working with an open-closed (punctured) Riemann surface obtained by removing the

lifts of Λ and Λ̃ from the original closed Riemann surface Σ.

Thus the remaining periods are given by:

Πi =

∫

Bi(Λ)

Ω for i = −d · · · − 1, 1 . . . d ,

Π̃j =

∫

B̃j(Λ̃)

Ω for j = −δ . . . δ . (3.11)

Relations similar to (3.9) hold for the gauge couplings:

αi =

∫

Bi(Λ)

H , for i = 1 . . . d (3.12)

α̃j =

∫

B̃j(Λ̃)

H , for j = 0 . . . δ . (3.13)

7The notion of long and short invariant cycles plays a prominent role in the theory of boundary

singularities [35].
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As in [2, 3, 4], the period integrals of Ω can be reduced to corresponding period

integrals of the meromorphic one-form u dz
2πi

on the Riemann surface (3.2) (for this, the

normalization of Ω must be chosen appropriately):

Si =

∫

ai

u
dz

2πi
, S̃j =

∫

ãj

u
dz

2πi
, S̃0 =

1

2

∫

ã0

u
dz

2πi

Πi =

∫

bi(Λ)

udz , Π̃j =

∫

b̃j(Λ̃)

udz , Π̃0 =

∫

b̃0(Λ̃)

udz . (3.14)

The flux-orientifold superpotential takes the form:

Weff =
d

∑

i=1

[NiΠi + 2πiαiSi]+
δ

∑

j=1

[

ÑjΠ̃i + 2πiα̃jS̃j

]

+
Ñ0

2
Π̃0+2πiα̃0S̃0+4F1 . (3.15)

The first terms arise from the fluxes, while the last term is the orientifold contri-

bution. The factor of 1/2 in front of Ñ0Π̃0 is due to the fact that Ñ0 as defined in

(3.9) arises by integrating H over the short cycle Ã0. Up to the orientifold contribu-

tion F1, this is precisely half of the flux-superpotential of an A2 quiver theory with a

κ-symmetric arrangement of fluxes and deformations. We have the special geometry

relations:

Πi =
∂F0
∂Si

, Π̃j =
∂F0

∂S̃j
, (3.16)

where F0 is the closed string prepotential. We are now going to use matrix model

arguments to show that the orientifold contribution F1 takes the form:

F1 = −
s

4

∫

b̃0(Λ̃)

u dz . (3.17)

As in [23], the low energy effective superpotential of our field theory is encoded

by the dynamics of the topological sector of open strings connecting the B-type branes

wrapping the exceptional P1 cycles of X̂. In our case, this two dimensional theory is

obtained by reducing the holomorphic Chern-Simons action, similar to the argument

given in [24] for the ADE quiver theories, but including the orientifold projection. One

easily finds that the open topological sector reduces to the holomorphic [36] matrix

model constructed in [17]. This holomorphic matrix model was studied in [17, 36, 18,

19]. As explained in those references, the matrix model leads to a prescription for

computing the gaugino superpotential in the N = 1 U(N) field theory with one adjoint

and one symmetric or antisymmetric chiral multiplet. Through geometric engineering,

the latter is realized as the low energy limit of the flux-orientifold compactification onX,

and the gaugino superpotential must coincide with the flux-orientifold superpotential

(3.15).
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As explained in [17], the planar limit of this model’s traced resolvent coincides up

to a shift with the sheet u0 of the Riemann surface Σ, which is identified with the

matrix model’s spectral curve. Following the general prescription of the Dijkgraaf-

Vafa correspondence, the closed string prepotential F0 is realized as the planar limit

of the matrix model’s free energy (= microcanonical generating function), while the

orientifold term F1 gives the RP2 contributions to the matrix model free energy. In

particular, the orientifold term F1 can be expressed in terms of matrix model data. It

was furthermore proven in [37] that the RP2 part of the matrix model partition function

contributes with a relative factor of 4 to the gluino superpotential (3.15). Notice that

the D5 brane charge of our orientifold is given by −s. Therefore combining (3.17) and

(3.15) it turns out that the orientifold contribution to the superpotential is proportional

to its D5 brane charge.

We shall use the results of [17] in order to extract the geometric description of F1
given in (3.17).

Recall from [17] that the exact loop equations for the traced matrix model resolvent

ω(z) = tr
(

1
z−M

)

(where M is the matrix associated with Φ) have the form:

〈

ω(z)2 + ω(z)ω(−z) + ω(−z)2
〉

=

∫

γ

dx

2πi

2xU ′(x)

z2−x2
〈

ω(x)
〉

,

〈

ω(z)2ω(−z) + ω(z)ω(−z)2
〉

−
1

N2

〈ω(z)+ω(−z)−2ω(0)〉

4 z2
(3.18)

=

∫

γ

dx

2πi

2xU ′(x)

z2−x2
〈

ω(x)ω(−x)
〉

.

where U(z) = W (z) + (t−1 +
s
2N

) ln(z) and γ is a contour encircling the poles of ω(z)

but not the point z nor the poles of ω(−z). By expanding these loop equations it was

shown in [17] that the contribution of RP2 diagrams to the matrix model free energy

is given by:

F1 =
s

2

∂F0
∂t−1
|t−1=0 , (3.19)

where F0 is the contribution of P1 diagrams to the free energy of a deformed model

obtained by adding the logarithmic term t−1 ln z to the original matrix model potential

W (z). As explained in [17], the planar free energy of this deformed model obeys certain
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Whitham-like constraints, one of which has the form 8:

∂F0
∂t−1

= −

∫

R+iε
dλρ0(λ) log λ . (3.20)

As discussed in [17], adding the logarithmic term t−1 ln z to the matrix model potential

has the effect of replacing Σ with a singular algebraic curve. The latter can be mapped

to a smooth Riemann surface of higher genus, which has the effect of introducing new

cuts for the deformed model. This means that in the presence of the logarithmic defor-

mation, the eigenvalues of the deformed matrix model can accumulate not only along

Ii and Ĩj, but also along certain new loci in the complex plane (a precise description

of the new cuts is given in Section 3.6 of [17]). Since equation (3.19) only requires the

result of (3.20) for t−1 = 0, we can in fact neglect these new cuts and evaluate the right

hand side of (3.20) in the undeformed theory. To write the result in geometric fashion,

let us consider the function:

Ψ(λ) =

∫

dλ′ρ0(λ
′) [ln |λ+ λ′|+ ln |λ− λ′|]−W (λ)−W (−λ) , (3.21)

which was introduced in Section 4 of [17]. Combining (3.19),(3.20) and (3.21), we find:

F1 = −
s

4
Ψ(0)−

s

2
W (0) , (3.22)

where Ψ(0) should be evaluated for t−1 = 0. As shown in [17], Ψ is constant along

each of the cuts Ĩj, where its value coincides with the planar chemical potential µ̃
(0)
j

up to an overall constant which can be fixed by choosing a cutoff Λ̃ at infinity. Upon

making this choice, the chemical potentials µ̃
(0)
j become equal with the periods Π̃j(Λ̃)

computed over the B-cycles b̃j(Λ̃) discussed at the beginning of the present section. In

particular, we have µ̃0 = Π̃0(Λ̃) and thus:

F1 = −
s

4
Π̃0(Λ̃)−

s

2
W (0) . (3.23)

We are free to pick the cutoff Λ̃ for the Π̃-periods to be different from the cutoff Λ for

the Π-periods. In particular, we can pick Λ̃ so that we absorb the contribution − s
2
W (0)

to F1. With this choice, we recover equation (3.17).

8Here we use an ‘almost Hermitian formulation’ introduced in [17] based on the work of [36]. This

amounts to requiring the eigenvalues of M to lie on the displaced real axis R + iε, where one takes

the regulator ε to zero at the very end of all computations. This formulation is correct only if W

has even degree (since otherwise the matrix model partition function diverges). A similar relation can

be written when W has odd degree, by using the general set-up of [36]. In that case, one requires

the eigenvalues of M to lie on a more general contour γ in the complex plane, which must be chosen

such that γ ∩ (−γ) = ∅. Then one must consider the limit when γ coincides with −γ at the end of

all computations, which corresponds to working with a limiting statistical ensemble of holomorphic

matrix models [36].

20



Λ̃

b̃0(Λ̃)

c

Ĩ0

Figure 2: The orientifold contribution to the superpotential is proportional to the period

Π̃0(Λ̃). The relevant integral can be expressed as the integral of u1−u0 over the curve c lying

in the z-plane.

Since Π̃0 =
∂F0

∂S̃0
, we have:

F1 = −
s

4

∂F0

∂S̃0
. (3.24)

A similar relation was observed in [22] for the case of SO/Sp gauge theories with adjoint

matter.

3.3 Comparison with the proposal of [34]

Let us compare relation (3.17) with the proposal of [34]. For this, we write (3.17) in

the form:

F1 = −
s

4

∫

c

[u1(z)− u0(z)]dz , (3.25)

where c is a curve in the z-plane which connects the origin with the point Λ̃ (see figure

2). To arrive at (3.25) we used analyticity of u0 and u1 to deform the projection of

b̃0(Λ̃) toward the origin of the z-plane as shown in figure 2 (this doesn’t change the

value of the integral because u1(x+ i0) = u0(x− i0) along the cut Ĩ0).

To compare with [34], we shall express (3.25) as an integral of Ω over a 3-chain C

in the deformed Calabi-Yau space X. Following the ideas of [2, 3, 4], this 3-chain is

defined as the total space of an S2 fibration over the curve c. To construct this fibration

explicitly, we write the deformed Calabi-Yau (3.1) in the form:

s2 + t2 = (u− u0(z))(u− u1(z))(u− u2(z)) , (3.26)

where x = s + it and y = s − it. Let us fix the point z and consider the segment

I01(z) = [u0(z), u1(z)] which connects the points u0(z) and u1(z) in the u-plane. Picking

a square root σ(u, z) of the right hand side of (3.26), we have s2 + t2 = σ(u, z)2, where

σ(u, z) vanishes when u coincides with one of uj(z). Let C(u, z) denote the circle

α2 + β2 = 1 obtained by requiring that α := s
σ(u,z)

and β := t
σ(u,z)

are both real.

Varying u inside the interval I01(z), we obtain a two-sphere S2z given as an S1 fibration
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over this segment whose fiber collapses to a point at the ends of the interval. Finally,

we fiber this S2 over c by letting z vary along this curve. This gives the desired 3-chain

C in the deformed Calabi-Yau. The boundary of C consists of the two-spheres sitting

above Λ̃ and above the origin of the z-plane:

∂C = S20 ∪ S2
Λ̃

. (3.27)

This boundary intersects the orientifold plane (3.4) for x = −y ⇔ s = 0, which

gives α = s
σ(u,0)

= 0 and thus β = ±1. This is a circle Γ inside S20 traced by two

opposite points of the circle C(z, u) when u varies along I01(0). Thus:

(∂C) ∩O = Γ . (3.28)

Using the arguments of [2, 3, 4], one can immediately show the relation9:

F1 = −
s

4

∫

C

Ω , (3.29)

which reduces to (3.25) upon performing the integral over the two-sphere fibers of C.

According to the proposal of [34] the superpotential contribution of the orientifold

should be given by integrating the holomorphic 3-form Ω along a three-chain whose

boundary consists of the internal part O of the orientifold ‘plane’ and a piece sitting

at infinity (which in our case is represented by S2
Λ̃
after introducing the cutoff). This

is almost exactly what expression (3.29) does. However, in our case the O5 ’plane’

is noncompact and the 3-chain C which reproduces the result known from the matrix

model intersects the orientifold fixed locus in X along a circle. We attribute this

phenomenon to the fact that in our case the internal part O of the O5 ’plane’ is

noncompact.

4. Engineering of SO(N) and Sp(N/2) gauge theories with ad-

joint matter

In this section we study the geometric engineering of N = 1 supersymmetric gauge the-

ories with orthogonal or symplectic gauge group with the help of the orientifold action

introduced in the previous sections. It is well known that the T-dual Hanany-Witten

construction allows the use of either orientifold four-planes or orientifold six-planes [38]

as a means to engineer SO/Sp gauge theories. In fact the type IIB construction with

orientifold five-’planes’ T-dual to orientifold four-planes has already been studied in [8]

and in relation to matrix models in [22]. Here we consider the case of an orientifold 6-

plane, where both NS branes are rotated and/or deformed with respect to their N = 2

position in a manner dictated by W ′(z).

9This requires an appropriate normalization of Ω.
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4.1 Two geometric engineering constructions

Let us start with the singular A1 fibration X1,0 given by:

X1,0 : xy = (u− t0(z))(u− t1(z)) , (4.1)

where t0(z) = W ′(z) and t1(z) = −W
′(z). This fibration admits the two-section:

Σ1,0 : x = y = 0, (u−W ′(z))(u+W ′(z)) = 0 , (4.2)

whose irreducible components are two rational curves.

The resolution X̂1 can be described globally as the complete intersection:

β(u− t0(z)) = αx

α(u− t1(z)) = βy (4.3)

(u− t0(z))(u− t1(z)) = xy

in the ambient space P1[α, β]×C4[z, u, x, y]. The exceptional P1’s of the resolution sit

above the singular points of X1,0, which are determined by x = y = u = 0 and z = zj,

where zj are the roots of W ′. The resolution admits the U(1) action:

([α, β], z, u, x, y) −→ ([e−iθα, β], z, u, eiθx, e−iθy), (4.4)

and T-duality with respect to its orbits allows one to recover the Hanany-Witten de-

scription.

Let us now add an orientifold. By analogy with the previous sections, we can use

the action:

([α, β], z, u, x, y) −→ ([−β, α],−z, u,−y,−x) , (4.5)

which is a symmetry provided that one takes W (z) to be an even polynomial, whose

degree we denote by 2n. Then one can index the critical points of W by zj with

j = −(n − 1) . . . n − 1, such that z−j = −zj. In particular, we have the critical point

z0 = 0. We let Dj denote the exceptional P1 sitting above zj. The action (4.5) maps

Dj into D−j and in particular it stabilizes the central exceptional curve D0, on which

it acts through antipodal involution. Since W ′(0) = 0, the central fiber of X1,0 is

an A1 singularity with equation xy = u2, while the central fiber of X̂1 is its minimal

resolution.

The action (4.5) projects to the following involution of X1,0:

(z, u, x, y) −→ (−z, u,−y,−x) , (4.6)
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whose fixed point set is given by:

O1,0 : x = −y, z = 0, x2 + u2 = 0 . (4.7)

This is a reducible curve whose two rational components x = ±iu sit in the central fiber

of X1,0. The fixed point set Ô1 of (4.5) is is a disjoint union of two rational curves lying

inside the central fiber of the resolved space (the singular point (u, x) = (0, 0) of (4.7)

is replaced by the two points (x, u, ξ) = (0, 0,±i) where ξ = α/β). Thus the orientifold

action (4.5) determines a (disconnected) orientifold 5-‘plane’ which we denote by O5
10.

Since W is an even polynomial, the resolved space X̂1 admits another holomorphic

involution, which acts as:

([α, β], z, u, x, y) −→ ([α, β],−z,−u,−x,−y) . . (4.8)

This orientifold action was used in previous studies [33, 8, 22] to geometrically engineer

the SO(N) and Sp(N/2) theories with one adjoint chiral multiplet. As we shall see

below, the same theories can be engineered by using the action (4.5), and we are

interested in comparing the two realizations.

The fixed point set Ô′1 of the action (4.8) coincides with the exceptional curve D0

in X̂1 which sits above the singular point x = y = z = u = 0 of X1,0. We will denote the

associated orientifold 5-’plane’ by O5’. Notice that O5’ coincides with the worldvolume

of the stack of D5-branes which is wrapped on the central P1. This is of particular

importance for the geometric transition. After this transition, the action (4.8) will

generically become fixed point free so the O5’-’plane’ disappears, being replaced by

the appropriate RR flux on the three-cycle creating by smoothing the double point

sitting at the origin. This is quite different from the behavior of O5, which survives

the transition as we shall see in a moment.

4.2 The T-dual configurations

To extract the T-dual Hanany-Witten configurations, we again use a local description

valid on a subset X̃1 ⊂ X̂1. In the present case, it is given by two copies U0 and U1 of

C3 with coordinates (xi, ui, zi) (i = 0, 1) which are glued together according to:

(x1, u1, z1) = (
1

u0
, x0u

2
0 − 2W ′(z0)u0, z0) (4.9)

10Since O5 has two connected components, it should be viewed more properly as two orientifold

fixed ‘planes’ whose RR charge adds to that of a single O5 plane. This unusual situation is due to the

fact that we work with a nontrivial geometric background and our orientifold ‘planes’ are curved.
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The resolution map τ has the form:

(z, u, x, y) = (z0, x0u0 −W ′(z0), x0, u0(x0u0 − 2W ′(z0))) , (4.10)

= (z1, x1u1 +W ′(z1), x1(x1u1 + 2W ′(z1)), u1) . (4.11)

The U(1) action (4.4) is given by:

(zi, ui, xi) −→ (zi, e
−iθui, e

iθxi) , (4.12)

and fixes the rational curves ui = xi = 0, which are the proper transforms of the two

components of (4.2).

The flat coordinates of the Hanany-Witten construction are given by:

x4 + ix5 = x0u0 −W ′(z0) = x1u1 +W ′(z1) , x6 =
1

2
(|x1|

2 − |u0|
2) (4.13)

and z = x8+ ix9, while x7 is the periodic coordinate along the orbits of the U(1) action

(4.12).

As mentioned above, the T-dual background contains two NS5-branes N0 and N1,

which sit at

N0 : x4 + ix5 = −W ′(z) , x6 = +∞ (4.14)

and:

N1 : x4 + ix5 = +W ′(z) , x6 = −∞ . (4.15)

The orientifold (4.5) acts in local coordinates as:

(z0, x0, u0)←→ (−z1,−u1,−x1) . (4.16)

This action fixes the locus u20 + 1 = z = 0, which is a union of two disjoint rational

curves. Using (4.13) we find that under T-duality this maps to an O6-plane sitting at

x6 = x8 = x9 = 0 (figure 3). Note that there is a single dual O6-plane, even though

the original O5-plane in the resolved space X̂1 has two connected components. This is

due to nonlinearity of the map (4.13).

On the other hand, the orientifold (4.8) acts in local coordinates as:

(z0, x0, u0) → (−z0,−x0, u0) in the patch U0 , (4.17)

(z1, x1, u1) → (−z1, x1,−u1) in the patch U1 . (4.18)

In the T-dual picture, this maps to an orientifold four-plane located at x4 = x5 = x8 =

x9 = x7 = 0 (figure 4).
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x6

x8, x9

O6±

N1 N0

Figure 3: Brane construction with an O6 plane.

For both choices of orientifold action, wrapping D5-branes on the exceptional di-

visors will give an N = 1 gauge theory with orthogonal or symplectic gauge group

depending on the RR-charge of the orientifold 5-‘plane’. The theory also contains a

chiral multiplet Φ in the adjoint representation of the gauge group with a tree-level

superpotential trW (Φ). The classical vacua have the form:

Φ = diag(0N0 ,−ζ11N1 , ζ11N1 · · · − ζn1Nn
, ζn1Nn

) (4.19)

where ζj are the zeroes of W ′(z) and N0 + 2
∑

j Nj = N . Here j = −n . . . n, with

ζ−j = −ζj and in particular ζ0 = 0. Such a vev of Φ breaks the gauge group down to

the product:

G0 ×
n
∏

j=1

U(Nj) , (4.20)

where G0 = SO(N0) or Sp(N0

2
) according to whether we have an orientifold plane of

positive or negative charge.

4.3 Low energy descriptions after the geometric transition

After the geometric transition, one must distinguish how one computes the effective

superpotential in the two constructions.
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x6

x8, x9

O4±

N1 N0

Figure 4: Brane construction with an O4 plane.

4.3.1 Engineering through an O5-‘plane’ T-dual to an O4-plane

Let us first review the results of [22] for the orientifold action (4.8). Since in this

case the orientifold is replaced by a contribution to the RR flux during the geometric

transition, its effect is to modify the flux through the three cycle Ã0 of (4.21) which

results by smoothing the central double point of X1. At low energies, the SO/Sp gauge

theory confines producing gaugino condensates S̃j. This corresponds to a geometric

transition during which the exceptional P1’s are blown down and the resulting singular

space X1 is smoothed to:

xy = u2 −W ′(z)2 + 2f0(z) . (4.21)

As usual, the deformation must be log-normalizable and respect the orientifold projec-

tion, so f0(z) must be an even polynomial of degree 2n− 2. We also included a factor

of two in order to match the normalization that arises naturally in the related matrix

model.

The gaugino condensates S̃j can be identified with periods of the holomorphic

three-form of (4.21) over the 3-spheres produced by the transition. Using notation

similar to that of Section 3, the gaugino condensate S̃0 in the SO/Sp factor of the

unbroken gauge group can be identified with the period of the holomorphic three-form
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Ω along the short invariant cycle A0:

2πiS0 =
1

2

∫

A0

Ω . (4.22)

Then the RR-flux through the short invariant cycle A0 is:

1

2

∫

A0

H =
N0

2
− s . (4.23)

We find the flux superpotential:

Weff = (
N0

2
− s)

∂F0
∂S0

. (4.24)

Note that there is no orientifold contribution because the orientifold fixed ‘plane’ is

replaced by a RR flux after the transition. In the corresponding matrix model there

are of course still diagrams with RP2 topology and as shown in [37] they contribute to

the superpotential as:

Weff =
N0

2

∂F0
∂S0

+ 4F1 , (4.25)

where F = F0+
1
N
F1+O(1/N 2) is the microcanonical partition function of the matrix

model. This allows one to identify the subleading 1/N contribution to the superpoten-

tial as [22]:

F1 = −
s

4

∂F0
∂S0

. (4.26)

Reducing to the deformed Riemann surface:

u2 = W ′(z)2 − 2f0(z) , (4.27)

(the two-section x = y = 0 of the deformed Calabi-Yau (4.21)), the relevant period

integrals take the form:

S0 =

∫

a0

u
dz

2πi
,

∂F0
∂S0

= Π(Λ) =

∫

b0(Λ)

u dz . (4.28)

The ‘cycle’ b0 has intersection −1 with a0 and is non-compact. The integral over b0 has

been regularized by introducing a cutoff Λ.

4.3.2 Engineering through an O5-‘plane’ T-dual to an O6-plane

In this case, the transition again produces the space (4.21), this time with the orientifold

action (4.6), which fixes the locus z = 0, x = −y. This is the smooth rational curve:

x2 + u2 + 2f0(0) = 0 . (4.29)
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Note that the O5-‘plane’ becomes connected after the geometric transition.

To extract the effective superpotential, we shall use the trick of realizing the theory

with an O5-‘plane’ T-dual to an O6-plane as a certain Higgs branch of the theory of with

symmetric or antisymmetric matter. This branch is obtained from (2.34) when taking

W (z) to be even of degree d+1 = 2n, which forces the d−1 = 2n−2 critical points zj of

W to coincide with the 2δ = 2n− 2 nonvanishing solutions z̃j of W
′(z)−W ′(−z) = 0.

With an appropriate enumeration, we can then take z̃j = z+j for all positive j and

z̃j = z−−j for all negative j. We also have the null value z̃0 = 0. Then one can further

Higgs by giving nonzero expectation values to Q, which forces us to keep only solutions

of type (4.19), thus recovering the vacua of the SO/Sp theory.

In the brane construction, this process amounts to displacing the central NS-brane

in order to give vevs to Q, which eliminates all stacks of D4 branes stretching between

the middle and outer NS branes. Then the middle NS brane can be decoupled, which

recovers the realization which uses only the two outer NS branes.

In geometric engineering, this corresponds to starting with the special case when

the classical curve (2.3) is reduced to the form:

Σspecial
0 : u(u−W ′(z))(u+W ′(z)) = 0 , (4.30)

which has triple points at the critical points of W . Then giving a vev to Q amounts

to forgetting the branch u2 ≡ 0, thereby recovering the classical SO/Sp curve (4.2).

Starting with such special orientifolded A2 fibrations, the geometric transition will

produce a deformed space X which is only a partial smoothing of X0. Namely, the A2

singularities of X0 are deformed into A1 singularities, which corresponds to partially

smoothing the triple points of (4.30) by replacing the factor (4.2) with its deformation

(4.27).

In the matrix model, this amounts to requiring that all filling fractions Sj must

vanish, so that all cuts connecting the branches u0 and u2 as well as u0 and u2 are

reduced to double points. As we shall see in a moment, this amounts to restricting to

planar eigenvalue distributions which are symmetric with respect to the origin of the

z-plane.

To see this explicitly, remember from [17] that the large N spectral curve of the

theory with symmetric or antisymmetric matter (and without the logarithmic defor-

mation) has the form (3.2), where the polynomials p, q have the following expression

in terms of matrix model data:

p(z) = t(z)2 + t(z)t(−z) + t(−z)2 − f0(z)− f0(−z)

q(z) = −t(z)t(−z) [t(z) + t(−z)] + t(z)f0(−z) + t(−z)f0(z)− g0(z)− g0(−z) .(4.31)
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Here f0(z) and g0(z) are polynomials of degree d− 1 = 2n− 2, given explicitly by:

f0(z) =

∫

dλρ0(λ)
U ′(z)− U ′(λ)

z − λ

g0(z) =

∫

dµ

∫

dλρ0(λ)
U ′(z)− U ′(λ)

(λ+ µ)(z − λ)
(4.32)

where U ′(z) = W ′(z) + s
2N

1
z
.

In the case of interest for this section, we have W ′(−z) = −W ′(z) so that U ′(−z) =

−U ′(z) and t(−z) = −t(z) = W ′(z). Since degW ′(z) = d = 2n−1, we have δ =
[

d−1
2

]

=

n− 1 and the surface (3.2) has 2d = 2(n− 1) cuts of type Ij and 2δ + 1 = 2n− 1 cuts

of type Ĩj.

Let us assume that ρ0(−λ) = ρ0(λ) for all λ. Then equations (4.32) immediately

imply that f0(−z) = f0(z) and g0(−z) = −g0(z), so that (4.31) give:

p(z) = W ′(z)2 − 2f0(z)

q(z) = 0 . (4.33)

Therefore, the spectral curve (3.2) reduces to:

Σspecial : u3−(W ′(z)2−2f0(z))u = 0⇐⇒ u(u−W ′(z)2−2f0(z)) = 0 with f0 = even .

(4.34)

Conversely, let us assume that (3.2) has the form (4.34). Then u2 ≡ 0 and u1(z) =

u0(−z) = −u0(z), which means that all cuts Ij are reduced to ordinary double points

sitting at the endpoints of the cuts Ĩj (there are two such double points for each cut Ĩj).

These double points correspond to the zeroes of the degree 2(2n− 1) even polynomial

W ′(z)2 − 2f0(z), which are distributed symmetrically with respect to the origin of the

z-plane.

Now remember from Section 3.5.2 of [17] (see equation (3.81) of that paper) that

the planar spectral density ρ0(λ) is symmetric along the union of all cuts of type Ĩj.

Since in our case there are no other cuts, the support of ρ0 coincides with ∪j Ĩj and it

immediately follows that ρ0(−λ) = ρ0(λ) for all λ. Thus:

The large N spectral density ρ0(λ) of the matrix model for symmetric or antisym-

metric matter with an even tree-level superpotential W of degree 2n is symmetric if and

only if the spectral curve has the form (4.34), i.e. iff. the polynomials p(z) and q(z)

have the form (4.33), where f0(z) is an even polynomial of degree 2n− 2.

Hence the field theory higgsing described above translates into imposing a symmet-

ric distribution for ρ0(λ) = limN→∞ 〈ρ(λ)〉. In this case the spectral curve reduces to

the form (4.34), which coincides (up to the spectator branch u ≡ 0) with the spectral

curve (4.27) of the SO/Sp model. It follows that the planar free energy on this branch
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of the moduli space of filling fractions of the model with symmetric/antisymmetric

matter must agree with that of the SO/Sp model, provided that one identifies the fill-

ing fractions S̃j of the former with those of the latter. One the other hand, the RP2

contributions are given by relations (3.24) and (4.26), which have the same form and

determine F1 in terms of F0. It follows that the subleading terms F1 must also agree.

Observation If one formally restricts to exactly symmetric distributions of eigenval-

ues of the model with symmetric or antisymmetric matter, then one has the ‘quantum’

relation ω(z) = −ω(−z). Combining this with U ′(z) = −U ′(−z), the quadratic loop

equation in (3.18) reduces to:

1

2
〈ω(z)2〉 =

∫

γ

dx

2πi

U ′(x)

z − x
〈ω(x)〉 (4.35)

while the cubic loop equation becomes a tautology. To arrive at (4.35), we used the

identity:
1

z

(

1

z − λi
+

1

z + λi

)

=
1

λi

(

1

z − λi
−

1

z + λi

)

=
2

z2 − λ2
. (4.36)

Since the eigenvalues are distributed symmetrically, the resolvent takes the form ω(z) =
∑

i
2z

z2−λ2
i

[22]. Using U ′(x) = W ′(x) + s
2N

1
x
, we can write (4.35) as:

1

2
〈ω(z)2〉 −

s

2N

1

z
〈ω(z)〉 =

∫

γ

dx

2πi

W ′(x)

z − x
〈ω(x)〉 . (4.37)

This coincides with the exact loop equations for the SO/Sp theory with adjoint matter,

as derived in [39, 22].

Notice however that such a symmetric distribution of eigenvalues might be unstable

to orders O(1/N 2), and a priori there is no meaningful way to impose the symmetry

of eigenvalues at the quantum level in the matrix model (as opposed to symmetry of

their (large N) averaged distribution 〈ρ(λ)〉, which is all we required before). Indeed,

one expects that gravitational F-terms in the effective field theory should distinguish

between the two realizations. In the matrix model, such gravitational corrections will

correspond [23] to contributions of order O(1/N 2) . Therefore we expect that the

two backgrounds obtained after the large N transition differ through F-terms of order

O(1/N 2) or higher.

5. Conclusions

We investigated the geometric engineering of N = 1 gauge theory with gauge group

U(N) and matter in the adjoint and symmetric or antisymmetric representations. We
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showed that such theories can be realized as certain orientifolds of resolved Calabi-Yau

A2 fibrations, where one wraps D5-branes on the exceptional P1’s of the resolution. The
orientifold action one has to consider defines an orientifold 5-plane whose internal part

coincides with a noncompact rational curve sitting in the resolved Calabi-Yau space.

We also gave the explicit relation of this construction with the Hanany-Witten

realization [15, 16] through orientifolded brane configurations in IIA string theory.

This is implemented by T-duality with respect to the orbits of a certain U(1) action

on the resolved Calabi-Yau, along the lines of [7, 12, 13]. Upon giving an explicit

construction of the T-dual coordinates, we showed that the orientifold 5-‘plane’ used

in our geometric engineering maps to the O6-plane used in [15, 16].

Following the ideas of [2, 3, 4], we considered the geometric transition which replaces

the resolved Calabi-Yau space with its deformation. Upon restricting to deformations

compatible with the geometric symmetry used in the orientifold construction, we found

that the orientifold 5-‘plane’ survives the geometric transition, and thus contributes

to the effective superpotential of the resulting background. This gives the geometric

explanation of the RP2 diagram contributions found in [17], which affect the field theory

glueball superpotential after confinement.

Using the matrix model results of [17], we gave a geometric expression for this

orientifold contribution as an integral over a certain 3-chain in the deformed Calabi-

Yau space, and compared with the proposal of [34].

We also discussed the Higgs branch of our theories obtained by giving a vev to

the symmetric or antisymmetric tensor, and showed that this Higgs branch recovers

the SO(N) or Sp(N/2) gauge theory with adjoint matter. Namely, we showed that

this process leads to a geometric engineering of such theories which is T-dual to their

realization obtained by adding an O6-plane to a Hanany-Witten brane configuration.

Using the matrix model results of [17], we extracted the glueball superpotential on

this branch, and showed that it recovers the results of [22]. The later where obtained

in [22] though a different geometric engineering (which is T-dual to a Hanany-Witten

construction involving an O4-plane). After the geometric transition, this alternate

construction leads to a pure flux background, in which the O5-‘plane’ is replaced by

R-R fluxes. This implies matching of RP2 contributions to the superpotential between

the two constructions, which we checked explicitly by using the matrix model results

of [17] and [22].

One can apply similar methods to other models which admit a geometric engineer-

ing. An interesting example of this kind is the chiral U(N) model with adjoint as well

as symmetric, antisymmetric and fundamental matter which is discussed in [32].
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A. Geometric engineering without a tree-level superpotential

In this appendix we give a geometric argument which explains why the orientifold

projection of our IIB background leads to (anti)symmetric matter. For this, one can

consider the limit when the tree-level superpotential vanishes and the theory acquires

N = 2 supersymmetry. In this limit, the Calabi-Yau space X0 becomes the trivial A2

fibration C×X0(0), where the fiber X0(0) is an A2 singularity.

More generally, the relevant geometry can be obtained by considering the non-

generic case when W ′(0) = 0 (note that this case was explicitly excluded in Section 2).

Then the central fiber X0(0) becomes an A2 singularity xy = u3, while X̂(0) becomes

its minimal resolution:

ξ1x = u

ξ2u = y
ξ2
ξ1

= u (A.1)

xy = u3 .

Outside the locus x = y = u = 0, (A.1) determines11 ξ1 =
u
x
= y

u2 and ξ2 =
y
u
= u2

x
. For

x = y = u = 0, we are left with the constraint ξ2
ξ1

= 0, which gives the two exceptional

P1’s with equations ξ1 = ∞ and ξ2 = 0. The orientifold action on X̂ fixes the locus

Ô : x = −y, ξ1ξ2 = −1 in X̂(0), which is a a smooth rational curve passing through the

common point p of the two exceptional P1’s:

D
(1)
0 ∩D

(2)
0 = {p} : x = y = 0, ξ1 =∞, ξ2 = 0 . (A.2)

The curve Ô intersects the exceptional fibers only at this point, and the orientifold

action maps D
(1)
0 into D

(2)
0 according to relation (2.24). Finally, note that Ô projects

to the fixed locus O0 of the action (2.23) on X0, which in the case W ′(0) = 0 is the

cuspidal curve:

x = −y, x2 + u3 = 0 . (A.3)

11When xy = 0, but x 6= y, one uses one of the forms given in the text to remove the ambiguity. For

example, let x = 0 and y 6= 0. Then one must use the forms ξ1 =
y
u2 and ξ2 =

y
u
in order to determine

ξ1 unambiguously as a point in the one-point compactification C = P1.
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A clearer description of the resolved central fiber X̂(0) presents it as the toric

resolution (C4 − Z)/(C∗)2 of the A2 singularity X0(0), with charge matrix:

Q =

[

1 −2 1 0

0 1 −2 1

]

(A.4)

and toric generators given by the columns of the matrix:

G =

[

1 1 1 1

0 1 2 3

]

. (A.5)

The exceptional set is Z = {x1 = x3 = 0} ∪ {x2 = x4 = 0} ∪ {x1 = x4 = 0}.

The generators correspond to homogeneous coordinates which we denote by x1 . . . x4.

We let Dj = (xj) be the toric divisors. Then D2 = D
(1)
0 and D3 = D

(2)
0 are the excep-

tional P1’s, while D1 and D4 are non-compact.

ν4

ν3

ν2

ν1

Figure 5: The toric generators ν1 . . . ν4.

In the symplectic quotient description, we have the reduction of C4 with respect

to the U(1)2 action defined by (A.4) with moment map equations:

|x1|
2 − 2|x2|

2 + |x3|
2 = ζ1

|x2|
2 − 2|x3|

2 + |x4|
2 = ζ2 , (A.6)

where ζj are some positive levels. Setting ζ1 = ζ2 = 0 gives the A2 singularity X0(0),

which we describe in terms of invariants:

x = x31x
2
2x3

y = x2x
2
3x
3
4 (A.7)

u = x1x2x3x4 ,

subject to the relation xy = u3.

The orientifold action on X̂(0) takes the form 12 :

x1 ←→ x4 , x2 ←→ −x3 . (A.8)

12In the symplectic quotient description, this is a symmetry if we set ζ1 = ζ2 = ζ.
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The fixed point set Ô is given by the smooth curve x31x2 = −x3x
3
4. One easily checks

the intersections:

D2 ∩D3 = D2 ∩ Ô = D3 ∩ Ô = D2 ∩D3 ∩ Ô = {[1, 0, 0, 1]} . (A.9)

The curve Ô is smooth for positive ζ and degenerates to the cusp O0 of (A.3) when

ζ = 0. As expected, the action (A.8) permutes the compact divisors D2 = D
(1)
0 and

D3 = D
(2)
0 . The local geometry is sketched in figure 6.

D2

D3

Ô

Figure 6: Orientifold action on the resolution of the A2 singularity.

It is now trivial to find the orientifolded matter content. In the limit W ′(z) = 0,

we start by wrapping two D5-branes on the exceptional P1’s D
(1)
0 and D

(2)
0 , endowed

with trivial and isomorphic Chan-Paton bundles E1 and E2 of rank N . This generates

chiral multiplets Q21 ∈ Hom(E1|p, E2|p) ≈ Mat(N,C) and Q12 ∈ Hom(E2|p, E1|p) ≈

Mat(N,C) from the intersection point p, as well as gauge multiplets from the strings

ending on a given brane. In N = 1 superfield language the strings ending on a brane

give rise to vector fields and chiral multiplets in the adjoint representation. More

precisely we have Wα.j ∈ Aut(Ej,p) ≈Mat(N,C) and Φj ∈ Aut(Ej,p) ≈Mat(N,C) for

j ∈ {1, 2}, where Φj correspond to moving the brane along the base direction z in the

trivial fibration C×X(0).

The result is an A2 quiver field theory whose node potentials W1 and W2 arise when

one deforms the trivial fibration C× X̂(0) in order to obtain the nontrivial fibration X̂

over the z-plane.

Let us now add the orientifold ’plane’. Since the orientifold action permutes the

two P1’s, the projection must relate each of Q12 and Q21 to its transpose, up to a

similarity defined by homomorphisms γ1 ∈ Hom(E1|p, E2|p) and γ2 ∈ Hom(E2|p, E1|p):

Qij → γiQ
T
ijγ

−1
j (A.10)
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Since this action must square to the identity, we have the constraints:

γ2 = ±γ
T
1 . (A.11)

To recover our theories, we choose γ1 = +1N and γ2 = ±1N , which give respectively

the projections:

QT
ij = +Qij or QT

ij = −Qij . (A.12)

These are precisely the projections used in the introduction, corresponding to the two

choices s = ±1. Finally notice that on the vector multiplets and the chiral multiplets

in the adjoint representation the orientifold projection acts as

Wα,1 → −γ1W
T
α,2γ

−1
1 , (A.13)

Wα,2 → −γ2W
T
α,1γ

−1
2 , (A.14)

Φ1 → −γ1Φ
T
2 γ

−1
1 , (A.15)

Φ2 → −γ2Φ
T
1 γ

−1
2 . (A.16)

The additional sign arises for the vector fields because the vertex operators of vectors

are odd under worldsheet parity, whereas the minus sign for the chiral multiplets has

its origin in the geometric action of the orientifold. According to these projections the

two factor groups of the A2 quiver gauge theory are identified as U1 = (UT
2 )
−1 = U ∗2

for both choices of γi. Writing now Φ = Φ1 = −ΦT
2 , Q = Q21 and Q̃ = Q12 we can

compute the projected superpotential (2.32)

W = tr(QΦQ̃)− tr(Q̃(−ΦT )Q) = 2 tr(QΦQ̃) . (A.17)

The factor 2 can be absorbed in the normalization of Q and Q̃ to produce (1.4).
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