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Abstract— The purpose of this paper is to study the
determination of stability regions for discrete-time linear
systems with saturating controls through anti-windup
schemes. Considering that a linear dynamic output feedback
has been designed to stabilize the linear discrete-time system
(without saturation), a method is proposed for designing
an anti-windup gain that maximizes an estimate of the
basin of attraction of the closed-loop system in the presence
of saturation. It is shown that the closed-loop system
obtained from the controller plus the anti-windup gain can
be locally modelled by a linear system with a deadzone
nonlinearity. Then, based on the proposition of a new
sector condition and quadratic Lyapunov functions, stability
conditions in an LMI form are stated. These conditions
are then considered in a convex optimization problem in
order to compute an anti-windup gain that maximizes
an estimate of the basin of attraction of the closed-loop
system. Moreover, considering stable open-loop systems, it is
shown that the conditions can be slightly modified in order
to determine an anti-windup gain that ensures global stability.

I. I NTRODUCTION

The basic idea underlining anti-windup designs for linear
systems with saturating actuators is to introduce control
modifications in order to recover, as much as possible, the
performance induced by a previous design carried out on the
basis of the unsaturated system. First results on anti-windup
consisted in ad-hoc methods intended to work with standard
PID controllers [1], [2] which are commonly used in present
commercial controllers. Nonetheless, major improvements
in this field have been achieved in the last decade as it can
be observed in [3], [4], [5], [6], [7], [8], [9], [10] among
others.

Several results on the anti-windup problem are concerned
with achieving global stability properties. Since global
results cannot be achieved for open-loop unstable linear
systems in the presence of actuator saturation, local results
have to be developed. In this context, a key issue is
the determination of domains of stability for the closed-
loop system (estimates of the regions of attraction). With
very few exceptions, most of the local results available
in the literature of anti-windup do not provide explicit
characterization of the domain of stability.

In [11] and [12], considering continuous-time systems,
an attempt has being made to fill in this gap by providing
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design algorithms that explicitly optimize a criterion aiming
at maximizing a stability domain of the closed-loop system.
In [12], the modelling of the nonlinear behavior of the
system under saturation is made by using a polytopic
differential inclusion and quadratic Lyapunov functions.
On the other hand, in [11], based on a transformation of
the saturation term in a deadzone nonlinearity, classical
sector condition and S-procedure techniques are used to
derive stability conditions considering both quadratic and
Lure type Lyapunov functions. The main drawback of the
approaches above is that the conditions allowing to compute
the anti-windup gains are given in terms of bilinear matrix
inequalities (BMIs). In order to overcome this difficulty,
iterative LMI algorithms are proposed to solve the synthesis
problem. It is well-known that, in general, this kind of
approach does not lead to global optimal solutions and are
very sensitive to the initialization [13].

On the other hand, the anti-windup problem for discrete-
time systems has received less attention in the literature.
It has been addressed in [1], [14] (see references therein),
in the scope of the conditioning technique, and in [15] in
the context of constrained regulation. Recently, in [16], the
anti-windup problem for discrete-time linear systems was
addressed in anL2-norm performance context. Similarly as
in the continuous-time case, the proposed designs do not
explicitly address the problem of enlarging the domain of
stability of the closed loop system.

Hence, considering discrete-time systems, the aim of this
paper consists in providing a technique that allows the
computation of anti-windup loops in order to enlarge the
region of asymptotic stability of the closed-loop system. The
theoretical conditions are obtained from the proposition of a
modified sector condition and the use of quadratic Lyapunov
functions. Thus, differently from [11] and [12], the stability
conditions are directly formulated in an LMI form, avoiding
the necessity of applying iterative algorithms. Furthermore
it is shown that this new sector condition encompasses
the classical one, largely applied in the literature (see for
instance [11] and references therein). This fact introduces
in the problem more degrees of freedom, which leads to
less conservative solutions. On the other hand, considering
stable open-loop systems, it is shown that the theoretical
conditions can be slightly modified in order to determine
anti-windup gains that ensure global stability.

The paper is organized as follows. In section II, we state
the problem being considered and we provide the main
definitions and concepts required in the paper. Stability con-
ditions for the closed-loop system are provided in section III



by employing quadratic Lyapunov functions. Based on the
results of section III, an LMI-based convex optimization
problem to synthesize the anti-windup gain is proposed in
section IV. Section V provides numerical examples, illus-
trating the effectiveness of the proposed design technique.
Concluding remarks are given in section VI.

Notations. For any vectorx ∈ <n, x � 0 means that
all the components ofx, denotedx(i), are nonnegative. For
two vectorsx, y of <n, the notationx � y means that
x(i)−y(i) ≥ 0, ∀i = 1, . . . , n. The elements of a matrixA ∈
<m×n are denoted byA(i,j), i = 1, . . . ,m, j = 1, . . . , n.
A(i) denotes theith row of matrixA. For two symmetric
matrices,A andB, A > B means thatA − B is positive
definite.A′ denotes the transpose ofA. diag(x) denotes
a diagonal matrix obtained from vectorx. Im denotes the
m-order identity matrix.Co{·} denotes a convex hull.

II. PROBLEM STATEMENT

Consider the discrete-time linear system

x(t+ 1) = Ax(t) +Bu(t)
y(t) = Cx(t)

(1)

wherex(t) ∈ <n, u(t) ∈ <m, y(t) ∈ <p are the state, the
input and the measured output vectors, respectively, andt =
0, 1, 2, . . .. MatricesA, B andC are real constant matrices
of appropriate dimensions.

Considering system (1), we assume that annc-order
dynamic output feedback stabilizing compensator

xc(t+ 1) = Acxc(t) +Bcy(t)
vc(t) = Ccxc(t) +Dcy(t)

(2)

where xc(t) ∈ <nc is the controller state,uc = y(t) is
the controller input andvc(t) is the controller output, was
designed to guarantee some performance requirements and
the stability of the closed-loop system in the absence of
control saturation.

Suppose now that the input vectoru is subject to ampli-
tude limitations defined as follows:

−u0 � u � u0 (3)

whereu0(i) > 0, i = 1, ...,m, denote the control amplitude
bounds. In consequence of the control bounds, the actual
control signal to be injected in the system is a saturated
one, that is,

u(t) = sat(vc(t)) = sat(Ccxc(t) +DcCx(t)) (4)

where each component ofsat(vc(t)) is defined, ∀i =
1, ...,m, by:

sat(vc(t))(i)
4
=







−u0(i) if vc(i)(t) < −u0(i)

vc(i)(t) if − u0(i) ≤ vc(i)(t) ≤ u0(i)

u0(i) if vc(i)(t) > u0(i)
(5)

In order to mitigate the undesirable effects of the
windup, caused by input saturation, an anti-windup term
Ec(sat(vc(t)) − vc(t)) can be added to the controller [2],

[5]. Thus, considering the dynamic controller and this anti-
windup strategy, the closed-loop system reads:

x(t + 1) = Ax(t) + Bsat(vc(t))
y(t) = Cx(t)

xc(t + 1) = Acxc(t) + Bcy(t) + Ec(sat(vc(t)) − vc(t))
vc(t) = Ccxc(t) + Dcy(t)

(6)

Define now an extended state vector

ξ(t) =

[

x(t)
xc(t)

]

∈ <n+nc (7)

and the following matrices

A =

[

A+BDcC BCc

BcC Ac

]

; B =

[

B
0

]

R =

[

0
Inc

]

; K =
[

DcC Cc

]

Hence, from (7) and (6), the closed-loop system reads:

ξ(t+ 1) = Aξ(t) − (B + REc)ψ(Kξ(t)) (8)

with the functionψ(v)
4
= v−sat(v). Note that, in this case,

ψ(v) corresponds to a decentralized deadzone nonlinearity
ψ(v) =

[

ψ(v(1)) ... ψ(v(m))
]′

, where

ψ(v(i))
4
=







v(i) − u0(i) if v(i) > u0(i)

0 if −u0(i) ≤ v0(i) ≤ u0(i)

v(i) + u0(i) if v(i) < −u0(i)
(9)

∀i = 1, . . . ,m
Since, by hypothesis, the controller (2) is supposed to

stabilize system (1) in the absence of saturation, the matrix
A is Schur-Cohn, i.e., in the absence of control bounds, the
closed-loop system would be globally stable.

The basin of attraction of system (8) is defined as the set
of all ξ ∈ <n+nc such that forξ(0) = ξ the corresponding
trajectory converges asymptotically to the origin. In partic-
ular, when the global stability of the system is ensured the
basin of attraction corresponds to the whole state space.
However, in the general case, the exact characterization
of the basin of attraction is not possible. In this case, it
is important to obtain estimates of the basin of attraction.
Consider then the following definition:

Definition 1: A setE is said to be a region of asymptotic
stability for the system (8) if for allξ(0) ∈ E the corre-
sponding trajectory converges asymptotically to the origin.

Hence, the idea is to use regions of stability in order to
approximate the basin of attraction [17].

The problem we aim to solve throughout this paper is
summarized as follows.

Problem 1: Determine the anti-windup gain matrixEc

and an associated region of asymptotic stability, as large as
possible, for the closed-loop system (8).

Of course, the implicit objective in Problem 1 is to
optimize the size of the basin of attraction for the closed-
loop system (8) over the choice of the gain matrixEc. This



can be accomplished indirectly by searching for an anti-
windup gainEc that leads to a region of stability for the
closed-loop system as large as possible or even that ensures
global stability.

In order to address Problem 1, we propose to use
quadratic Lyapunov functions and ellipsoidal regions of
stability, as will be seen in the sequel.

III. STABILITY CONDITIONS

Consider a matrixG ∈ <m×(n+nc) and define the
following polyhedral set

S 4
= {ξ ∈ <n+nc ; − u0 � (K −G)ξ � u0} (10)

Lemma 1:Consider the functionψ(v) defined in (9). If
ξ ∈ S then the relation

ψ(Kξ)′T [ψ(Kξ) −Gξ] ≤ 0 (11)

is verified for any matrixT ∈ <m×m diagonal and positive
definite.

Proof: Consider the three cases below.
(a): −u0(i) ≤ K(i)ξ ≤ u0(i)

In this case, by definition,ψ(K(i)ξ) = 0 and then

ψ(K(i)ξ)T(i,i)[ψ(K(i)ξ) −G(i)ξ] = 0

(b): K(i)ξ > u0(i)

In this case,ψ(K(i)ξ) = K(i)ξ − u0(i). If ξ ∈ S it
follows thatK(i)ξ − G(i)ξ ≤ u0(i). Hence, it follows
that:

ψ(K(i)ξ) −G(i)ξ = K(i)ξ − u0(i) −G(i)ξ ≤ 0

and, since in this caseψ(K(i)ξ) > 0, one gets

ψ(K(i)ξ)T(i,i)[ψ(K(i)ξ) −G(i)ξ] ≤ 0

for all T(i,i) > 0.
(c): K(i)ξ < −u0(i)

In this case,ψ(K(i)ξ) = K(i)ξ + u0(i). If ξ ∈ S it
follows thatK(i)ξ−G(i)ξ ≥ −u0(i). Hence, it follows
that:

ψ(K(i)ξ) −G(i)ξ = K(i)ξ + u0(i) −G(i)ξ ≥ 0

and, since in this caseψ(K(i)ξ) < 0, one gets

ψ(K(i)ξ)T(i,i)[ψ(K(i)ξ) −G(i)ξ] ≤ 0

for all T(i,i) > 0.
From the 3 cases above, onceξ ∈ S we can conclude

that ψ(K(i)ξ)T(i,i)[ψ(K(i)ξ) − G(i)ξ] ≤ 0, ∀T(i,i) > 0,
∀i = 1, . . . ,m, whence follows (11).�

Consider now as Lyapunov candidate function, the
quadratic function

V (ξ(t)) = ξ(t)′Pξ(t) (12)

whereP = P ′ > 0, P ∈ <(n+nc)×(n+nc).

Theorem 1:If there exist a symmetric positive definite
matrix W ∈ <(n+nc)×(n+nc), a matrix Y ∈ <m×(n+nc)

and a matrixZ ∈ <nc×m, a diagonal positive definite
matrix S ∈ <m×m satisfying:





W −Y ′ −WA
′

−Y 2S SB
′ + Z ′

R
′

−AW BS + RZ W



 > 0 (13)

[

W WK
′

(i) − Y ′

(i)

K(i)W − Y(i) u2
0(i)

]

≥ 0, i = 1, ...,m

(14)
then for the gain matrixEc = ZS−1 the ellipsoidE(P ) =
{ξ ∈ <n+nc ; ξ′Pξ ≤ 1}, with P = W−1, is a region of
stability for the system (8).

Proof. The satisfaction of relations (14) implies that the
set E(P ) is included in the polyhedral setS defined as
in (10) with G = Y P [18]. Hence, from Lemma 1, for
all ξ(t) ∈ E(P ) it follows that ψ(Kξ(t)) = Kξ(t) −
sat(Kξ(t)) satisfies the sector condition (11). By consider-
ing the quadratic Lyapunov function as defined in (12) and
by computing the variation ofV (ξ(t)) along the trajectories
of system (8) one gets:

∆V (ξ(t)) = V (ξ(t)) − V (ξ(t+ 1)) =
ξ(t)′Pξ(t) − ξ(t)′(A′PA)ξ(t)
+2ξ(t)′A′P (B + REc)ψ(Kξ(t))
−ψ(Kξ(t))′(B + REc)

′P (B + REc)ψ(Kξ(t))
(15)

Thus, by using the sector condition (11) it follows that1:

∆V (ξ(t)) ≥ ξ′Pξ − ξ′(A′PA)ξ + 2ξ′A′P (B + REc)ψ
− ψ′(B + REc)

′P (B + REc)ψ + 2ψ′T [ψ −Gξ]
(16)

∀T > 0, T diagonal, or equivalently

∆V (ξ(t)) ≥
[

ξ′ ψ′
]

[

X1 X2

X ′
2 X3

] [

ξ
ψ

]

(17)

where

X1 = P − A
′PA

X2 = A
′P (B + REc) −G′T

X3 = 2T − (B + REc)
′P (B + REc)

Note now that, by Schur’s complement, relation (13) is
equivalent to

[

W −Y ′

−Y 2S

]

−X ′

4PX4 > 0 (18)

with X4 = [−AW (BS + RZ)]
Considering nowT = S−1 and pre and post-multiplying

(18) by

[

P 0
0 T

]

it follows that

[

X1 X2

X ′
2 X3

]

> 0

1For notational simplicity we drop the time dependence and consider
ξ(t) = ξ andψ(Kξ(t)) = ψ.



As a result, the quadratic form in (17) is positive definite
implying ∆V (ξ(t)) > 0 (i.e, V (ξ(t+ 1) < V (ξ(t))). Since
this reasoning is valid∀ξ(t) ∈ E(P ), ξ(t) 6= 0, it follows
that the functionV (ξ(t)) is strictly decreasing along the
trajectories of system (8). Hence, we can conclude that
E(P ) is a stability region for system (8) which means
that for any ξ(0) ∈ E(P ), the corresponding trajectory
converges asymptotically to the origin.�

Theorem 1 provides stability conditions for the system
(8) in a local context. Considering the global stability, the
following corollary can be stated.

Corollary 1: If there exist a symmetric positive definite
matrix W ∈ <(n+nc)×(n+nc), a diagonal positive definite
matrix S ∈ <m×m and a matrixZ ∈ <nc×m satisfying:





W −WK
′ −WA

′

−KW 2S SB
′ + Z ′

R
′

−AW BS + RZ W



 > 0 (19)

then, forEc = ZS−1, system (8) is globally asymptotically
stable.

Proof: ConsiderG = K. It follows that (11) is verified
for all ξ ∈ <n+nc . In this case, (19) corresponds to (13)
and the global asymptotic stability follows.�

It should be recalled that the global stability can be
achieved only when the matrixA has all its eigenvalues
in the closed unit disc [16]. Hence, the global stability
condition proposed in the Corollary 1 should be used only
whenA satisfies this assumption. Otherwise, only the local
stability can be ensured.

Remark 1:The results in [11] for the continuous-time
case are stated considering a classical sector condition:

ψ(Kξ)′T [ψ(Kξ) − ΛKξ] ≤ 0, ∀ξ ∈ S(K, uλ
0 ) (20)

whereΛ is a positive diagonal matrix and the setS(K, uλ
0 )

is a polyhedral set defined as follows:

S(K, uλ
0 ) = {ξ ∈ <n+nc ;−uλ

0 � Kξ � uλ
0} (21)

with uλ
0(i)

4
=

u0(i)

1−Λ(i,i)
, i = 1, ...,m

Considering this sector condition and following a similar
procedure to the one applied in the proof of Theorem 1,
the following conditions are obtained for the discrete-time
case:





W −WK
′Λ −WA

′

−ΛKW 2S SB
′ + Z ′

R
′

−AW BS + RZ W



 > 0 (22)

[

W (1 − Λ(i,i))WK
′

(i)

(1 − Λ(i,i))K(i)W γu2
0(i)

]

≥ 0 (23)

0 < Λ(i,i) ≤ 1, i = 1, ...,m

Note that these matrix inequalities are bilinear in variables
W and Λ. It is easy to see that (22) and (23) correspond
to the conditions of Theorem 1 by takingG = ΛK.
Hence all the solutions obtained considering (22) and (23)

are also feasible solutions for (13) and (14) which means
that the new proposed condition is more generic and less
conservative than the classical one. On the other hand, note
that in (1) it appears a constantγ and, in this case, the
domain of stability corresponds to a setE(P, γ−1) = {ξ ∈
<n+nc ; ξ′Pξ ≤ γ−1}. Considering the result obtained
with the new sector condition,γ can be normalized as1
without loss of generality.

IV. N UMERICAL ANTI-WINDUP GAIN DESIGN

Based on the result stated in Theorem 1, in this section
we aim to present a numerical procedure in order to solve
Problem 1. The main idea is to obtain an anti-windup gain
matrix that ensures the local stability of the closed-loop
system in a region of the state space<n+nc . We are then
interested in one of the following cases:

1) A set of admissible initial conditions,Ξ0 ⊂ <n+nc ,
for which asymptotic stability must be ensured, is
given. In this case,Ec should be computed in order
to ensure the stability in a setE(P ) containingΞ0.

2) We aim to design the anti-windup gain in order
to maximize the estimate of the basin of attraction
associated to it. In other words, we want to compute
Ec such that the associated region of asymptotic
stability is as large as possible considering some size
criterion.

Both cases can be addressed if we consider a setΞ0 with
a given shape and a scaling factorβ. For example, letΞ0

be defined as a polyhedral set described by its vertices:

Ξ0
4
= Co{vr ∈ <n+nc ; r = 1, . . . , nr}

Recalling Theorem 1, we aim at searching for matrices
W , Y , S, Z in order to satisfy

β Ξ0 ⊂ E(P ) (24)

In case 1, mentioned above, this problem reduces to a
feasibility problem withβ = 1 whereas in case 2, the goal
will be to maximizeβ. Note that in the last case,Ξ0 defines
the directions in which we want to maximizeE(P ). The
problem of maximizingβ can be accomplished by solving
the following optimization problem:

min
W,Z,S,Y,µ

µ

subject to

(i)





W −Y ′ −WA
′

−Y 2S SB
′ + Z ′

R
′

−AW BS + RZ W



 > 0

(ii)

[

W WK
′

(i) − Y ′

(i)

K(i)W − Y(i) u2
0(i)

]

≥ 0,

i = 1, ...,m

(iii)

[

µ v′r
vr W

]

≥ 0 , r = 1, . . . , nv

(25)

Consideringβ = 1/
√
µ, the minimization ofµ implies

the maximization ofβ. The satisfaction of the inclusion
relation (24) is ensured by the LMI(iii). Note that (25) is
an eigenvalue problem[18].



A. Gain Constraints

A constraint of anti-windup gain limitation can be added
to the optimization problem (25) as follows. Note that, since
Ec = ZS−1 it follows thatEc(i,j) = Z(i,j)S

−1
(j,j). Hence, if

[

S(j,j)σ Z(i,j)

Z(i,j) S(j,j)

]

≥ 0

by the Schur’s complement one has

σ − Z(i,j)S
−1
(j,j)Z(i,j)S

−1
(j,j) ≥ 0

which ensures that(Ec(i,j))
2 ≤ σ

By the same reasoning, structural constraints onEc can
be taken into account in (25) by fixing some of the elements
of matrix Z(i,j) as zero.

V. I LLUSTRATIVE EXAMPLES

Example 1:Consider the following linear open-loop un-
stable system:

x(t+ 1) = 1.2x(t) + u(t)
y(t) = x(t)

and the stabilizing PI controller

xc(t+ 1) = xc(t) − 0.05y(t)
vc(t) = xc(t) − y(t)
u(t) = sat(vc(t))

Let the shape setΞ0 be defined by as a square region in
the space<2:

Ξ0 = Co{
[

1
1

]

;

[

1
−1

]

;

[

−1
1

]

;

[

−1
−1

]

}

Considering, the control boundu0 = 1 and a scaling
factor β, we aim to compute an anti-windup gainEc in
order to obtain a region of stabilityβΞ0 ⊂ E(P ) with β as
large as possible.

Using the optimization problem (25), the obtained opti-
mal solution isβ = 1.9165 with

P =

[

0.0497 −0.0377
−0.0377 0.1472

]

andEc = 0.0920

The figure 1 depicts several trajectories of the closed-
loop system as an attempt to illustrate its basin of attraction.
Regarding the state of the plant, it can be seen that the do-
main of stability is confined to the intervalx(0) ∈ (−5, 5).
In fact, the closed-loop system presents two additional

equilibrium points in±
[

5
1.2814

]

.

On the other hand, the ellipsoidal estimate includes points
that are close to the boundaries of the basin of attraction,
especially in the direction of the state of the plant, thus
providing a reasonable estimate of the basin of attraction.
In this regard, it is important to remark that the optimization
criterion and the choice ofΞ0 are degrees of freedom that
influence the ellipsoidal estimate of the basin of attraction.

It should be pointed out that without anti-windup gain
(i.e., Ec = 0) the maximal value ofβ is 1.7562 which is
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Fig. 1. stability region and trajectories forEc = 0.0920

−6 −4 −2 0 2 4 6
−8

−6

−4

−2

0

2

4

6

8

x

xc

a 
b 

c 

e 

d 

Fig. 2. a: domain obtained withEc = 0.0920; b: domain obtained with
Ec = 0; c: domain obtained with the classical sector condition; d:S; e:
region of linearity

smaller than the previous one. On the other hand, if we
consider the classical sector condition one obtainsEc =
−0.0011 andβ = 1.5729, which shows that the proposed
approach is less conservative.

The obtained domains of stability are shown in figure
2. The ellipsoidal estimates of the domain of stability
are seen to span beyond the region of linearity meaning
that saturation does effectively occur for certain initial
conditions inside the estimated domain of stability.

Example 2:Consider the model of an aircraft borrowed
from [19]. The matrices of the discrete-time system ob-
tained with a sampling period of0.001s are the following:

A =





1.0000 0.0010 0.0000
0 0.9992 0.0432
0 0.0010 0.9987



 ;

B =





−0.0000 −0.0000
−0.0172 −0.0016
−0.0002 −0.0003



 ; C =

[

1 0 0
0 1 0

]



The matrixA has unstable eigenvalues. The following
matrices corresponds to a stabilizing controller.

Ac = −0.0087 ; Bc =
[

2.2633 −0.3088
]

;

Cc =

[

−173.4958
−17.5120

]

; Dc =

[

393.2203 −53.3798
38.6827 −5.4587

]

Consider now the control bounds given byu0 =

[

200
300

]

and the shape set defined as an hypercube in the space
defined by the states of the plant:

Ξ0 = {









1
1
1
0









,









1
−1
1
0









,









1
1
−1
0









,









1
−1
−1
0









}

Solving (25) with the data above one obtains:

Ec =
[

0.0052 0.0004
]

; β = 3.0801

On the other hand, considering a similar optimization
problem based on conditions (22) and (23), one obtains as
optimal solutionβ = 1.7498, which corresponds only to
56.8% of the β obtained with the new proposed condition.
Furthermore, it should be pointed out that, in this case, the
solution is not directly obtained. The optimal solution for
the BMI problem has been obtained by solving interactively
LMI problems withΛ fixed.

VI. CONCLUDING REMARKS

We have provided a method to design an anti-windup
gain aiming at enlarging the region of asymptotic stabil-
ity of discrete-time linear control systems with saturated
inputs. The method considers a given output linear feed-
back designed for the original systems in the absence of
saturation, and provide a design of an anti-windup gain in
order to improve its region of asymptotic stability. Such an
improvement is always possible since the trivial solution
(zero gain) is part of the set of solutions encompassed by
the method.

Stability conditions, in both local and global contexts
have been stated. These conditions are based on the proposi-
tion of a new modified sector condition The main advantage
of the proposed approach is that the stability conditions are
directly in an LMI form. Considering a criterion associated
to the maximization of the stability region (estimate of the
basin of attraction), it is then possible to formulate the anti-
windup synthesis problem directly as a convex optimization
problem, avoiding the iterative schemes present in the

previous approaches. Furthermore, it has been shown that
the results obtained with a classical sector condition are
particular cases of the present one.
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