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Abstract: The aim of this paper is to give a novel solution to the full order anti-windup
(AW) compensation problem. The main contribution of the procedure proposed is the
reduction of the LMI optimisation problem that has generally been solved, to that of
solving a single Riccati equation. This yields a bounded-real Riccati equation where
the best performance is given by the infinity norm of the open-loop plant. This new
formulation is obtained by completing the square and the synthesis method yields a
compensator with two free parameters, simplifying the task of the designer to that of
choosing appropriate weights. The results presented here are believed to be more intuitive,
taking full adavantage of the free parameters and therefore valuable for engineering
applications. Copyright IFAC 2005
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1. INTRODUCTION
In many real life applications the control system de-
signer encounters the problem of actuator saturation.
The effects of input saturation vary from system to
system, but they are commonly detrimental to the
system’s performance and, sometimes, stability. This
problem has been tackled in many different ways,
including the design of linear controllers which di-
rectly take account of the saturation (see Saberi et al.
(1996) for example); model predictive control, where
the control constraints are incorporated into the opti-
mization procedure; and anti-windup (AW) and linear
conditioning methods (see for example Kothare et al.
(1994) and Walgama and Sternby (1993)).

Linear conditioning (or anti-windup) means augment-
ing the linear closed-loop with a certain linear transfer
function in order to change the system’s behaviour
during and immediately after saturation has occurred.
Linear conditioning is only intended as a precau-
tion for systems that enter saturation occasionally and
should not be implemented on systems that are outside
the control constraints most of the time. AW condi-
tioning schemes have been successful in coping with
the actuator saturation problem and many different
design techniques have been proposed. The standard
design procedure has two steps: first, a linear con-
troller for the nominal system without saturation is
designed. Then, AW compensation is implemented to
help the system during saturation periods. The AW
compensator is designed in such a way that it is active
only when the system undergoes saturation, modify-
ing its behaviour and helping it return to normal linear
dynamics as soon as posible. One of the main advan-
tages of AW schemes is that linear performance is not
directly restricted by the conditioning method, giving
full freedom in the design of the linear controller.
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1.1 Assumptions and Notation
The notation used in this paper is standard throughout.
The Lp norm of the time vector y(t) ∈ R

ny is denoted
as ‖y‖p and the induced Lp norm of a nonlinear
operator Y : Y1 → Y2 from one Lebesgue space to
another, as ‖Y ‖i,p. To avoid notational clutter the time
variable (t) and the Laplace argument (s) are omitted if
no confusion is believed to arise. The Euclidean norm
of the vector y(t) is given by ‖y(t)‖ =

√

y(t)′y(t).
The distance between a vector y(t) and a compact set
Y is denoted by dist(y,Y ) := in fω∈Y ‖y−w‖. R i× j

represents the space of all i× j real rational transfer
function matrices, and RH

∞ represents the space
of all real rational transfer function matrices analytic
in the closed right-half plane with supremum on the
imaginary axis.

1.2 A Decoupled Scheme
Characterising the main objective of AW compensa-
tion is subjective but the general underlying idea is
simple: a fast and smooth return to linear behaviour af-
ter saturation (Kothare et al. (1994), Teel and Kapoor
(1997)). We term this objective the true goal of anti-
windup compensation. Although many different for-
mulations have arisen (see for example Mulder et al.
(2001) and Grimm et al. (2001)) few have been able to
successfully address the true goal of AW in a general,
methodical and intuitive way.

A novel method of representing most AW schemes
using a single transfer function M(s) was first pro-
posed by Weston and Postlethwaite (1998). One of
the main contributions of this new representation was
the way in which the closed-loop compensated sys-
tem could be decoupled into linear system, nonlin-
ear loop and disturbance filter. The new decoupled
structure provides a powerful tool for analysis as it
defines an intuitive performance index and stability
can be guaranteed using the Circle Criterion. We-
ston and Postlethwaite (2000) also suggested that a



good choice of M is a coprime factorization of the
plant (G = NM−1), providing a dual representation of
anti-windup compensators to that given by Kothare et
al. (1994) (also used by Miyamoto and Vinnicombe
(1996) and Crawshaw and Vinnicombe (2000))

Turner and Postlethwaite (2004) and Turner et al.
(2004) built on the representation proposed by We-
ston and Postlethwaite (2000) and describe a design
method that guarantees stability and performance us-
ing the L2 gain as an appropriate measure. In those
papers a clear parametrisation of static, low and full
order AW compensation using M is given and design
methods based on LMI optimisation are proposed.
One of the main problems with the static and low order
schemes is that there is no guarantee that one of these
schemes will globally stabilise the plant in question. In
contrast, there always exists a full-order anti-windup
compensator which globally stabilises a linear control
system with saturation, providing the plant is open-
loop stable. However as the full-order design method
in Turner et al. (2004) is based on LMI’s the procedure
may suffer from numerical errors due to bad initialisa-
tion of the LMI, fast poles or large order systems. In
addition, it does not take full advantage of a certain
free parameter, making the design more restricted.

The main goal of this paper is to simplify this LMI
formulation and obtain a new set of conditions that
guarantee stability and performance, one of which is
solving a Riccati equation. Although there are several
commercially available LMI solvers, it is believed that
the results given in this paper are an improvement,
as solving Riccati equations is a standard procedure
and implies less computational complexity and fewer
numerical errors.

2. NEW RESULTS

Even though the work of Turner and Postlethwaite
(2004) and Turner et al. (2004) described results
where stabiltity and performance are guaranteed, the
optimisation problem proposed does not take com-
plete advantage of the free parameters available and
instead these are chosen in the optimisation proce-
dure. In Turner et al. (2003) results are given for
the synthesis of full-order AW compensators, but the
procedure proposed there exhibited no clear advan-
tages over static or low-order compenstor synthesis.
On the contrary, the extra states added to the closed-
loop compensated system makes this type of compen-
sation unattractive. This paper will develop a new de-
sign method for full-order AW compensators based on
the results given in Turner and Postlethwaite (2004).
The solution here obtained reduces the computational
complexity of the previous LMI formulation of Turner
et al. (2004) and yields a solution where full advantage
of the free design parameters is taken.

2.1 Problem Formulation

Consider the stabilisable, detectable and finite di-
mensional linear-time-invariant (FDLTI) plant G. The
plant’s dynamics subject to input saturation are given
by:

G(s) ∼

{

ẋ = Ax+Bum
y = Cx+Dum

(1)
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Fig. 1. Generic Anti-Windup scheme
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Fig. 2. Conditioning with M(s)

with x ∈ R
np , um ∈ R

m and y ∈ R
q. For simplicity

disturbances are not considered although they can
easily be accounted for (see Turner and Postlethwaite
(2004)). In order to state global results, it is necessary
to assume that the plant G is stable i.e. G(s) ∈ RH

∞.
The need for this assumption will become clear later
in the solution of the problem. The plant input um is
given by the nonlinear saturation function where:

sat(u) = [sat1(u1), . . . ,satm(um)]

and sati(ui) = sign(ui) × min{|ui|, ūi}, where ūi >

0 ∀i ∈ {1, . . . ,m}. If there is no saturation present,
sat(u) = u, then the nominal linear closed-loop dy-
namics govern the system. It is also necessary to de-
fine the nonlinear deadzone function, Dz(.). For sim-
plicity, define a compact set U ⊂ R

m:

U := [−ū1, ū1]× . . .× [−ūm, ūm]

Now define the deadzone function as:

Dz(u) = u− sat(u) (2)

Notice that ∀u ∈ U , Dz(u) = 0. The fact that Dz(.)
belongs to the Sector[0, I] is of great importance for
the results stated here.

Definition 1. The decentralised nonlinearity N =
diag(η1, . . . ,ηm) is said to belong to Sector[0, I] if the
following inequality holds:

η1(ui)
2 ≤ ηi(ui)ui ≤ u2

i ∀ i ∈ {1, . . . ,m} (3)

This definition will later allow us to pose an H∞-
type optimization problem formulation of the Circle
Criterion.
Figure 1 shows a generic anti-windup configuration,
where G(s) is the plant described earlier and K(s) is
the controller which has been designed to stabilise
the nominal (un-saturated) plant and achieve some
nominal performance specifications. Θ(s) is the anti-
windup compensator which only becomes active once
saturation has occurred. The compensator has two sets
of outputs, θ1 = ud ∈ R

m and θ2 = yd ∈ R
q, which en-

ter the control input and the plant output respectively.
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The anti-windup formulation of Weston and Postleth-
waite (2000) is depicted in Figure 2 where the anti-
windup compensator Θ(s) has been paramtrised by the
transfer function M(s). It is also possible, keeping all
signal labels the same and using identity (2), to trans-
form Figure 2 into Figure 3. This new representation is
significant as there is a clear decoupling of the close-
loop compensated system into nominal linear system,
nonlinear loop and disturbance filter.
Observing the decoupled system in Figure 3 it is clear
that the mapping T : ulin 7→ yd determines, in some
sense, the deviation of the nonlinear system from the
nominal linear system. It therefore follows that it is
desirable to maintain ‖T ‖i,p small in some appropri-
ate Lp norm. Since the performance index is purely
defined on the saturated system, no constraints are set
directly on the controller K. This means that for an
appropriate choice of M it is possible to ignore K.
The only consideration made is that K has been previ-
ously designed for good performance and stability of
the nominal linear plant. The following definition will
formally describe the AW problem to be considered

Definition 2. The anti-windup compensator parmetrised
by M(s), is said to solve the anti-windup problem if the
closed loop system in Figure 2 (equivalently Figure 3)
is internally stable and well-posed and the following
hold:

(1) If dist(ulin,U )= 0, ∀t ≥ 0, then yd = 0, ∀t ≥
0 (assuming zero initial conditions for M).

(2) If dist(ulin,U ) ∈ Lp, then yd ∈ Lp for some
integer p ∈ [1,∞).

The transfer function M is said to solve strongly the
anti-windup problem if, in addition, the following
condition is satisfied:

(3) The operator T : ulin 7→ yd is well-defined and
finite gain Lp stable for some integer p ∈ [1,∞).

2.2 Representing M(s)

The transfer function M in Figure 2 has to capture
the original setup proposed by the designer (full-
order, static, sub-optimal). In this paper only full order
AW compensators are studied. Observe how yd is the
system’s deviation from linear dynamics, making it
desirable to maintain it small. This means shaping
the disturbance filter frequency response in order to
reject the effects of the nonlinear input ũ. However,
since M is common for both the nonlinear loop and
the disturbance filter, trade-offs must be made when
choosing it. Notice that making M ‘small’ implies that
the output from GM will be ‘small’, meaning good

performance. Also notice that this would make the
term M − I ≈ −I, meaning that the nonlinear loop is
close to being ill-posed.

In order for lightly damped and slow poles of G not
to appear in the disturbance filter they must somehow
be cancelled by M. This suggests that a good choice
of M would be a right coprime factorisation of the
plant, G = NM−1. Notice how the disturbance filter
reduces to N and the AW compensator is independent
of the controller K. It was shown in Weston and
Postlethwaite (2000) that a suitable representation for
M and N, without introducing any extra states, is:

[

Θ1
Θ2

]

=

[

M− I
N

]

=

{

ẋ = (A+BF)x+Bũ
ud = Fx
yd = (C +DF)x+Dũ

(4)

where F is a free parameter and A + BF must be
Hurwitz.

2.3 Stability and Performance Analysis

The problem of stability and performance is addressed
by minimizing T : ulin 7→ yd for a certain Lp norm.
For the case of p = 2, the problem can be expressed as
that of finding the minimum γ > 0 such that ‖T ‖i,2 ≤
γ . The following procedure not only allows the syn-
thesis of an optimal compensator, but also ensures
stability and gives a measure of global performance if
the plant G is assumed asymptotically stable. It is now
possible to present sufficient conditions which ensure
a finite L2 performance gain of the AW compensator.

Theorem 3. There exists a full order anti-windup
compensator Θ = [Θ′

1 Θ′
2]
′ ∈ R(m+q)×m, as stated in

(4), which solves strongly the anti-windup problem for
the case of p = 2 if there exist matrices P = PT > 0,
W = diag(ω1, . . . ,ωm) > 0 and a postive real scalar γ
such that the following Ricatti equation is satisfied

Ã′P+PÃ+PBR−1B′P+ Q̃ = 0 (5)

where

Ã = A+BR−1D′C (6)

Q̃ = C′(I +DR−1D′)C (7)

R = (γ2I +D′D) > 0 (8)

and
Z = (2W −D′D− γ−2W 2) > 0 (9)

Furthermore, if equation (5) is satisfied, a suitable Θ
achieving ‖T ‖i,2 < γ is obtained by calculating the
matrix gain F as follows:

F = −γ2R−1(W−1 − γ−2)(B′P+D′C) (10)

Proof: Notice that in order to solve strongly the AW
compensation problem, it is necessary to meet the con-
ditions stated in Definition 2. It is easy to observe that
the first two conditons are trivially met if internal sta-
bility of the closed-loop compensated system is guar-
anteed, assuming zero initial conditions for the AW
compensator. As will be shown later, by choosing F
as described in Theorem 1, it is possible to guarantee
that ‖T ‖i,2 < γ for any γ > ‖G‖∞, therefore solving
strongly the AW compensation problem.
For algebraic simplicity, consider the case where D =



0 (the proof when D 6= 0 involves much more algebra
and hence for space reasons is omitted). Note that as
Dz(.) ∈ Sector[0, I],

ũiui ≥ ũ2
i , ∀i ∈ {1, . . . ,m} (11)

From this it follows that for some matrix W =
diag(w1, . . . ,wm) > 0

ũ′W (u− ũ) ≥ 0 (12)

Next assume ∃v(x) = x′Px > 0, then if

L(x,ulin, ũ,F,W ) :=
d
dt

x′Px+‖yd‖
2 − γ2‖ulin‖

2

+ ũ′W (u− ũ) (13)

is negative definite, it follows that v̇(x) < 0 is a Lya-
punov inequality and the closed loop system is stable.
Also notice that if L(x,ulin, ũ,F,W ) < 0, integrating
L from 0 to T and taking the limit when T → ∞
yields ‖yd‖2 < γ‖ulin‖2 and hence ‖T ‖i,2 < γ . To
summarise, if equation (13) is negative definite, the
anti-windup problem is solved in the L2 sense. Eval-
uating equation (13) results in an inequality contain-
ing several cross terms in ũ, ulin, and x. In order to
overcome this problem (if an LMI formulation is to be
avoided) it is necessary to complete the square several
times.
Definition 4. Completing the square refers to the fact
that

(αx−α−1y)′(αx−α−1y) = α2x′x+α−2y′y− x′y− y′x

so that cross-product terms can be expressed as a
difference between squares.

Expanding (13) and substituting u = ulin −ud gives

L = x′C′Cx− γ2u′linulin + ẋ′Px+ x′Pẋ− ũ′Wud −u′dWũ

−2ũ′Wũ+ ũ′Wulin +u′linWũ < 0 (14)

We now eliminate the cross-product terms in three
steps.
(I) Cross-product terms involving ulin and ũ are
grouped as follows:

−
[

γ2u′linulin − ũ′Wulin −u′linWũ
]

= −(γulin −

γ−1Wũ)′(γulin − γ−1Wũ)+ γ−2ũ′W 2ũ

Combining the above with (14), a cost function con-
taining no cross-product terms between ulin and ũ is
obtained. Using equation (4) to expand ẋ and noticing
that ud = Fx:

L=x′(C′C+A′P+PA+F ′B′P+PBF)x+ ũ′(B′P−WF)x+
x′(PB−F ′W )ũ− ũ′(2W − γ−2W 2)ũ− (γulin −

γ−1Wũ)′(γulin − γ−1Wũ) ≤ 0

(II) Cross-Product terms involving ũ and x are grouped,
including the extra term γ−2ũ′W 2ũ from (I), as fol-
lows:

−
[

ũ′(2W−γ−2W 2)ũ−ũ′(B′P−WF)x−x′(B′P−WF)′ũ
]

= −(Z
1
2 ũ−Z− 1

2 (B′P−WF)x)′(Z
1
2 ũ−Z− 1

2 (B′P−

WF)x)+ x′(B′P−WF)′Z−1(B′P−WF)x (15)

Note that Z = (2W −γ−2W 2) must be positive definite
in order to have a well-posed problem. This condition
arises from the necessity of making the term

(Z
1
2 ũ−Z− 1

2 (B′P−WF)x)′(Z
1
2 ũ−Z− 1

2 (B′P−WF)x)

negative for any pair (ũ, x). It can easily be shown that
if Z ≤ 0, this is not always guaranteed. By replacing
this new group of terms, a new cost function is ob-
tained. This cost function has no cross-product terms
between ũ and x.

L = x′(C′C+A′P+PA+F ′B′P+PBF +PBZ−1B′P−
PBZ−1WF −F ′WZ−1B′P+F ′WZ−1WF)x

−(Z
1
2 ũ−Z− 1

2 (B′P−WF)x)′(Z
1
2 ũ−Z− 1

2 (B′P−
WF)x)− (γulin − γ−1Wũ)′(γulin − γ−1Wũ) ≤ 0

(III) Terms involving F and F ′F are grouped:
F ′WZ−1WF − (WZ−1B′P−B′P)′F −F ′(WZ−1B′P−B′P) =

(Z
−1
2 WF −Z

1
2 W−1(WZ−1 − I)B′P)′(Z

−1
2 WF −Z

1
2 W−1(WZ−1 −

I)B′P)−PB(WZ−1 − I)′W−1ZW−1(WZ−1 − I)B′P
This last step will yield an expression for the matrix
gain F .
Finally, by using the results given in (III) we obtain
an expression for our cost function (13) as

L(x,ulin, ũ,F,W ) = La +Lb +Lc (16)

where

La=x′(C′C +A′P+PA+PBZ−1B′P−

PB(WZ−1 − I)′W−1ZW−1(WZ−1 − I)B′P)x (17)

Lb=+x′(Z− 1
2 WF −Z

1
2 W−1(WZ−1 − I)B′P)′×

(Z− 1
2 WF −Z

1
2 W−1(WZ−1 − I)B′P)x (18)

Lc=−(Z
1
2 ũ−Z− 1

2 (B′P−WF)x)′×

(Z
1
2 ũ−Z− 1

2 (B′P−WF)x)

−(γulin − γ−1Wũ)′(γulin − γ−1Wũ) (19)

Equation (16) is comprised of three terms. The last
term Lc is a negative definite quadratic term. Therefore
if the first two terms can be set to zero, then L(.) < 0.
Setting the second term, Lb, to zero yields a condition
for the gain matrix F .

(Z− 1
2 WF −Z

1
2 W−1(WZ−1 − I)B′P) = 0 (20)

F = (γ−2 −W−1)B′P (21)

where P = PT > 0 comes from solving the Ricatti
equation which makes the first term La = 0:

C′C +A′P+PA+PBZ−1B′P−

PB(WZ−1 − I)′W−1ZW−1(WZ−1 − I)B′P = 0 (22)

which, after some algebraic manipulation, reduces to:

C′C +A′P+PA+ γ−2PBB′P = 0 (23)

These are exactly the conditions given in the theorem
(with Dp = 0). Internal stability guarantees part (1) of
the anti-windup problem is satisfied; the finite L2 gain
of T ensures part (3) is satisfied, and hence part
(2) is also satisfied. Well-posedness of the loop is
guaranteed by the lack of direct feedthrough terms i.e.
M− I is strictly proper. This shows that the strong AW
problem has been solved ��

Remark 1: Notice that the Riccati equation given is
of bounded-real type and only has a solution if G(s) is
stable and for any γ such that ‖G‖∞ = γopt ≤ γ . That is,
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Fig. 4. Output response of missile (nominal linear)

the performance level of the anti-windup compensator
is given by the H∞ norm of the open-loop plant.
This suggests that optimal anti-windup performance is
obtained when γ = γopt , leaving the designer the task
of choosing W > 0. This freedom in choosing W is
absent in Turner et al. (2004) and (Mulder et al. 2001)
and hence we have recovered freedom in choosing the
so-called stability multiplier.

3. EXAMPLE

In this section the effectiveness of the results are
shown through an example from the literature. The
example is that of a missile auto-pilot introduced by
Rodriguez and Cloutier (1994) and used by Turner
and Postlethwaite (2004) and Romanchuk (1999). The
plant is a simplified model of the dynamics of the roll-
yaw channels of a bank-to-turn misile.

Ap =

[

−0.818 −0.999 0.349
80.29 −0.579 0.009
−2734 0.05621 −2.10

]

,

Bp =

[

0.147 0.012
−194.4 37.61
−2716 −1093

]

, Bpd =

[

0 0
0 0
0 0

]

Cp =

[

1 0 0
0 1 0

]

, Dp = Dpd =

[

0 0
0 0

]

A nominal linear LQG/LTR controller yields excellent
nominal closed loop time and frequency responses and
is given by

[

Ac Bc Bcr
Cc Dc Dcr

]

=

[

Ac1 Bc1 0 0
0 0 −I I

Cc1 0 0 0

]

(24)

where

Ac1 =











−0.29 −107.8 6.67 −2.58 −0.4
107.68 −97.81 63.95 −4.52 −5.35
−6.72 64.82 −54.19 −40.79 5.11
3.21 2.1 29.56 −631.15 429.89
0.36 −3.39 3.09 −460.03 −0.74











,

Bc1 =











2.28 0.48
−40.75 2.13
18.47 −0.22
−2.07 −44.68
−0.98 −1.18











Cc1 =

[

0.86 8.54 −1.71 43.91 1.12
2.17 39.91 −18.39 −8.51 1.03

]

The actuators have saturation limits of ±8 in both
channels
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Fig. 5. Control response of missile (nominal linear)
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Fig. 6. Output response of missile (saturation, no AW)
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Fig. 7. Control response of missile (saturation, no AW)

Figures 4 and 5 show the nominal linear response of
the missile for a pulse r = [ 4.2 −4.2 ]. Notice the sys-
tem’s excellent response and decoupled outputs. How-
ever, observe how the control signal is outside the set
U = Co{(8,8),(−8,8),(−8,−8),(8,−8)} for some
time. This suggests that the system with saturated ac-
tuators might have poor performance and may even
be unstable. Figures 6 and 7 confirm this and show
clearly how the system loses its decoupling properties.

Figure 8 shows the missile response with the full or-
der AW compensation proposed in this paper. Notice
the improvement over the uncompensated response:
the saturated system now tends to follow the linear
response closely and the return to nominal linear dy-
namics is swift. Notice how, after saturation i.e. u−
sat(u) = 0, the system displays some additional dy-
namics introduced by the AW compensator. This sug-
gests that the AW compensator must have fast and well
damped poles.

Figure 9 shows the output response of the missile
when the reference amplitude has been increased to 10
in the first channel and a 3-2-1 type demand in both
channels. Notice that without AW, tracking ability is
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Fig. 9. Output response of missile for 3-2-1 type input:
saturation and no anti-windup
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Fig. 10. Output response of missile for 3-2-1 type in-
put: −saturation and full-order AW; −−nominal
linear

completely lost and stability is barely maintained. Fig-
ure 10 shows the performance improvement which is
obtained using the suggested compensator: although
the tracking objectives are unobtainable, the qualitita-
tive response of the system remains close to that of the
linear system.

From (21) and the real bounded lemma it is possible
to conclude that γ ≥ ‖G(s)‖∞ = γopt .This suggests
that optimal performance is obtained when γ = γopt ,
leaving the designer with the task of choosing W .
Observe from equation (4) that M(s) is a function of
F , and consequently the size of the control signal ud
and the compensator dynamics are affected by it. The
poles of the AW compensator, i.e. eig(A + BF), are
a function of F and therefore increasing the size of
F (decreasing W ), increases the control signal ud and
yields a compensator with faster dynamics.
Having fast poles is of no concern in continuous time
aplications. However, in simulation and implementa-
tion, time is discretised and the sampling rate becomes
of great importance. If the poles of the AW com-

pensator are faster than the sampling rate, numerical
errors are likely. In this case, W can be chosen large in
order to reduce the size of the poles and avoid possible
numerical errors introduced when discretising.

4. CONCLUSIONS

This paper has presented an alternative solution to the
full-order AW problem. The solution given is novel
in the sense that most other full-order AW design
techniques which ensure stability and performance
involve LMI’s (see Grimm et al. (2001) for a general
treatment): here we simply require the solution to a
bounded real type of Riccati equation. The solution
is also believed to be more intuitive because the free
parameter, W > 0 is clearly linked to the poles of
the anti-windup compensator, which has important
practical relevance.

Further work may consider reducing the number of
states of ‘full order’ AW compensators, which are not
always implementable in problems with a large num-
ber of states. A possible way of obtaining a reduced
order compensator may include using conventional
model reduction methods on the nominal plant before
using the design process proposed in this paper. This
implies that the existing method must be modified so
as to take account of the ‘uncertainties’ introduced
when reducing the model.
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