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This study presents a noninvasive visual sensing enhancing system for skin lesion segmentation. According to the Skin Cancer
Foundation, skin cancer kills more than two people every hour in the United States, and one in every five Americans will develop
the disease. Skin cancer is becoming more popular, so the need for skin cancer diagnosis is increasing, particularly for melanoma,
which has a high metastasis rate. Many traditional algorithms, as well as a computer-aided diagnosis tool, have been implemented
in dermoscopic images for skin lesion segmentation to meet this need. However, the accuracy of the model is low, and the
prognosis time is lengthy. This paper presents antialiasing attention spatial convolution (AASC) to segment melanoma skin
lesions in dermoscopic images. Such a system can enhance the existing Medical IoT (MIoT) applications and provide third-party
clues for medical examiners. Empirical results show that the AASC performs well when it is able to overcome dermoscopic
limitations such as thick hair, low contrast, or shape and color distortion. The model was evaluated strictly under many statistical
evaluation metrics such as the Jaccard index, Recall, Precision, F1 score, and Dice coefficient. The performance of the AASC was
trained and tested. Remarkably, the AASC model yielded the highest scores in both three databases compared with the state-of-

the-art models across three datasets: ISIC 2016, ISIC 2017, and PH2.

1. Introduction

The advances in the Internet of Things and biomedical signal
processing have spurred the development of the Medical
Internet of Things (Medical IoT or MIoT). More and more
healthcare monitoring and diagnosis rely on MIoT devices.
Recent machine learning techniques such as deep learning
have subsequently enhanced the practicability of the MioT.
Medical researchers and scientists can utilize such tech-
niques to discover hidden factors, subsequently helping
more patients. In 2020, there were nearly 10 million deaths
from cancer according to the WHO (World Health Orga-
nization). In the US, more than 600000 deaths in 1.8 million
diagnoses are estimated [1]. The fees for cancer treatment
have nearly doubled in the last two decades in the US [2].

This could say that cancer is one of the leading causes of
death worldwide. All of these statistics compel experts to
find a way to reduce cancer risks. In truth, they have statistics
on five stages of cancer, including stage 0, stage I (the early
stage), stage II, stage III, and stage IV. In addition, the
experts clearly show that cancer victims have a high survival
rate if they are properly diagnosed as soon as possible in the
early stages when the cancer is small and only in one area.
Most researchers then started on early cancer detection as
the first priority to control cancer.

To find solutions for the most dangerous cancers, the
American Cancer Society compiled a list of cancer inci-
dences last year, and the most common type of cancer is
melanoma with 100,350 new cases and 6.850 deaths. In fact,
the Skin Cancer Foundation predicted one out of every five
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Americans by the age of 70 will develop skin cancer. Every
hour, more than two people in the United States die from
skin cancer. However, melanoma has a 99 percent five-year
survival rate when detected early. Thus, melanoma detection
is critical for decreasing the threat to patients with skin
cancer. There is a popular method to examine the skin
through skin surface microscopy called dermoscopy which is
mainly applied to the evaluation of pigmented skin lesions.
Dermatologists, based on selected information from der-
moscopy, can diagnose melanoma easily. To generate a high
efficiency for this method, magnifying lenses and lights must
be of sufficient quality because different light powers or
hand-held devices may return unexpected image quality in a
dermoscopy process, such as blur, loss of features, and so on.
Furthermore, only trained physicians could analyze pre-
cisely the dermoscopy dataset because it is entirely depen-
dent on the visual acuity of the practitioner as well as their
specialized knowledge. Overall, dermoscopy only could be
used efliciently if it satisfies both conditions about technique
equipment, lights, and experts.

Computer-aided diagnosis (CAD), a new solution, could
detect automatically and diagnose melanoma efficiently
without the experienced hands. CAD integrates elements of
artificial intelligence and computer vision with image pro-
cessing in radiology and pathology to improve radiologist
performance [3]. Recent sensing technology [4-6], such as
the medical Internet of Things and body sensor networks,
also enhanced CAD. Piccolo et al. demonstrated that CAD
was a useful tool for diagnosing melanoma compared with
an inexperienced clinician [7]. More carefully, their study
also exemplified sensitivity evaluation for the CAD, which
achieved an accuracy rate of 92% compared with 69% in the
evaluation for inexperienced clinicians. Because of the
convenience and high accuracy, some algorithms based on
the CAD were public for predicted diseases.

In this article, we propose the antialiasing attention
spatial convolutional model (AASC) to segment automatic
melanoma for skin lesions. A representation of the model is
described in Figure 1. The AASC consists of the encoder and
decoder sides. To indicate the location and strength of input
features at the encoder, we designed a layer with double
convolution that could simultaneously learn a huge number
of filters from the input dataset automatically. Additionally,
before the downsampling step, an attention module is added
to the encoder to remark the signature features in the input
dataset and remind the model to save these features during
the training time. Antialiasing technique is proposed to
reduce the dimension of the image and maintain shift-
equivariance. At the decoder, the Pyramid Max Pooling
Module (PMP) is considered a highlight for improving
accuracy of the model. In fact, the module separates each
input feature into four different sizes to decide the most
important features and forward them to the next step.
Furthermore, a skip connection is used to minimize the loss
of information during down- and upsampling. To evaluate
loss of the model, binary cross entropy is applied during
training and testing. The preprocessing assistance is helpful
in increasing the performance and removing the overfitting
problem. For the preprocessing, we resized the input image
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dimension first and then used blur Gaussian to make the
calculation process easier. Simultaneously, to overcome the
constraint of the number of input images, horizontal and
vertical flips and random rotation were used. As a result, the
number of images has increased fourfold. Some optimiza-
tion parameters were also checked and set up in the AASC
model, such as a weight decay of 0.0005, a kernel regularizer
of 0.0006, and a learning rate of 0.003. Finally, to check the
true efliciency of the AASC model, we run the model in three
different databases, namely ISIC 2016, ISIC 2017, and PH2,
and evaluate the result under a variety of metrics such as
recall, precision, accuracy, F1 score, Dice coefficients, and
Jaccard indexes.

The rest of this paper is organized as follows. Section 2.1.
gives an overview of the traditional algorithms for skin
segmentation. Section 2.2. then describes the CAD systems.
Section 2.3. introduces the proposed attention spatial model.
Next, Section 3 summarizes the performance of the pro-
posed method and the analytic results. Conclusion is finally
drawn in Section 4.

2. Related Work

2.1. Traditional Algorithms for Skin Segmentation. In the
early days, Principal component analysis, Markov Chains, or
Otsu Algorithm, K-means clustering, Fuzzy C-means
clustering were used for skin segmentation. Firstly, principal
component analysis (PCA) applies some sort of transfor-
mation on a large set of variables of the original image data
to condense information at a new set of fewer variables [8].
The main advantage of such a technique is that details not
apparent in false color composite images can be highlighted
in one of the component images that result. OLugbara [9]
revealed that the skin lesion could be identified correctly
through the PCA. However, the range between lesion and
background was unclear, which caused mistakes in the
diagnosis.

In view of the limitations of PCA, a Markov chain (MC)
has been proposed for segmenting features of interest and
shapes [10]. In comparison to conventional methods, the
MC technique develops novel efficient methods for shape
and texture segmentation resulting in higher accuracy and
economical solutions. Although the MC algorithm out-
performed the PCA algorithms, the segmentation generated
by the MC algorithm has heterogeneous areas and fuzzy
borders that highlight a part. As a result, healthy skin may be
segmented as a skin lesion.

Continually, Otsu Algorithms [11], K-means clustering
[12], and Fuzzy C-means clustering [13] are closely related
for binary segmentation, but their performance for skin
lesion segmentation is poor in the condition of a variety of
skin types and minimal healthy skin. General cons of these
algorithms must set parameters independently in each
dataset, resulting in a limited application range.

2.2. CAD Systems. The CAD was presented in the intro-
duction part and is highly recommended for skin seg-
mentation in general and for melanoma segmentation in
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FIGURE 1: The pictorial representation of the proposed AASC model.

particular. The CAD system is mainly based on computer
vision algorithms such as classification [14], detection
[15, 16], and recognition [17-19]. At the International Skin
Imaging Challenge (ISIC) of recent years, many methods
based on the CAD were designed and evaluated as the top
leader board for skin cancer segmentation. For example, in
the ISIC 2016 dataset, the performance of Inception-v3 and
Vgg-16 for skin lesion segmentation was evaluated, with the
highest performance being around 61.6 percent and 69.3
percent testing accuracy, respectively [20]. Besides, Unet
model can be run with fewer layers (total 23 convolutional
layers) and training samples while still producing accurate
segmentation results, and then it quickly became popular
with many updated versions. The combination of Unet and
Recurrent Residual Convolutional Neural Network
(RRCNN) for skin cancer segmentation in ISIC 2017
achieved higher performance than SegNets and Residual
Unet (ResUNets). In the following year, U-net34 ran on ISIC
dataset 2018 for Melanoma segmentation with the average
Jaccard index of 85,39%, and this result compared against
the top-ranked team of 76,5% [21]. The U-net34 combines
insight Unet decode and a pretrained Resnet34 as the Unet
encode. The Resnet34 is made up of the initial convolutional
layer, 16 blocks, and a fully connected layer. It is noticeable
that the pretrained Resnet34 significantly improved the
performance of the model. Another version of Unet was
named LadderNet including a number of encoder-decoder
paths [22]. In addition, a skip connection has been built into
the adjacent decoder to save information from the encoder
to the decoder.

In 2019, FucusNet presents the other Unet version,
which includes multiple Unet models running in parallel,
with the feature maps from the first decoding unit in the
Unet associated with the components of the second
encoding unit of Unet [23]. This model outperformed the
Unet and ResUnet models in the 2017 skin cancer seg-
mentation challenge. Last year, Kashan Zafar introduced

UResNet-50 with 50 layers which contained ResNet archi-
tecture at the contracting path and Unet architecture at the
expensive path [24]. The UResNet-50 performed well, with
Jaccard Indexes of 77.2 and 85.4 percent on the ISIC 2017
and PH2 datasets, respectively, when compared to other
architectures like the Mask-RCNN [25] and Deep labV3+
[26]. Actually, the Mask-RCNN is highly recommended for
image segmentation because it includes an additional brand
for predicting masks pixel by pixel and three outputs such as
object segmentation, a class name, and a bounding box.
Deeplabv3 is impressive by combining Atrous Spatial Pyr-
amid Pooling (ASSP) for encoding multiscale contextual
information and Encoder-Decoder Architecture for recov-
ering both location and spatial information. Regrettably,
Mask-RCNN and Deeplabv3 only attained the Jaccard in-
dexes of 83% and 81.4% in the PH2 dataset, lower than that
of UResNet-50. Based on previous research, we can conclude
that the Unet model, i.e., its modified models, distributed
significantly to segment skin cancer. However, some models
were implemented without performing prepost processing
on the input images causing a lack of responsiveness to
sensitivity metric evaluation. Furthermore, running a par-
allel model may easily result in an overfitting problem.
Opverfitting is regarded as a major issue in medical databases
due to the use of fewer datasets on the deeper model.

2.3. Antialiasing Attention Spatial Convolution Model
(AASC). The preceding analysis demonstrates that many
previous architectures, such as Unet, Fusion net, and Res-
Unet, were successful for skin image segmentation, which
includes two paths: encoding and decoding. In this study,
AASC was also designed with an encoder and decoder
approach. Instead of using available convolutional layers as
in the previous versions, this encoding unit consists of re-
construction of convolution, attention module, and sub-
sampling operations. Furthermore, the decoder unit was



implemented with a combination of atrous convolution
layers at the PPM module in different sizes, convolution
transpose, and several convolutional layers with a resolution
of 256 x 256 pixels set as the input images. The output of the
network is binary segmentation masks such as melanoma
areas and backgrounds. For this purpose, the AASC model
was trained and evaluated in three databases, namely ISIC
2016, ISIC 2017, and PH2. The AASC model architecture is
shown in Figure 1.

On the encoding path, after receiving the input dataset,
the convolutional block (C_Block) with two convolutional
layers available in Keras library (Conv2D) set up corre-
sponding parameters such as a stride (s) of 1, weight decay
(w) of 0.0005, kernel regularizer (r) of 0.0006, a kernel (k) of
3 x 3 as shown in Figure 2.

Next, the attention module (A_module) is applied to
concentrate on the highlight features as shown in Figure 3.
Spatial information is complementary to channel infor-
mation based on the A_module. It is meaningful to em-
phasize the position and the information of objects.
Applying Global Average Pooling and Global Max Pooling
along the channel axis and concatenating them generates the
spatial attention map which shows the position of objects.
The channel information map uses the two pooling oper-
ations resulting in the Global Average Pooling feature maps
and the Global Max Pooling feature maps.

The main task of the encoding is to reduces the input size
in order to make calculations simpler and to mark necessary
features. However, using pooling layers is the reason for the
variance problem. For instance, if we use Max-pooling with
kernel of 2 and stride of 2 for [0,0,1,1,0,0,1,1] as input signal,
the result will be [0,1,0,1]. This step significantly affects lost
shift-equivariance. Shifting the input and output of a
function is shift equivariant (F) as defined in (1) if the input
and output are shifted equally, so shifting and feature ex-
traction are commutative. In contrast, shift invariance is
shown in (2).

Shiftyy, o, (F (X)) = F(Shifty, o, (X))VAR Aw, (1)

F = F(Shifty u, (X))VAR, Aw.  (2)

In which, R and W represent resolutions of an image.
X € RPWS s input image and F(X) € R®WS s the
feature maps that could be rescaled to the original
resolution.

To overcome these cons, the antialiasing technique was
proposed in lieu of Max-pooling. Blur-pooling [27] is a new
pooling technique that reduces the image sizes through two
steps instead of one step, as in the traditional max-pooling
operation. The blur pooling is described in Figure 4.

In the first step, the max operation is performed densely,
which includes the Max-pooling layer with a stride of 1 and
the Blur-pooling (B_Pooling) with a stride of 2 instead of the
Max-pooling layer with a stride of 2. The second step in-
tegrates an antialiasing filter with subsampling.

In truth, each time the Blur-pooling layer is applied, the
input dimension could be halved. Besides, output features at
each Blur-pooling layer were implemented in two tasks. In
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the first task, these features are used in the next step with
C_Block and A_module. The other task is to double the size
of these features through convolution transpose
(C_Transpose), which were considered as the important
features in the decoder step. This step repeats four times
during the training process, but it is notable that the values of
the number in the filters of the attention module at each
downsampling block are different, such as 16, 32, 64, 128. As
a result, the number of channels decreases significantly, as
does the calculating process and training time. Simulta-
neously, features ranging from low-level (such as colouring,
contours, texture, and so on) to high-level (the entire shape
of the object) are thoroughly learned in this encoder side.

The inputs of the decoder side are received from the
output features of the encoder. Thus, the dimension range at
the final encoded layer is 16 x 16, which is considered as the
input of the first layer at the decoder. The primary function
of the decoder is to increase the size of images. This is also
the concerning root cause of the loss of important features
when the dimension increases significantly and rapidly, as
mentioned in previous studies. A solution is to give out a
PMP module (Figure 5) in the decoder that divides each
input into four parts so that features can be learned carefully
before increasing the dimension. The mask and background
are better and more accurately segmented through this step.

Overall, the AASC model provides superior perfor-
mance, which has already been demonstrated against Unet,
Res-Unet, Mask-R CNN, DeeplabV3+.

3. Experiment

3.1. Database. In this study, three available datasets were
used: ISIC 2016 [28], ISIC 2017 [29], and PH2 [30]. Some
examples of original datasets are shown in Figure 6.

The International Skin Imaging Collaboration (ISIC)
includes expert-labeled digital images for melanoma and
other cancer diagnostics. Every year, this organization
launches skin lesion challenges in order to improve diagnosis.
In 2016, 1279 images were public with corresponding masks
by this organization for melanoma skin lesion segmentation.
We split 1279 images into two sets: 900 images for training
and 379 images for testing. The following year, ISIC 2017,
contains 215 images, with 2000 and 150 images in training,
and testing, respectively. The third dataset, PH2, consists of 40
images of melanoma and 160 images of common and atypical
nevus. The total images were divided into two parts: 150
images for training and 50 images for testing.

3.2. Preprocessing Step. Lack of input dataset is one of the
main factors affecting nuclei segmentation. Furthermore,
the skin images were selected from various positions under
different light conditions and equipment. Some skin areas
are covered by arm and leg hair. It reduces segmentation
performance. Thus, the preprocessing step is necessary to
improve performance efficiency. Firstly, we resized the
original images to the same size (256 x 256). And then, some
augmentation techniques were suggested to increase the
number of images.
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Image Resizing: In truth, the original images have dif-
ferent sizes, such as 767 x 575, 1022 x 767, 1504 x 1129, or
2048 x 1536 that require additional computational time and
affect the efficiency as the accuracy was low. Therefore, the
input images were resized to new sizes like 256 x 256.

Gaussian Blur [31]: both objects and background are
blurred before putting it into the next steps. This reduces the
range of pixel values in the input images to simplify the
computation and avoid distraction in training.

Horizontal flip [32]: the horizontal flip considers the
simple and quick step to increase the number of images
through flipping images around a horizontal centerline. It
solutes the biggest problem in almost biomedical mathe-
matics as the limitation of the dataset.

Vertical flip [32]: instead of flipping images around a
horizontal line, the vertical flip turns around the vertical
center flip. These techniques could create many images from
one image under different views.
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Both flip [32]: both flip turns images around both
horizontally and vertically at the same time.

Random rotation [33]: based on setting the rotation, an
image could be randomly rotated to create a new image with
the same content but different shapes. Random rotation also
is a simple way to make variety in the number of images.

3.3. Network Training. The AASC model was trained for
melanoma skin segmentation with hyperparameters as de-
scribed in Table 1. We trained the model for 150 epochs.
During training, data augmentation positively affected the
performance of the model because of the increased number
of samples. In addition, early stopping is configured to
terminate the training model if the loss value does not
decrease after 15 epochs. The loss and accuracy curves of the
training and validation in ISIC 2016, ISIC 2017, and PH2
with the AASC method are shown in Figures 7-9.

3.4. Model Evaluation. In this paper, to assess the perfor-
mance of the proposed model, we used six statistical metrics,

namely precision, recall, accuracy, F1 score [34], Jaccard
index (IoU), and the dice coefficient [35].

Precision is the ratio of correctly segmented skin lesion
pixels to the total number of pixels. The ratio of correctly
segmented skin lesion pixels to the total number of skin
lesion pixels is defined as recall.

The F1 score (F1) is a test accuracy metric. It is derived
from precision and recall. The ratio of the total number of
correctly segmented pixels to the total number of skin le-
sions and background pixels is represented as accuracy.

The dice coefficient (Dice) is the ratio between the
ground truth and the prediction. These evaluation metrics
are based on the parameters listed below.

True positive (TP) refers to the number of skin lesion
pixels that were correctly segmented as skin lesion pixels.

False negative (FN) refers to healthy skin pixels that are
predicted as skin lesion pixels by the model.

False positive (FP) computes the statistics when the
ground truth is skin lesion pixels, and the model predicts the
healthy skin pixels.

True negative (TN) is the number of correctly segmented
healthy skin pixels.
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FIGURE 6: Examples of dermoscopic images in ISIC 2016, 2017, PH2.
TaBLE 1: Hyperparameters used in the training process.
Parameters Value
Input 256x256% 3
Weight decay 0.0005
Kernel-regularizer 0.0006
Batch size 32
Learning rate 0.003
Optimizer Adam
Epoch 150
Loss Jaccard index Accuracy
0.98 0.98
0.4 1 0.96 0.96
0.94 0.94
0.3 -
0.92 0.92
0.2 0.90 0.90
0.8 0.88
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FiGUure 7: The loss and accuracy curves of training and validation in ISIC 2016.
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FiGure 8: The loss and accuracy curves of training and validation in ISIC 2017.
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FIGURE 9: The loss and accuracy curves of training and validation in PH2.
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TaBLE 2: Performance evaluation of the state-of-the-art segmentation methods in the ISIC 2016 dataset.

Model name Jaccard index Accuracy Recall Precision F1
Unet [36] 0.76 0.94 0.90 0.89 0.89
Attention Unet [37] 0.81 0.94 0.90 0.89 0.89
Unet++ [38] 0.81 0.94 0.90 0.90 0.90
Recurrent U-Net [39] 0.79 0.94 0.89 0.88 0.87
Proposed model 0.89 0.96 0.90 0.92 0.91
Original Image True Mask Predicted Mask
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50 50 50
100 100 100
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200 200 200
250 250 250 - .
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FIGURE 13: The visual segmentation of the AASC model in the ISIC 2016. From left to right is the visualization of the original images, true
mask, and predicted mask.
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TaBLE 3: Performance evaluation of the state-of-the-art segmentation methods in the ISIC 2017 dataset.
Model name Jaccard index Accuracy Recall Precision F1
Unet [36] 0.68 0.91 0.76 0.89 0.78
Attention Unet [37] 0.69 0.91 0.76 0.89 0.78
Unet++ [38] 0.68 0.91 0.75 0.90 0.77
Recurrent U-Net [39] 0.64 0.91 0.82 0.78 0.75
Proposed model 0.92 0.95 0.91 0.95 0.90
Original Image True Mask Predicted Mask
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FIGURE 14: The result segmentation of the AASC model in the ISIC 2017. From left to right is the visualization of the original images, true
mask, and predicted mask.
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TABLE 4: Performance evaluation of the state-of-the-art segmentation methods in the PH2 dataset.

Model name Jaccard index Accuracy Recall Precision F1
Unet [36] 0.79 0.91 0.89 0.89 0.87
Attention Unet [37] 0.80 0.92 0.90 0.89 0.88
Unet++ [38] 0.79 0.91 0.88 0.90 0.87
Recurrent U-Net [39] 0.80 0.92 0.93 0.87 0.88
Mask-RCNN [25] 0.84 0.94 0.93 — -
DeepLab V3+ [26] 0.81 0.92 0.94 — —
Proposed model 0.95 0.96 0.95 0.93 0.94
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F1GURE 15: The result segmentation of the AASC model in the PH2. From left to right is a visualization of the original images, true mask, and

predicted mask.
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The mathematical definitions of these measures are as
follows:

TP + TN
ACC) = ,
accuracy (ACC) = 15— —p TN ¢ EN
TP
recall = ——,
TP + FN
. TP
recision = ———,
PrecsIon = o™ " Fp

2 #* (recall + precision) 3)
Flscore (F1) = P

(recall + precision)

IGT N SR|

dIndex = ——————,
Jaccard Index IGT] + K]

2 % TP
2 % TP + FN + FP’

Dice Coefficient (Dice) =

where GT and SR are two sets. Based on these six evaluated
metrics, we compared the performance of the proposed
method in training and testing three datasets as shown in
Figures 10-12. We observed that the training and testing
performances are dependent on all three datasets, indicating
a robust generalized model without overfitting.

3.4.1. Comparative Experiment in the ISIC 2016 Dataset.
We compared our results to the state-of-the-art methods to
show the feasibility and high reliability of our proposed
model in three datasets. During the comparison, five
measures were used: Jaccard Index, Accuracy, Recall, Pre-
cision, and F1. The five indicators in our suggested network
were a strong sign that the AASC was effective for skin
lesions. As a result, our performance consistently ranks first
in all comparisons.

Clearly, Table 2 highlights the quantitative findings of the
AASC and the existing approaches like Unet [36], Unet
attention [37], Unet++ [38], and Recurrent-Unet [39] in the
ISIC 2016 database. Overall, the Jaccard index achieved 89%.
The accuracy rate reached as high as 96%. Continually,
precision achieved 92%. F1 also arrived at 92%. Finally, 90%
is the result evaluated by Recall. All evaluations demon-
strated the effectiveness of AASC in the ISIC 2016. The
visualization of melanoma skin segmentation using the
AASC model in this dataset is shown in Figure 13.

3.4.2. Comparative Experiment in the ISIC 2017 Dataset.
The AASC model was subsequently used to benchmark the
ISIC 2017 to demonstrate the efficacy of our approach. The
quantitative results of our model and the state-of-the-art
models are shown in Table 3. The suggested network
achieved satisfactory results under the five statistical metrics.
Figure 14 shows the ISIC 2017 segmentation results.

3.4.3. Comparative Experiment in the PH2 Dataset.
Furthermore, the PH2 database is a well-known database for
melanoma skin lesions. Because the PH2 dataset has only

13

200 images, a recent study used the ISIC 2017 dataset for the
model training to enhance the segmentation capability of
their model before performing skin lesion segmentation in
the PH2. We proposed training and testing in the PH2
dataset and compared their results in this work. Our pro-
posed approach was performed, as illustrated in Table 4. The
results are given in Figure 15.

4. Conclusion

Skin lesion segmentation is critical in the evolution of a
computer-aided skin cancer diagnosis system. The AASC
model was successfully developed in this paper, which fo-
cuses on the impressive features and then zooms in and out
to evaluate these features under different views, ensuring
that both low and high levels of information for skin seg-
mentation in dermoscopic images can be learned thor-
oughly. Moreover, the preprocessing step enhanced the
model performance, reduced shift-invariance loss, and re-
moved overfitting. This study demonstrated strongly that the
lightweight model (AASC model) could perform well
without the dataset. The AASC algorithm has been tested in
three databases, namely the ISIC 2016, ISIC 2017 challenge,
and PH2 dataset. Jaccard index, Recall, Precision, F1 score,
and Dice coeflicient are famous statistical evaluation metrics
used to evaluate and compare the efficiency of the AASC
model and the other state-of-the-art models. The experi-
mental result shows that the AASC model achieves the
highest accuracy in melanoma skin lesion segmentation
compared to the existing methods in the literature. The
empirical result also demonstrates transparently that the
presence of noises from input images such as shape dis-
tortion, thick hair, or low contrast was successfully removed
by the proposed method. Future work will apply the AASC
model to other applications, for example, melanoma clas-
sification in dermoscopic images. In addition, we try to
promote the applicability of the model through its use in a
variety of data.

Data Availability

The ISIC 2016, ISIC 2017, and PH2 databases used to
support the findings of this study have been deposited in the
International Skin Imaging Collaboration (ISIC) and Au-
tomatic computer-based Diagnosis system for Dermoscopy
Images (ADDI) repository (https://challenge.isic-archive.
com/data/ and https://www.fc.up.pt/addi/ph2).
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