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The aim of this study was to investigate the antibacterial activity of black pepper

essential oil (BPEO) on Escherichia coli, further evaluate the potential mechanism of

action. Results showed that the minimum inhibition concentration (MIC) of BPEO was

1.0 µL/mL. The diameter of inhibition zone values were with range from 17.12 to

26.13 mm. 2 × MIC treatments had lower membrane potential and shorter kill-time

than 1 × MIC, while control had the highest values. E. coli treated with BPEO became

deformed, pitted, shriveled, adhesive, and broken. 2 × MIC exhibited the greatest

electric conductivity at 1, 3, 5, 7, 9, 11, and 13 h, leaked DNA materials at 4, 8, 12,

16, 20, 24, and 28 h, proteins at 4, 6, 8, 10, 12, 14, and 16 h, potassium ion at

0, 0.5, 1, 1.5, and 2 h, phosphate ion at 0.5, 1, 1.5, and 2 h and ATP (P < 0.05);

1 × MIC had higher values than control. BPEO led to the leakage, disorder and death

by breaking cell membrane. This study suggested that the BPEO has potential as the

natural antibacterial agent in meat industry.

Keywords: black pepper essential oil, antibacterial activity, E. coli, morphological change, intracellular content

INTRODUCTION

Herbs and spices have been applied due to the well-documented sensory properties, special
pharmacological functions, and antimicrobial activity (Mata et al., 2007; Park, 2011), where the
essential oil (EO) was extracted formeat preserving (Al-Reza et al., 2010; Tajkarimi et al., 2010). The
majority of the EOs has been classified as Generally Recognized As Safe (GRAS) by EU standards
(Smith and Navilliat, 1997). They are liquid, volatile, and rarely colored, containing a complex
mixture of compounds (Bakkali et al., 2008). They are obtained from different plant parts, such as
flowers, leaves, seeds, bark, fruits, and roots (Burt, 2004). According to the numbers of isoprene
units, EOs are classified as two types: monoterpenes and sesquiterpenes; monoterpenes were the
most abundant in EOs components (Nerio et al., 2010). In literature, a large number of biological
activities of EOs have been reported, such as antimicrobial, antiviral, antioxidant, antimycotic,
antiparasitic, antidiabetic, and anticancer (Reichling et al., 2009).

Meat is an ideal substrate for various spoilage microorganisms, such as Escherichia coli, which
is recognized as an important cause of food-borne disease and food hygiene indicator bacteria
(Bai et al., 2015). Due to the concern of meat shelf-life for both consumers, different kinds of
meat preservation techniques have been developed in recent years, among which the natural food
preservatives had the potential for application in meat industry. A number of plants can produce
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natural antibacterial compounds in their tissues defending them
against biological hazards (Ryu et al., 2004). Selected plants and
their EOs have been evaluated as natural sources for controlling
spoilage bacteria during the food storage, so as to extend the shelf-
life of food. Recently, the attention of researchers has focused
on the antimicrobial activity of EOs, with a strong activity
against some bacteria (Bilia et al., 2014). Skandamis and Nychas
(2000) reported the antibacterial activity of oregano EO against
Escherichia coli in eggplant salad. Moghimi et al. (2016) reported
the superior antibacterial activity of Thymus daenensis EO against
E. coli.

Black pepper (Piper nigrum L.) is a kind of famous spice due
to its alluring aroma, typical pungent, and tingling impression
(Srinivasan, 2007). Menon et al. (2003) and Zengin and
Baysal (2014) have reported that terpenoids have the potential
antibacterial activity as the major compounds from black pepper
essential oil (BPEO), however, the influence of BPEO on E. coli
in meat is not still confirmed. Simultaneously, unlike the
action of chemical antibiotics, an important characteristic of
EO components is their hydrophobicity, which enables them to
partition into the lipids of the bacterial cell membrane, disturbing
the cell structures, rendering them more permeable, and leading
to lysis and leakage of intracellular compounds (Gill and Holley,
2006; Lv et al., 2011; Bajpai et al., 2013). However, to the best of
our knowledge, little information is available associated with the
antibacterial activity and mechanism of action of BPEO against
microorganism.

Therefore, the aim of the present study was to investigate
the antibacterial activity and effective concentration of BPEO on
E. coli, and further evaluate the possible mechanism of action
against E. coli through kill-time analysis, the changes in bacterial
microstructure, the permeability of cell membrane assays, the
release of cell constituents (nucleic acids, proteins, potassium,
and phosphate ions, ATP), and the membrane potential assays,
in order to understand the antibacterial activity and mechanism
of action of BPEO better.

MATERIALS AND METHODS

Essential Oils and Chemicals
Black pepper essential oil (pure EO) was purchased from
Moellhausen SpA. (Vimercate, Italy). The oil was refrigerated at
4◦C in the brown glass bottle. The effect of BPEO on the quality
of fresh pork during storage was investigated in our previous
study (Zhang et al., 2016). All chemicals used in the study were
analytical grade.

Microorganism and Culture
Escherichia coli was chosen to assess the antimicrobial properties.
Four strains were isolated from pork, and then biochemical
test was carried out by using micro sugar fermentation
tube (glucose, lactose, maltose, mannose, and sucrose) and
biochemical medium. The strains were identified (data was
showed in Supplementary Data Sheet) and maintained on slants
of Nutrient Agar (NA) at 4◦C in laboratory. The microorganism
was cultured in Nutrient Broth (NB) at 37◦C for 24 h.

Antibacterial Assays
Agar Disk Diffusion Assay

The antibacterial activity of BPEO was described using the agar
diffusion method according to Bajpai et al. (2009) with some
modifications. Sterile NA medium was prepared and cooled
to 45–50◦C before being poured into Petri plates of 90 mm
diameter. The disk diameter used was 6 mm (Whatman No.
1) paper. Different dilutions of the EOs were made with 20%
of anhydrous ethanol. A loopful of fresh culture of E. coli was
suspended in a saline solution (0.85% NaCl) and adjusted to a
turbidity of 0.5 McFarland standards (about 107 CFU/mL). After
solidification, 100 µL inoculum was streaked over the surface
of the NA using a sterile cotton swab in order to get a uniform
microbial growth on both control and test plates. Under aseptic
conditions, the disks were placed on the agar plates and then
5 µL of 0.0, 1.0, 2.0, 4.0, and 8.0 µl/mL BPEO dilutions was
put on the disks. A dilution solvent (20% of anhydrous ethanol)
was added into the disks on the control plates. Then the plates
were incubated at 37◦C for 24 h in order to get reliable microbial
growth. The diameter of inhibition zone (DIZ, disk diameter
included) were measured and recorded in millimeter. The agar
disk diffusion tests were performed in triplicate.

Determination of Minimum Inhibitory Concentration

(MIC)

Minimum inhibitory concentration was determined according to
the method described by Weerakkody et al. (2010) with some
modifications. Briefly, the suspensions of E. coli prepared from
overnight broth cultures, were adjusted to the required microbial
density (about 107 CFU/mL). BPEO was dissolved in 20% of
anhydrous ethanol, then twofold serial dilutions were made in a
concentration ranging from 0.125 to 32 µl/mL in 10 mL sterile
test tubes containing NB. A 50 µL suspension of E. coli was
added into the tube. The tube containing only broth and E. coli
was the negative control. The MIC was determined as the lowest
concentration of BPEO that demonstrated no visible growth in
tubes after 24 h. All experiments were performed in triplicate.

Kill-Time Analysis
According to the technique described by Joray et al. (2011), the
kill-time curve (survival curve plot) assay method was used to
investigate the rapidity of a bactericidal effect or the duration
of a bacteriostatic effect of BPEO. Stock solution of BPEO was
prepared in 20% anhydrous ethanol. The BPEO at two different
concentrations (1 × MIC and 2 × MIC) were added into 100 mL
inoculum containing approximately 107 CFU/mL E. coli. The
inoculum containing only 20% anhydrous ethanol as the negative
control was also run. At selected time intervals, the test samples
were taken, and plated in Plate Count Agar (PCA) medium
(Qingdao Hope Bio-Technology Co., Ltd., China). All plates were
then incubated for 24 h at 37◦C, and counted the CFU.

Scanning Electron Microscope (SEM)
To determine the morphological changes of E. coli treated with
BPEO, SEM studies were carried out as reported by Gao et al.
(2011) with some modifications. E. coli were incubated in NB at
37◦C for 10 h (1 × 107 CFU/mL). Different concentrations of
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BPEO (control, 1 × MIC and 2 × MIC) were added into the
suspensions, respectively. All suspensions were incubated at 37◦C
for 6 and 12 h, respectively, and then centrifuged at 5,000 × g for
5 min at 4◦C. The cells were washed three times with 0.1 M PBS
(pH 7.4) for 15 min each and fixed in 2.5% (v/v) glutaraldehyde
for 2 h at 4◦C. The cells were successively dehydrated using 30,
50, 70, 80, 90, and 100% ethanol for 10 min each, and then the
ethanol was replaced by tertiary butyl alcohol. After dehydration,
the specimens were dried with CO2, and sputter-coated with gold
in an ion coater for 2min. Finally, themorphology of the bacterial
cell was observed with a SEM (S-3400 N, Hitachi, Ltd., Japan).

Transmission Electron Microscope (TEM)
The glutaraldehyde-fixed cells described by section “Scanning
Electron Microscope” were used for the following treatments.
These cells were washed three times with 0.1 M PBS (pH 7.4)
for 15 min each and fixed in 2.5% (v/v) glutaraldehyde overnight
at 4◦C. The cells were washed three times with 0.1 M PBS (pH
7.4) for 15 min each again, and post-fixed with 1% (w/v) osmic
acid for 2 h at room temperature, then washed three times with
the same PBS. The cells were dehydrated by a sequential graded
ethanol (30, 50, 70, and 90%) and then acetone (90 and 100%)
for 15 min each. After the dehydration, embedding medium
was added into all samples. Stained bacteria were viewed and
photographed with a TEM (JEM-1230, Hitachi, Ltd., Japan).

Permeability of Cell Membrane
The permeability of bacterial membrane is expressed in the
relative electric conductivity according to the method described
by Diao et al. (2014). E. coli was separated by centrifuging at
5,000 × g for 10 min, and then washed with 5% glucose until
the electric conductivity was near to that of 5% glucose, which
indicated the case of isotonic bacteria. The electric conductivity
was measured by an electrical conductivity meter (DDS-11D,
Shanghai Precision Science Instrument Co. Ltd., China). BPEO at
three different concentrations (control, 1 × MIC, and 2 × MIC)
were added into 5% glucose; the electric conductivity of the
mixtures was measured and marked as L1. Then different
concentrations of BPEO (control, 1 × MIC, and 2 × MIC) were
added into the isotonic bacteria, respectively. After completely
mixing, the samples were incubated at 37◦C for 10 h; the
conductivity was measured per 2 h; it was marked as L2. The
conductivity of bacteria in 5% glucose treated in boiling water
for 5 min was used as the control which was marked as L0.
The permeability of cell membrane is calculated according to the
following formula.

Relative electric conductivity (%) = 100 × (L2 − L1)/L0

Measurement of Release of 260-nm
Absorbing Materials and Proteins
The measurement of the release of 260-nm absorbing materials
from E. coli according to the method described by Du et al.
(2012) with some modifications. Cells from the 100 mL E. coli
suspension were collected by centrifuging at 5,000× g for 15min,
washed three times with 0.1 M PBS (pH 7.4), and resuspended

in PBS (0.1 M, pH 7.4). The 100 mL of cell suspensions
was incubated at 37◦C under agitation in an environmental
incubator shaker (HWS-0288, Ningbo New Jiangnan Instrument
Co. Ltd., China) for 4 h in the presence of BPEO of three
different concentrations (control, 1 × MIC, and 2 × MIC).
Then, the suspensions were centrifuged at 6,000 × g for 5 min.
The supernatants were diluted with PBS (0.1 M, pH 7.4).
Then the absorption at 260 nm of supernatants was measured
using a 96-Well Plate Reader M200 (Tecan, Austria) per 4 h.
Results were expressed in terms of optical density of 260-nm
absorbing materials. In addition, the concentration of proteins in
supernatant was determined according to the method described
by Xu et al. (2010). All the above steps were repeated and the
absorbance at 280 nm was measured. The amount of released
protein was calculated by a standard curve using Albumin from
bovine serum (BSA).

Assay of Potassium and Phosphate Ions
Efflux
The concentration of free potassium and phosphate ions was
determined by Lee et al. (2002) with some modifications. The
concentrations of free potassium and phosphate ions in bacterial
suspensions were measured after the exposure of bacterial cells
to BPEO at three different concentrations (control, 1 × MIC,
and 2 × MIC) in sterile peptone water (0.1 g/100 mL) for 0,
30, 60, 90, and 120 min, respectively. At each sampled interval,
the extracellular potassium and phosphate concentrations were
measured by a Kalium/Potassium kit (C001-3, Nanjing Jiancheng
Biological Engineering Institute, China) and a phosphorus
inorganic kit (C006-3, Nanjing Jiancheng Biological Engineering
Institute, China), respectively. Results were expressed as the
amount of extracellular free potassium and phosphate (mmol/L)
in every interval of incubation.

Measurement of Extracellular ATP
Concentration
To evaluate the influence of BPEO on membrane damage, the
extracellular ATP concentrations were measured according to
the method described by Lee et al. (2002). The culture of
E. coli containing approximately 107 CFU/mL was centrifuged
for 10 min at 1,000 × g and removed the supernatant. The
cell pellets were washed three times with 0.1 M PBS (pH 7)
and then cells were collected by centrifugation under the same
conditions. A cell suspension (107 CFU/mL) was prepared with
9 mL PBS (0.1 M, pH 7), and taken into eppendorf tube for
the treatment of BPEO. Then different concentrations (control,
1 × MIC, and 2 × MIC) of BPEO were added into the cell
solution. Samples were maintained at room temperature for
30 min, centrifuged at 2,000 × g for 5 min, and incubated in
ice immediately to prevent ATP loss until measurement. The
extracellular (upper layer) ATP concentrations were measured
using an ATP assay kit (A095, Nanjing Jiancheng Biological
Engineering Institute, China) which comprised ATP assay mix.
The ATP concentration of the supernatants, which represented
the extracellular concentration, was determined using a 96-Well
Plate Reader M200 (Tecan, Austria) to measure the absorption at
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TABLE 1 | Antibacterial activity of black pepper essential oil (BPEO) against Escherichia coli by inhibition zone evaluation.

Concentrations of BPEO (µl/mL) 0.0 1.0 2.0 4.0 8.0

DIZ (mm) 6.12 ± 0.05Ba 17.12 ± 0.09b 19.29 ± 0.09c 23.95 ± 0.08d 26.13 ± 0.06e

DIZ, diameter values of inhibition zone are presented as mean ± standard deviation, including 6 mm disk diameter. abcdeMeans with different superscripts, differed

significantly for different concentrations of BPEO (p < 0.05).

636 nm after the addition of 100 µL ATP assay mix to 100 µL
supernatant.

Membrane Potential (MP)
To analyze the effects of BPEO on the metabolic activity of E. coli,
theMP of the bacteria wasmeasured according to the Rhodamine
fluorescence method as described by Baracca et al. (2003) with
somemodifications. Bacterial cells were incubated in NBmedium
at 37◦C for 24 h. The cell solutions (107 CFU/mL) were added
with different concentrations of BPEO (control, 1 × MIC, and
2 × MIC), and incubated in 1 mg/mL Rhodamine123 stock
solution with PBS (0.1 M, pH 7) for 3 h. Rhodamine123 was
added to a final concentration of 2 µg/mL from the stock
solution. The suspensions were washed twice with PBS (0.1 M,
pH 7). After placing in dark for 30 min, the samples were
completely washed and resuspended in PBS (0.1 M, pH 7).
Rhodamine123 fluorescence was measured using a 96-Well Plate
Reader M200 (Tecan, Austria) at 530 nm. The data was expressed
by mean fluorescence intensity (MFI).

Statistical Analysis
Statistical analyses were carried out by the One-Way analysis of
variance (ANOVA) procedure (Duncan’s Multiple Range Test) of
SAS 8.0 software (SAS Institute Inc., Cary, NC, USA) to analyze
the difference of DIZ, kill-time, relative electric conductivity,
MFI, optical density, the concentration of proteins, potassium,
and phosphate ions and ATP among control, 1 × MIC and
2 × MIC groups. The statistically significant level was set as 0.05.

RESULTS AND DISCUSSIONS

Antibacterial Activity of BPEO
The antibacterial activity of different concentrations (0.0, 1.0, 2.0,
4.0, 8.0 µL/mL) of BPEO against E. coli was qualitatively and
quantitatively determined by the presence of inhibition zones.
As presented in Table 1, the DIZ values for E. coli increased
significantly (P < 0.001) along with the increasing of BPEO
concentration. The DIZ values for E. coli were shown with range
from 17.12 mm to 26.13 mm. The MIC values for BPEO were
1.0 µL/mL for E. coli.

According to the classification of antimicrobial activity, it
is classified into three levels: strong activity (DIZ > 20 mm),
moderate activity (12 mm < DIZ < 20 mm), and weak activity
(DIZ < 12 mm; Rota et al., 2008; Weerakkody et al., 2010).
According to Aligiannis et al. (2001), a classification for the
activity is suggested, defining how strong MIC of EOs can hold
up to 0.5 µl/mL, moderate for MIC 0.6–1.5 µl/mL, and low for
MIC above 1.5 µl/mL. The results in this study showed that

BPEO had a strong antibacterial activity against E. coli. It could
be attributed to its major constituents of sabinene, α-pinene,
β-pinene, limonene, β-caryophyllene, and caryophyllene (Menon
et al., 2003), which appear to make the cell membrane permeably
and disintegrate the outer membrane of Gram-negative bacteria
(Burt, 2004).

Kill-Time Analysis
As was observed in Table 2, compared to the control, susceptible
E. coli treated with BPEO at 1 × MIC level showed a slower
decrease in the number of viable cells over the first 12 h period of
the test, with the number of viable cells decreased by 16.20% from
6.11 to 5.12 lg CFU/mL (P < 0.05), while the number of viable
cells decreased obviously from the first hour after cultivation and
decreased by 96.73% to 0.20 lg CFU/mL over 24 h of incubation
at 2×MIC (P< 0.001). At 6 h, control had the highest number of
viable cells; 2 × MIC had lower values than control and 1 × MIC
(P < 0.05). At 12 and 24 h, 2 × MIC had lowest number of viable
cells than control and 1 × MIC (P < 0.001 at 12 h, P < 0.001 at
24 h, respectively).

The results showed that, a minor amount of BPEO could
prolong the lag phase of E. coli, while the BPEO at 2 × MIC
exerted strong bactericidal activity as evident by the significant
reduction in microbial counts and completely inhibition at 24 h
exposure, which indicated that BPEO have perfect antibacterial
activity against E. coli. Similar to our findings, some EOs from
plants, which have the major components of terpenoids also
exhibited inhibitory effects against various food-borne bacteria
(Viuda-Martos et al., 2010; Michalczyk et al., 2012).

Antibacterial Mechanism Assays
The activity of an EO can affect both the external envelope of
the cell and the cytoplasm. The hydrophobicity of the major

TABLE 2 | The effect of BPEO on the viability of E. coli.

Time (h) CFU (lg CFU/mL)

Control 1 × MIC 2 × MIC

0 6.11 ± 0.38Ad 6.11 ± 0.38Aa 6.11 ± 0.38Aa

1 6.24 ± 0.34Ad 5.98 ± 0.34Aa 5.91 ± 0.41Aab

3 6.41 ± 0.44Ad 5.86 ± 0.41ABa 5.42 ± 0.43Bb

6 7.51 ± 0.47Ac 5.59 ± 0.34Bab 4.28 ± 0.3Cc

12 9.11 ± 0.37Aa 5.12 ± 0.38Bb 1.23 ± 0.34Cd

24 8.24 ± 0.32Ab 5.95 ± 0.44Ba 0.20 ± 0.18Ce

Values are presented as mean ± standard deviation. ABCMeans with different

superscripts, differed significantly for different essential oil (EO) treatments

(p < 0.05). abcdeMeans with different superscripts, differed significantly for different

sampling times (p < 0.05).
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FIGURE 1 | The scanning electron microscope (SEM) photography of Escherichia coli with different black pepper essential oil (BPEO) treatments.

(a,A) Untreated E. coli cultured for 16, 22 h, respectively; (b,B) E. coli treated with BPEO at 1 × MIC for 6, 12 h, respectively; (c,C) E. coli treated with BPEO at

2 × MIC for 6, 12 h, respectively.

antibacterial compositions of EOs enables them partition in
the lipids of the cell membranes and mitochondria, disturbing
their structures, changing their functions and rendering them
permeably (Lv et al., 2011). Subsequently, the active components
can lead to disrupt the synthesis of somemacromolecules, such as
DNA, RNA, protein, or polysaccharides, and then cause the death
of the cells (Rhayour et al., 2003;Wu et al., 2009). Considering the
large number of different groups of chemical compounds present
in EOs, it is most likely that their antibacterial activity was not
only attributed to one specific mechanism but also several targets
in the cell (Skandamis and Nychas, 2001; Carson et al., 2002).
Therefore, the surface characteristic parameters, the permeability
and integrity of cell membrane were chosen to determine the
mode of action of BPEO against E. coli.

Electron Microscope Observations

The morphological and physical changes of E. coli with BPEO
treatments at different concentrations were observed by SEM
and TEM in Figures 1 and 2. SEM images showed that,
compared with the untreated controls, the surfaces of the
treated E. coli underwent obviously morphological changes.
Untreated cells were rod shaped, regular, intact, and presented
the distinctive characteristics of striated cell wall (Figures 1a,A),
whereas the cells treated with BPEO became deformed, pitted,
shriveled, adhesive to each other; parts of the cell were broken
(Figures 1b,B,c,C), which might result in the leakage of the

contents of the cells. Figure 2 shows the TEM images of the
E. coli after treatment with BPEO at different concentrations.
It was observed that untreated E. coli remained intactly
and had a clearly discernible cell membrane with uniformly
distributed cytochylema and electron-dense material inside the
cell (Figures 2a,A). However, the cell wall and cytoplasmic
membrane after treatment became uneven and appeared thick;
some lysis was seen (Figures 2b,B,c,C). Some cells turned from
the normal round shape into irregular shapes; parts of the cell
wall were broken. It may give rise to the leaching out of nutrient
and genetic materials. The changes were more evident with an
increase in the concentration and treatment time of BPEO, which
was consistent with our results of the SEM and the kill-time study.

The BPEO revealed its inhibitory effect as confirmed by the
severemorphological alterations in the cell wall andmembrane of
E. coli. Previously morphological alterations have been observed
for various kinds of tested organisms with different EOs (Gao
et al., 2011; Paul et al., 2011; Bajpai et al., 2013; Sharma et al.,
2013). Moreover, higher BPEO concentration and exposure of
longer time could cause impaired membrane structure and
swelled cells than control. This observation was in agreement
with the kill-time analysis, which showed that BPEO at 2 × MIC
could kill much more numbers of E. coli at 6 and 12 h than
that at 1 × MIC concentration. Cell membrane provide a barrier,
which make many cellular processes take place within the cells
indispensably, so their damage can cause cell inactivation and/or
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FIGURE 2 | The transmission electron microscope (TEM) photography of E. coli with different BPEO treatments. (a,A) Untreated E. coli cultured for 16,

22 h, respectively; (b,B) E. coli treated with BPEO at 1 × MIC for 6, 12 h, respectively; (c,C) E. coli treated with BPEO at 2 × MIC for 6, 12 h, respectively.

death. The physical and morphological changes of E. coli in this
study might be due to the effect of BPEO on the permeability
and integrity of the membrane, which would cause the lysis
of bacterial cell wall, the expansion and destabilization of the
membrane, the separation of cell membrane from cell wall,
followed by the loss of intracellular dense materials (Tassou et al.,
2000; Bajpai et al., 2009).

Permeability of Cell Membrane

Figure 3 showed the effect of BPEO on the permeability of cell
membrane of E. coli. The relative electric conductivity increased
at 9, 11, and 13 h for control (P < 0.05), at 1, 3, and 5 h for
1 × MIC (P < 0.01) and 2 × MIC (P < 0.001) treatments. The
relative electric conductivity varied among various treatments;
control exhibited the lowest values whereas 2 × MIC remained
the greatest value at 1, 3, 5, 7, 9, 11, and 13 h (P < 0.01 for 1 and
3 h; P < 0.001 for 5, 7, 9, 11, and 13 h).

The antimicrobial mode of action of BPEOwas also confirmed
on the basis of leakage of the electrolytes from E. coli cells when
exposed to BPEO at 1 × MIC and 2 × MIC concentrations.
The bacterial plasma membrane provides a permeability barrier
to the passage of small ions, which are necessary electrolytes
to facilitate cell membrane functions, maintain proper enzyme
activity and keep the normalmetabolism (Diao et al., 2014). It was
previously indicated that EOs form channels through membrane
by pushing apart the fatty acid chains of the phospholipids,
allowing ions to leave the cytoplasm (Burt, 2004). Increase

FIGURE 3 | Effect of BPEO on the impermeability of E. coli. ABCMeans

with different superscripts, differed significantly for different BPEO treatments

(p < 0.05). abcdMeans with different superscripts, differed significantly for

different sampling times (p < 0.05).

in the leakage of electrolytes indicated the disruption of the
permeability barrier. The results in this study showed that the
relative electric conductivity of E. coli increased rapidly with the
increasing treatment time and concentration of BPEO, which
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FIGURE 4 | Release of 260-nm absorbing material (A) and protein (B)

from E. coli treated with BPEO. ABCMeans with different superscripts, differed

significantly for different BPEO treatments (p < 0.05). abcdeMeans with

different superscripts, differed significantly for different sampling times

(p < 0.05).

meant that the permeability of bacteriamembrane would increase
correspondingly, then cause the leakage of electrolytes and lead to
cell death. Based on these results, we concluded that the increase
of cell wall/membrane permeabilization could be related with the
hydrophobicity of BPEO.

Release of 260-nm Absorbing Materials and Proteins

The release of nucleic acids and proteins are shown in
Figures 4A,B, respectively. The absorbance values for nucleic
acids of E. coli increased significantly at 16 and 20 h for 1 × MIC
(P < 0.05), at 8, 12, and 16 h for 2 × MIC (P < 0.01) treatments.
The OD260nm values of 2 × MIC were higher than that of
1×MIC; the OD260nm values of control had the lowest value at 4,
8, 12, 16, 20, 24, and 28 h (P < 0.05 for 4 and 8 h; P < 0.01 for 12,
16, 20, 24, and 28 h). The values of proteins increased significantly
at 12, 14, and 16 h for control (P < 0.05), at 4, 6, 8, and 10 h
for 1 × MIC (P < 0.05), at 4, 6, 8, 10, and 12 h for 2 × MIC
(P < 0.05) treatments. The values of proteins of 2 × MIC were
higher than that of 1×MIC; the values of proteins of control had
the lowest value at 4, 6, 8, 10, 12, 14, and 16 h (P < 0.05 for 4 and
6 h; P < 0.01 for 8, 10, 12, 14, and 16 h).

The 260-nm absorbing materials and proteins, is used as
indicative of irreversible damage to the membrane integrity
in EOs groups compared to control (Bajpai et al., 2013). The
macromolecules of a bacterial cell including nucleic acids and
proteins, which reside throughout the interior of the cell and
cytoplasm, are the key structural components. Our results
showed that the exposure of E. coli to BPEO caused the rapid

FIGURE 5 | Leakage of potassium (A) and phosphate (B) ions from E. coli

treated with BPEO. ABCMeans with different superscripts, differed significantly

for different BPEO treatments (p < 0.05). abcdeMeans with different

superscripts, differed significantly for different sampling times (p < 0.05).

loss of 260-nm absorbing materials and proteins, indicating an
irreversible damage to the cytoplasmic membranes, which was
supported by the results of the permeability of cell membrane,
SEM and TEM. The leakage of nucleic acids and proteins could
cause the disorder of function in the synthesis of proteins and
DNA materials and the inhibition of bacterial growth.

Leakage of Potassium and Phosphate Ions

The results of release of potassium and phosphate ions from
E. coli treated with BPEO were shown in Figures 5A,B,
respectively. The efflux of potassium ions from bacterial cells
occurred immediately after the addition of BPEO at levels of
1 × MIC (P < 0.01) and 2 × MIC (P < 0.01) following a
steady loss along the specified intervals. The potassium ion values
increased rapidly with the increasing concentrations of BPEO
(P < 0.01 for 0, 30 min; P < 0.001 for 60, 90, and 120 min). The
efflux of phosphate ion from bacterial cells occurred at 30 min
after the addition of BPEO at levels of 1 × MIC (P < 0.01) and
2 × MIC (P < 0.001) following a sturdy loss along the evaluated
intervals. The phosphate ion values also increased rapidly with
the increasing concentration of BPEO treatment (P < 0.01 for 30
and 60 min; P < 0.001 for 90 and 120 min).

Potassium levels influence multiple physiological processes,
including MP, acid-base homeostasis, fluid and electrolyte
balance, glucose metabolism, and blood pressure control
(Newman and Cragg, 2012). The internal environment of cells
is generally rich in K+, so their presence in the extracellular
medium is an indication of serious and irreversible cytoplasmic
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membrane damage (Carson et al., 2002). Phosphates are most
commonly found in the form of adenosine phosphates (AMP,
ADP, and ATP) as well as in DNA and RNA; they can be released
by the hydrolysis of ATP or ADP (Miesel et al., 2003). Therefore,
minor changes to the structural integrity of cell membrane
can detrimentally affect cell metabolism and lead to cell death
(Sharma et al., 2013). Some EOs were recognized to have
membrane active properties against several microorganisms,
causing leakage of cell constituents, including ions (Turgis et al.,
2009). The results of our study showed a significant increase in
the leakage of ions. It indicated a disruption of the cell membrane
and the disorder of electrolyte balance of E. coli, which was
consistent with the results of relative electric conductivity.

Extracellular ATP Concentration and MP

The effect of BPEO on the extracellular ATP concentration in
E. coli and MP (expressed by MFI of Rhodamine 123) were
presented in Table 3. Results showed that the extracellular ATP
concentration in control was found to be 1.23 ng/mL. The release
of extracellular ATP concentrations of 2 × MIC showed more
significant increase than 1 × MIC BPEO (P < 0.05). The MFI
values decreased rapidly by 37.98% at 1 × MIC level; the MFI of
E. coli treated with BPEO at 2 × MIC level decreased by 77.95%
(P < 0.05).

The increase of extracellular ATP concentration exposed to
BPEO occurred because of significant impairment in membrane
integrity of the tested bacteria by BPEO, which caused the
intracellular ATP leakage through defective cell membrane. Burt
(2004) has reported that exposure of Bacillus cereus cells to
carvacrol EO led to the decrease of intracellular ATP. The
significant reduction in intracellular ATP could be explained
by two mechanisms: the loss of inorganic phosphate across
the compromised high permeable cell membrane (Turgis et al.,
2009), which is confirmed by the results of the leakage of
phosphate ions; or an accelerated hydrolysis due to the attempt
of cells to regenerate the electrochemical gradient by PMF driven
by the ATPase energy-consuming pump (Nazzaro et al., 2013).

Membrane Potential plays a vital role in the microbial balance
and resistance to antimicrobials (Borges et al., 2013). Normally,
at physiological conditions, bacterial cells have a negative surface
charge due to the presence of anionic groups (e.g., carboxyl
and phosphate) in the membrane (Palmer et al., 2007). As an
element of the proton motive force (PMF), MP is involved in
the generation of ATP (Dimroth et al., 2000). A significant
loss of MP renders cells depleted of energy with subsequent
death (Ramzan et al., 2010). Any treatments depolarize the cell

TABLE 3 | The effect of BPEO on extracellular ATP concentration and

membrane potential (MP) of tested E. coli.

Concentration (µl/mL) ATP (ng/mL) Mean fluorescence (AU)

Control 1.23 ± 0.15a 498.68 ± 7.39a

1 × MIC 8.13 ± 0.15b 310.01 ± 7.26b

2 × MIC 16.10 ± 0.20c 111.01 ± 8.89c

Values are presented as mean ± standard deviation in triplicate. abcMeans with

different superscripts, differed significantly for different means (p < 0.05).

membrane are deemed to reduce the volume of MP. In this
study, the fluorescence intensity was directly correlated with the
bacterial MP. Measurements of the MFI of R123 in exponentially
growing cells revealed a sharp decrease after the addition of BPEO
and indicated a weakening of the PMF. The loss of fluorescence
indicates cell membrane depolarization leading to irregular cell
metabolic activity and bacteria death.

CONCLUSION

Based on the present research, the BPEO possessed a good
antibacterial activity against meat-borne E. coli. BPEO treatment
caused the physical and morphological alterations in the cell
wall and membrane of E. coli. According to these results, the
mechanism of action of BPEO against E. coli may be described
that, firstly BPEO made a break through the permeability of
cell membrane, and then led to the leakage of electrolytes, ATP,
proteins, and DNAmaterials. These changes resulted in disorder,
decomposition, and death eventually, which were corresponded
to a simultaneous reduction in the number of viable E. coli.
However, because of the heterogeneous compositions of EOs, it
seems unlikely that there is only one mechanism of action or that
only one component is responsible for the antimicrobial action.
Therefore, further research is still necessary to fully understand
the mechanisms, such as the inhibition of food-borne pathogens,
the interactions with other food ingredients in order to justify
the real applications of BPEO in food practices as a natural
antibacterial agent.
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