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Abstract: The aim of the current work was to study the physicochemical properties and biological
activity of different types of porous granules containing silver or gallium ions. Firstly, hydroxyapatites
powders doped with Ga3+ or Ag+ were synthesized by the standard wet method. Then, the obtained
powders were used to fabricate ceramic microgranules (AgM and GaM) and alginate/hydroxyapatite
composite granules (AgT and GaT). The ceramic microgranules were also used to prepare a third type
of granules (AgMT and GaMT) containing silver or gallium, respectively. All the granules turned
out to be porous, except that the AgT and GaT granules were characterized by higher porosity and a
better developed specific surface, whereas the microgranules had very fine, numerous micropores.
The granules revealed a slow release of the substituted ions. All the granules except AgT were
classified as non-cytotoxic according to the neutral red uptake (NRU) test and the MTT assay. The
obtained powders and granules were subjected to various antibacterial test towards the following four
different bacterial strains: Staphylococcus aureus, Staphylococcus epidermidis, Pseudomonas aeruginosa
and Escherichia coli. The Ag-containing materials revealed high antibacterial activity.

Keywords: silver; gallium; calcium phosphates; biomaterials; antibacterial activity

1. Introduction

A significant increase in the development of biomaterials for use in bone disease
treatment has been recorded in recent years. One of the main reasons is the increasing
number of orthopaedical surgeries and the need to replace bone tissue with an appropriate
multifunctional biomaterial [1–5].

Currently, materials are being sought that can act as carriers for delivering drugs to the
bone as a poorly vascularized tissue. Particular importance is attached to the administration
of antibacterial agents (antibiotics) in this way, due to the high risk of potential bacterial
infection during surgery, known as surgical site infections (SSIs) [6–10].

Calcium phosphates (CaPs) are used to a great extent in orthopaedic surgery and
dentistry, in the form of cements, scaffolds, granules or coatings [11–13]. Among the
CaPs, synthetic hydroxyapatite (HA), with the formula Ca10(PO4)6(OH)2, can be distin-
guished, due to its beneficial properties, such as its similarity to bone mineral, bioactivity,
osteoconductivity and non-toxicity [14–17].

It is worth mentioning that HA can be easily modified by various ionic substitution,
in order to obtain additional biological or physicochemical properties [13,15,17]. For exam-
ple, the incorporation of carbonates (CO3

2−) into the HA structure leads to an increased
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solubility of material and a great tendency to nanocrystallinity, whereas substitution with
fluorides (F−) causes better thermal stability of HA [18–22]. Moreover, a feature of HA that
deserves attention is the ability to adsorb many biologically active substances; therefore,
HA can potentially be used as a carrier for drugs [15,16,23].

Silver has been well known for its antibacterial properties for many years (its beneficial
role in the treatment of infection dates back to at least 4000 B.C.) and its mechanism of action
is one of the best understood [24,25]. Silver ions mainly affect thiol groups (-SH), present
in bacterial proteins’ structure, by substituting hydrogen atoms and the arising of S-Ag
binding. Such modifications in the protein structure of bacteria cells cause a denaturation,
deactivation and malfunction of membrane pumps. As a consequence, membrane cells
shrink and detach from the cell wall, then the content of the cell leaks outside the membrane
and finally, the cell wall is torn apart [26].

As an antibacterial agent, silver is currently used in hospitals to reduce nosocomial
infections in the treatment of burns and open wounds, but also in water cleaning sys-
tems [24,27]. Recently, silver has been identified as a promising agent for potential use
in treating multidrug-resistant bacteria infections [28,29]. Many studies focusing on the
synthesis of silver-substituted HA have been reported, which highlight its abilities in in-
hibiting bacterial growth and simultaneously intensifying osseointegration, consequently
resulting in silver-doped HA being regarded as a very promising biomaterial [30–33].

Gallium ions also exhibit antibacterial activity; however, their use is not as common as
silver. Their main advantage over silver ions is significantly lower cytotoxicity in higher
concentrations with regard to human cells. The Ga3+ antibacterial mechanism of action
is mainly based on the substitution of iron ions with gallium ions in the bacteria protein
metabolism (“the Trojan horse strategy”), which causes the impairment of bacteria cell
functions [26,34]. Moreover, there are many studies that outline the beneficial effect of
gallium on bone tissue. It should be noted that Ga ions exhibit antiresorptive and antios-
teoporotic properties, as well as antitumor, anti-inflammatory and immune suppressive
properties [26,35,36]. As a result, HA doped with gallium can be used as biomaterial, which
on the one hand enhances bone growth and on the other hand protects from bacterial
infection [37–40]. In the available literature, the use of the aforementioned biomaterial as a
drug delivery system is reported [41–43].

In the present work, the new bone substitutes, based on HA modified with Ag+ or
Ga3+ ions as antibacterial agents, were prepared in the form of three types of granules. The
obtained materials were subjected to physicochemical analysis, followed by cytotoxicity
and antimicrobial evaluation.

2. Results
2.1. Chemical Structure and Elemental Analysis of the Synthesized Powders

The powder X-ray diffractometry (PXRD) patterns of the samples are presented in
Figure 1a. The revealed reflections in all the diffractograms indicated that the materials are
composed of hydroxyapatite. The obtained powders are homogenous, with no additional
crystalline phase.

It is worth mentioning that the reflections were broad and poorly resolved, illustrating
the poorly crystalline feature of the synthesized powders. In order to determine crystallite
sizes along c and a axes, the Scherrer formula was used for the reflections at approx. 25.9◦

and 39.8◦, respectively [44], which is as follows

d =
0.94λ

β cos θ
, (1)

where

d—crystallite size (nm)
λ—wavelength of used radiation (nm)
β—full width at half maximum (FWHM) of the peak (radians)
θ—the diffraction angle of the corresponding reflection (◦).
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Figure 1. Powder X-ray diffractograms (a) and FT-IR spectra (b) of the synthesized powder samples.

It was also possible to evaluate the crystallinity of the materials, using the following
formula [45]:

χ =

(
K

β(002)

)3

(2)

where

χ—the degree of crystallinity
K—constant (for hydroxyapatite it is equal to 0.24)
β(002)—full width in a half minimum (FWHM)for (002) reflection (◦).

The calculated parameters are shown in Table 1. The values of the crystal dimensions
confirm that apatitic crystals in all the samples were elongated along the c axis. The samples
are nanocrystalline with a low degree of crystallinity.

Table 1. Parameters of the obtained HA powders.

Ag-HA Ga-HA

Crystallinity index (CI) 0.45 0.39
Crystallite size—c-axis (nm) 27 ± 2 26 ± 3
Crystallite size—a-axis (nm) 6 ± 2 7 ± 2
Ionic dopant content (wt%) 0.46 0.41
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The Fourier transform infrared spectroscopy (FT-IR) spectra presented in Figure 1b
show a band corresponding to the apatitic chemical structure. One can observe three
intensive bands within the range of 1095–960 cm−1 and two bands within the range
of 605–560 cm−1, originating from the stretching and bending vibrations of phosphate
P–O bonds, respectively. At approximately 3565 cm−1 and 630 cm−1, respectively, the
stretching and libration vibrations of the characteristic structural hydroxyl groups can
be observed. In addition, a wide band at approx. 3470 cm−3 (stretching) and a band at
1650 cm−3 (bending) confirm the presence of adsorbed water in the samples, which is
common for the wet method. The slightly detectable band at 1385 cm−3 originates from the
nitrate residues, while the band at 872 cm−1 comes from the carbonates [46–49].

The Ag+ and Ga3+ ion content in the Ag-HA and Ga-HA samples, respectively, were
measured by the atomic absorption spectrometry (AAS) method. The elemental analysis
shows that the dopant’s concentration is slightly lower than the theoretical value (0.54 and
0.45% for Ag and Ga, respectively), indicating only a partial substitution of these elements
into the apatitic structure (see Table 1).

2.2. Ultrastructure, Porosity and Mechanical Strength of the Granules

The representative scanning electron microscopy (SEM) images of various types of
granules are shown in Figure 2a–i. The ceramic AgM and GaM granules comprised micro-
sized, regular spheres with an approximate diameter of 0.2–1 mm (see Figure 2a). The
composite granules (AgT, GaT, AgMT and GaMT) were significantly larger and their
average diameter was around 3.5 mm (see Figure 2d,g). As observed, all the samples
revealed a porous feature; however, the outer surface of the ceramic microgranules seemed
to be more porous than the outer surface of the composite, which in turn was rough and
undulating. In Figure 2b,c,e,f,h,i, the cross-sections through all the types of granules are
presented. It should be noted that the large number of macropores and mesopores in the
internal structure of the granules can be observed, especially in the composite granules,
which may indicate a high porosity of the materials. In addition, the cross-sections through
the AgMT and GaMT granules show the microgranules, which were used during their
preparation (indicated with white arrows in Figure 2h,i).

The porosity measurements using the mercury intrusion were only available for the
composite granules (see Table 2). As observed, the total volume of pores and the degree of
porosity is significantly higher for the AgT and GaT granules than for the AgMT and GaMT
granules. It is worth mentioning that the specific surface area (SSA) of the pores is also
better developed for the AgT and GaT granules, which is in accordance with the SEM results
(see Figure 2d–f). The high SSA of these granules may be caused by their well-developed
mesoporous structure. This is also an important factor in the case of the average diameter
of pores; highly developed mesopores, as well as the presence of numerous macropores,
may be the reason for a larger diameter of pores in the case of the AgT and GaT granules
(see Table 2).

Table 2. Results of porosity and mechanical strength studies.

Sample Total Volume of
Pores (cm3/g)

Porosity of
Granules

(%)

SSA of
Pores (m2/g)

Volume of
Mesopores

(cm3/g)

Percentage
of

Mesopores
(%)

Average
Diameter of
Pores (nm)

Apparent
Density of
Granules
(g/cm3)

Average
Mechanical

Strength
(N/granule)

GaT 0.87 65 79 0.32 37 40 0.8 34
GaMT 0.28 36 21 0.06 22 35 1.3 110
AgT 0.94 65 55 0.23 25 65 0.7 37

AgMT 0.56 55 42 0.12 22 45 1.0 15

It should be noted that the average mechanical strength of the synthesized granules
was vastly different in two analyzed types of granules (see Table 2). The AgT and GaT
granules exhibited mechanical strength of around 35 N, which was approximately three
times lower than the mechanical strength of the GaMT granules. This may be explained
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by the higher apparent density of the GaMT granules. Surprisingly, the AgMT granules
showed significantly lower mechanical strength, together with great apparent density.
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Figure 2. Representative SEM images of the samples: ceramic microgranules (AgM and GaM) (a–c);
composite granules (AgT and GaT) (d–f); composite granules AgMT and GaMT (g–i).

In the case of the ceramic microgranules (AgM and GaM), it was not possible to
conduct an evaluation of the mechanical compressive strength and mercury intrusion
porosimetry method, due to the very small size of the microgranules and their pores.
Therefore, we decided to estimate the sizes of the pores using the SEM pictures (data not
shown) and Olympus software measure IT.

According to this evaluation, ceramic microgranules AgM and AgT have two types of
pores, including larger, irregular ones with a diameter of about 25 ± 3 µm and 15 ± 3 µm
for AgM and GaM, respectively, and smaller, oval ones with a diameter of about 5 ± 2 µm.

2.3. Study of Silver and Gallium Ions Release from Granules

In Figure 3a,b, the results of the release of silver and gallium ions are presented. It can
be observed that in all of the cases (for the “T” granules, as well as the “TM” granules),
the amount of released silver ions was fairly low. The lowest release was observed for
GaMT granules. It is also worth noting that in the case of the AgMT and GaMT granules,
silver or gallium ions started to be released after a longer time than from the AgT and GaT
granules, respectively. Regarding the AgT and GaT granules, the presence of the doped
ions could be observed in the sample after only 1 h, whereas in the case of the AgMT and
GaT granules, the ions were detected in the samples after 12 h. However, in the case of
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the silver-containing samples, this did not influence the final concentration of silver ions,
which was similar in both cases.
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2.4. Cytotoxicity Studies of Powders and Granules

Figure 4 and Figure S1 (in Supplementary Materials) show the results obtained in
the cytotoxicity tests. As can clearly be observed, the BALB/c 3T3 cells viability or mito-
chondrial metabolic activity did not fall below 70% in comparison to the untreated control,
using the AgM, GaM, GaT, AgMT and GaMT granules in the NRU; neither was this the
case in the MTT test across the whole range of tested dilutions (Figure 4). Therefore, all
these materials were classified as non-cytotoxic in both assays (Tables 3 and 4). On the
other hand, Ag-HA powder (see Figure S1) and AgT reduced 3T3 cells viability and enzy-
matic activity to below 70% after exposition to the undiluted extracts (100 mg/mL) and
were classified as cytotoxic in both assays (Tables 3 and 4). The Ga-HA powder was not
classified as cytotoxic, according to the methodology of the NRU assay, but it significantly
decreased the mitochondrial metabolic activity of cells treated with the undiluted extract
(see Figure S1 and Table 3). However, in the first of the dilutions in the twofold dilution
series, none of these samples (Ag-HA, Ga-HA powders and AgT) negatively affected the
cell culture condition.

Table 3. Results of the neutral red uptake test for the highest concentrations of tested extracts
(100 mg/mL) in comparison to the untreated control.

Sample Cells Viability ± SD (%) IC50 (mg/mL) Classification

HA powder 101 ± 2 N Non-cytotoxic
Ag-HA powder 0 ± 0 75 Cytotoxic
Ga-HA powder 80 ± 10 N Non-cytotoxic
AgM granules 100 ± 3 N Non-cytotoxic
GaM granules 98 ± 4 N Non-cytotoxic
AgT granules 0 ± 0 61 Cytotoxic
GaT granules 80 ± 4 N Non-cytotoxic

AgMT granules 93 ± 7 N Non-cytotoxic
GaMT granules 96 ± 5 N Non-cytotoxic

LT 0 ± 0 <10 Cytotoxic
PE 102 ± 7 N Non-cytotoxic

LT—latex, reference cytotoxic material. PE—polyethylene foil, reference non-cytotoxic material. N—calculation
was not possible due to the lack of cytotoxicity in the whole range of tested concentrations. SD—standard
deviation. Results with cells viability decreased under 70% are bolded.
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Table 4. Results of the MTT assay for the highest concentrations of tested extracts (100 mg/mL) in
comparison to the untreated control.

Sample Cells Viability ± SD (%) IC50 (mg/mL) Classification

Ag-HA powder 0 ± 0 59 Cytotoxic
Ga-HA powder 37 ± 9 86 Cytotoxic
AgM granules 107 ± 2 N Non-cytotoxic
GaM granules 108 ± 5 N Non-cytotoxic
AgT granules 17 ± 7 74 Cytotoxic
GaT granules 70 ± 9 N Non-cytotoxic

AgMT granules 101 ± 0 N Non-cytotoxic
GaMT granules 107 ± 15 N Non-cytotoxic

LT 0 ± 0 <10 Cytotoxic
PE 102 ± 7 N Non-cytotoxic

2.5. Results of Antibacterial Activity Studies
2.5.1. Preliminary Studies

The pilot test of antibacterial activity was based on the migration of Ag and Ga ions
from the prepared samples to the surrounding agar medium and inhibition of bacterial
growth within the migration zone. The results obtained in this experiment showed that
only the Ag-HA powder and porous AgT granules exhibited antibacterial activity (Table 5),
confirming the release of Ag+ from the samples. Larger growth inhibition zones were
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observed for Ag-HA powder (11–13 mm) than for AgT granules (8–10 mm). This difference
can be explained by the fact that the granules are composed not only of Ag-HA powder
but also of sodium alginate and chondroitin sulphate; therefore, the content of Ag-enriched
powder was lower in the granules. The lowest susceptibility to silver ions was noted with
regard to the E. coli strain (Table 5). In the case of the AgM ceramic microgranules, no
antibacterial activity was observed for all tested strains. This was expected, due to the low
porosity of the microgranules, which reduced the Ag+ release. No effect of Ga3+ ions on
the antibacterial activity of the samples was observed under the test conditions. This could
have been caused by the lower antibacterial activity of the Ga ions or their slower release
from the samples, in comparison with the Ag-enriched samples.

Table 5. Results of agar plate test. Diameter of the well drilled in agar medium: 7.5 mm.

Sample
Zones of Bacterial Growth Inhibition (mm)

Staphylococcus
aureus

Staphylococcus
epidermidis Escherichia coli Pseudomonas

aeruginosa

HA 0 0 0 0
Ag-HA 12 13 11 12
Ga-HA 0 0 0 0
AgM 0 0 0 0
GaM 0 0 0 0
AgT 10 10 8 10
GaT 0 0 0 0

AgMT 0 0 0 0
GaMT 0 0 0 0

The agar plate test has limitations, which are related to the restricted release and
migration of antibacterial ions in viscous and solid agar medium. Therefore, to gain
a deeper insight into the antibacterial properties of the tested samples, an antibacterial
activity assessment of porous materials and a bacterial adhesion test were performed. Due
to the different form of the samples (powders and granules), the tests were performed
separately for the powders pressed into the tablets and for the porous granules.

2.5.2. Antibacterial Activity of Powders

The assessment of the antibacterial activity of the tested materials is based on a
comparison of the number of viable bacteria eluted from the pure hydroxyapatite and
Ag- and Ga-doped hydroxyapatite. The results of this assessment for pressed Ag-HA and
Ga-HA powders were compared with those of the pressed HA powder and the positive
controls (amount of bacteria in 50 µL of working bacterial suspensions). The tablets pressed
from HA powder served as a reference, which allowed us to estimate the amount of viable
bacteria eluted from pure non-doped material. As shown in Figure S2a, approximately 3%
and 48% of bacteria introduced into the tablets were eluted from the HA reference samples
inoculated with S. aureus and S. epidermidis, respectively. No viable Gram-positive bacteria
were eluted from the Ag-HA and Ga-HA tablets (in the case of S. epidermidis, the results
were statistically different), suggesting the antibacterial activity of both silver- and gallium-
doped hydroxyapatite. However, for both Gram-negative strains, no bacteria were eluted
from the HA reference tablets or from the Ag-HA and Ga-HA tablets (Figure S2a). Thus, the
evaluation of antibacterial activity of the Ag and Ga ions was impossible in the case of the
E. coli and P. aeruginosa strains. This observation was possibly caused by the relatively high
density and low porosity of the pressed tablets, which enabled the bacteria to enter into
the tablets but did not allow them to be eluted after the incubation. In turn, the bacterial
adhesion test allows us to evaluate the ability of tested materials to prevent the adhesion of
bacteria, which is a crucial starting point in the biofilm formation process. In this test, the
tablets of pressed HA powder served as a reference for the Ag-HA tablets and the Ga-HA
tablets, similar to the AATCC test method 100-2004. The results are presented in Figure S2b.
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For all the tested bacterial strains, Ag-HA significantly reduced the number of adhered
bacteria in comparison with pure HA by 10–82%, depending on the strain (Figure S2b). A
higher rate of bacterial viability reduction was observed for both Gram-negative strains
(by 49–82% compared with pure HA) in comparison with both Gram-positive strains (by
10–33% compared with pure HA) (Figure S2b). The effect of gallium ions doping on the
antiadhesive properties of HA was less distinct, which is probably related to the lower rate
of Ga3+ release from the Ga-HA tablets. A statistically significant reduction in the number
of adhered bacterial cells in the case of the Ga-HA tablets was found for all strains (by
12.5–64% compared with pure HA), with the exception of S. epidermidis (Figure S2b).

Difficulties in the interpretation of the results of antibacterial activity assessment for
the reference and ions-doped HA powders (as shown in Figure S2a) necessitated the testing
of the antibacterial activity of the powders in another mode. Thus, powdered samples
were subjected to additional tests, based on the direct contact between the powders and
bacteria, followed by an evaluation of their survival rate. In this test, the impact of bacterial
adhesion on the tested powder was eliminated, as both free and powder-adhered cells
were plated and counted. Two concentrations of powder suspensions, 0.1 mg/mL and
1 mg/mL, were tested, while the final titre of all bacterial strains was 3.0 × 106 CFU/mL.
A statistically different antibacterial effect was found even for pure HA powder in both
tested concentrations for S. epidermidis and P. aeruginosa, causing the reduction in bacterial
viability to 40–60% of the control. However, the effect of HA powder for S. aureus and E.
coli was not detected (Figure 5).
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Figure 5. Antibacterial activity of hydroxyapatite powders against 4 bacterial strains: Staphylococcus
aureus (a), Staphylococcus epidermidis (b), Escherichia coli (c) and Pseudomonas aeruginosa (d).
(′) and (′′) symbols accompanying powders designation on X axes indicate their concentration in
mixtures (0.1 mg/mL and 1 mg/mL, respectively). (*) symbol indicates statistically significant
differences between the samples and control, (#) symbol indicates statistically significant results
between HA′ and the samples, ($) symbol indicates statistically significant results between HA′′ and
the samples, (ˆ) symbol indicates statistically significant results between Ag-HA′ and the samples,
(@) symbol indicates statistically significant results between Ag-HA′′ and the samples, (~) symbol
indicates statistically significant results between Ga-HA′ and the samples; according to one-way
ANOVA with post-hoc Dunnett’s test or post-hoc Tukey’s test (p < 0.05).
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Although it was recognized that hydroxyapatite was biologically inert and did not act
toxically on bacteria, there were some observations indicating the antibacterial activity of
nanohydroxyapatite, both artificial (obtained by the wet precipitation method or by the
microwave-assisted method) [50,51] and natural source-derived [52]. Our results are, to
some extent, confirmation of previous reports. The effect of the Ag-HA powder was the
most striking; in the case of all strains, 1 mg/mL of Ag-HA powder reduced the bacterial
viability completely or almost completely. The same was observed for the 0.1 mg/mL
Ag-HA powder concentration by comparison with both Gram-negative strains, while in
the case of the Gram-positive strains, the reduction in bacterial viability reached 25–35%
of the control (Figure 5). The statistical analysis also confirmed that the presence of Ag
ions caused a statistically different antibacterial effect in comparison with pure HA powder
(with the exception of a 0.1 mg/mL concentration, tested against S. epidermidis strain). In
turn, the effect of Ga ions in the HA powder was much less obvious. It did reduce the
viability of S. epidermidis and P. aeruginosa by comparison with the control (to approx. 40% of
the control) (Figure 5b,d). However, in the case of 1 mg/mL of Ga-HA and P. aeruginosa, the
antibacterial effect was statistically different compared with the same concentration of HA
powder (Figure 5d). Moreover, this effect was dose-dependent (Figure 5d). This observation
is the more important in light of the fact that P. aeruginosa is a critically dangerous bacterial
strain, causing morbidity and mortality in many patients and is remarkably resistant to
antibacterial agents, thus is difficult to eradicate [53]. These observations are in accordance
with the results of the bacterial adhesion test, which showed that P. aeruginosa is the most
susceptible to Ga-HA antibacterial activity among all tested strains. To summarize, the
direct contact test revealed more details than the antibacterial activity test, based on the
AATCC test method 100-2004, and confirmed the strong antibacterial activity of Ag-HA
and the moderate antibacterial activity of Ga-HA.

2.5.3. Antibacterial Activity of Granules

For porous granules, the assessment of the antibacterial activity required a reference
sample in the form of granules prepared from pure HA powder (HAT), which was prepared
in an analogous way as AgT, GaT, AgMT and GaMT. The physicochemical properties of the
HAT granules (size, morphology, porosity) were similar to the AgT and GaT granules (data
not shown). The results of the antibacterial activity for these granules, based on the AATCC
test method 100-2004, showed that amount of both Gram-positive bacteria significantly
increased after incubation with the reference HAT granules, in comparison with the control
(Figure 6a).

This phenomenon might have been caused by the presence of organic polymers
(sodium alginate and chondroitin sulphate), which served as a nutrient for bacterial cell
propagation. Alginate oligosaccharides are known for their antibacterial activity exhibited
in relation to S. aureus and other staphylococci [54]. However, hydrogel wound dressings,
based on alginate polymers, require additional antibacterial agents to reveal antibacterial
activity [55]. In turn, the number of E. coli and P. aeruginosa was reduced after incubation
with HAT, which can especially be explained in the case of the latter strain, as P. aeruginosa
cannot use alginate as a carbon source [56]. Silver-containing AgT and AgMT granules
caused the most significant mortality of all the tested strains (Figure 6a), confirming their
strong antibacterial activity. Gallium-doped materials (GaT and GaMT) also caused a
decrease in bacterial viability by 70–100% by comparison with pure HAT (Figure 6a);
only in the case of S. epidermidis and GaT granules was this effect less notable (only a
20% decrease). The bacterial adhesion test related to the second aspect of the bacteria-
biomaterial interactions showed the strong impact of AgT on bacterial adhesion (although
for S. epidermidis, it was less and was not significant) (Figure 6b). AgMT granules exhibited
a much weaker effect on bacterial adhesion than AgT, which can be explained by the lower
content of silver in the granules. The effect of gallium presence in GaT and GaMT on
bacterial adhesion limitation was much less distinct than that observed for the presence of
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silver in the tested granules (Figure 6b). Surprisingly E. coli showed a stronger reaction to
GaMT than to GaT, although the latter contained a higher Ga concentration (Figure 6b).

Figure 6. Antibacterial activity according to the AATCC 100-2004 test method (a) and bacterial
adhesion (b) of hydroxyapatite-based granules against 4 bacterial strains. (*) symbol indicates
statistically significant differences between the samples and control, (#) symbol indicates statistically
significant results between the samples and HAT granules, ($) symbol indicates statistically significant
results between AgT and all doped samples, (ˆ) symbol indicates statistically significant results
between GaT and all doped samples; according to one-way ANOVA with post-hoc Dunnett’s test or
post-hoc Tukey’s test (p < 0.05).
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An unexpected observation was made in the case of S. epidermidis, namely, the bacterial
adhesion to AgMT, GaT and GaMT was significantly higher than that of the reference HAT
granules (Figure 6b). This phenomenon is difficult to explain; however, this may be on
account of the different surface topography of these granules.

AgM and GaM microgranules, due to the low porosity resulting from the high sintering
temperature (15–25 µm and 5 µm; as mentioned above) and micro-dimensional form, could
not be evaluated for antibacterial activity, using the same tests as other materials. Therefore,
extracts obtained after microgranule incubation (24 h) with bacterial culture broth were
inoculated with four reference bacterial strains. Then, the bacterial growth in the extracts
was monitored. However, no antibacterial effect was observed. The rate of bacterial
growth in both collected extracts was on a comparable level with the bacterial growth of
the control (data not shown). The above results may be explained by the low porosity of
microgranules, which negatively affects the release of Ag+ and Ga+ ions from the samples
in this particular test. However, we have indirect proof that AgM and GaM microgranules
reveal antibacterial activity, namely, that AgMT and GaMT granules (composed of 50% of
AgM and GaM microgranules, respectively) exhibit notable antibacterial activity, according
to the AATCC 100-2004 test method (Figure 6a). Therefore, their antibacterial activity must
have been related to the presence of AgM and GaM microgranules in the granules’ structure.

3. Materials and Methods
3.1. Synthesis of Silver- or Gallium-Containing Hydroxyapatite Powders

Hydroxyapatite powders enriched with gallium (Ga-HA) or silver ions (Ag-HA) with
0.45 wt% and 0.54 wt% nominal value of Ga or Ag, respectively, were synthesized using the
conventional wet method (coprecipitation in an aqueous solution), which was described
in detail in our previous work [57]. The following reagents were used in the aforemen-
tioned synthesis: calcium nitrate tetrahydrate Ca(NO3)2·4H2O (Sigma-Aldrich, Bangalore,
India), ammonium dibasic phosphate (NH4)2HPO4 (Chempur, Piekary Śląskie, Poland),
silver nitrate AgNO3 (Avantor Performance Materials, Gliwice, Poland) and gallium nitrate
trihydrate Ga(NO3)3·3H2O (Sigma-Aldrich, Burlington, MA, USA) as sources of calcium,
phosphorus, silver and gallium, respectively. Briefly, an aqueous solution of (NH4)2HPO4
was added dropwise into an aqueous solution of Ca(NO3)2·4H2O and one of the afore-
mentioned reagents (AgNO3 or Ga(NO3)3 3H2O) and stirred gently at pH 10 and at a
temperature of 60 ◦C for 2 h. Then, the obtained precipitate was left for 24 h for ageing.
Next, the precipitates were filtered, soaked several times in distilled water and dried at
120 ◦C in air. For comparison, pure, unsubstituted hydroxyapatite (HA) was synthesized
by the same method.

3.2. Preparation of Microgranules

Microgranules were obtained using Ag-HA and Ga-HA powders according to the
method adapted from [58]. Additional reagents, used in the preparation of microgranules
by using camphene emulsion, were as follows: gelatine, 20 mesh pure p.a. (Chempur,
Piekary Śląskie Poland); poly(vinyl alcohol) PVA, average molecular weight 130,000
(Sigma-Aldrich, USA); poly(acrylic acid sodium salt) (Sigma-Aldrich, St. Louis, MO,
USA); Triton™ X-100 (Sigma-Aldrich, St. Louis, MO, USA); camphene (Sigma-Aldrich,
Madrid, Spain).

Firstly, a 10% aqueous gelatine solution was prepared, with the addition of 2% PVA.
Afterwards, 0.2% Triton X-100 and 0.3% poly(acrylic acid sodium salt) were added to the so-
lution as dispersants. Meanwhile, camphene and Ag-HA or Ga-HA powder were mixed to-
gether at 60 ◦C in a 0.5:1 ratio. A 10% gelatine solution was added to the camphene/Ag-HA
(Ga-HA) mixture (2 mL of solution per 1 g of hydroxyapatite powder) and the obtained
slurry was dispersed in oil in a beaker using a magnetic stirrer (150–250 rpm). Subsequently,
the beaker was kept in an ice-cooled bath for 5 min, then the obtained microgranules were
separated from the oil, rinsed with ethanol and finally dried at room temperature.
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At the next stage, microgranules were sintered at a high temperature (initially 500 ◦C
for 1 h at a heating rate of 3 ◦C/min, then at 1250 ◦C for 3 h at a heating rate of 5 ◦C/min).
The granules were then sieved using test sieves (Ø 0.2 mm and Ø 1 mm), in order to
separate those with a 0.2–1 mm diameter.

The obtained granules were named AgM and GaM for silver- and gallium-containing
samples, respectively. For comparison, pure HA was synthesized according to the afore-
mentioned procedure.

3.3. Preparation of Composite Granules

In order to fabricate composite granules, the following reagents were used: sodium
alginate (Sigma Aldrich, US), chondroitin sulphate sodium salt (TCI, Belgium), calcium
chloride anhydrous CaCl2 (Sigma-Aldrich, China) and the following previously synthesized
powders and microgranules: HA, Ag-HA, Ga-HA, AgM and GaM.

At first, a 4% aqueous sodium alginate solution was prepared at 40 ◦C and chondroitin
sulphate sodium salt was added to obtain a 0.5% suspension. Then, two types of composite
granules were prepared.

In the first type of granules, 1 g of Ag-HA or Ga-HA (or HA) powder was added to the
suspension (10 mL) and mixed vigorously, resulting in a milky, dense slurry. Meanwhile, the
cross-linking solution (1.5% CaCl2) was prepared. Finally, the slurry was added dropwise
to a CaCl2 solution, stirred using a magnetic stirrer and granules were formed. The granules
obtained were left in the cross-linking agent for 10 min, rinsed with distilled water, dried in
air and then lyophilized.

During the preparation of the second type of granules, pure, unsubstituted HA and
AgM or GaM microgranules (ratio 1:1) were used instead of Ag-HA or Ga-HA powders.
The other stages of production remained unchanged. All the obtained granules are listed in
Table 6.

Table 6. List of all the obtained granules from Ag-HA or Ga-HA materials.

Granules Fabrication method Comment

AgM Camphene emulsion Microgranules containing Ag-HA
GaM Camphene emulsion Microgranules containing Ga-HA
HAT Alginate cross-linking Composite granules containing HA
AgT Alginate cross-linking Composite granules containing Ag-HA
GaT Alginate cross-linking Composite granules containing Ga-HA

AgMT Alginate cross-linking Composite granules containing AgM and HA
GaMT Alginate cross-linking Composite granules containing GaM and HA

3.4. Physicochemical Analysis of Ag-HA and Ga-HA

The phase composition of the powder samples was determined by powder X-ray diffrac-
tometry (PXRD, Bruker D8 Advance, Billerica, MA, USA). The diffractometer was equipped
with a LYNEXEYE position sensitive detector and with Cu-Kα radiation (λ = 0.15418 nm).
The measurements were carried out in the Bragg–Brentano (θ/θ) horizontal geometry
(flat reflection mode) between 15◦ and 60◦ (2θ) in a continuous scan, using 0.03◦ steps
and 2 s/step (total time 384 s/step). Phase identification was achieved by comparing
the obtained diffractograms of HA, Ag-HA and Ga-HA samples with the JCPDS 09-0432
standard pattern.

Fourier-transform infrared studies (FT-IR) were conducted using the Spectrum 1000
spectrometer (Perkin Elmer, Llantrisant, UK). The data were collected with a 2 cm−1 resolu-
tion over a range of 4000–400 cm−1 at 30 scans, using the standard KBr pellet technique.

PXRD patterns and FT-IR spectra were processed using GRAM/AI 8.0 software
(Thermo Scientific, Burlington, ON, USA) and subsequently, graphs were prepared with
KaleidaGraph 3.5 software (Synergy Software, Reading, PA, USA).

The gallium and silver content in the Ga-HA and Ag-HA samples, respectively, was
measured by atomic absorption spectrometry (AAS). Briefly, AgNO3 (Avantor Performance
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Materials, Poland) and Ga(NO3)3·3H2O (Sigma-Aldrich, USA) were weighed out, dissolved
in distilled water (separately) and then diluted several times, in order to prepare the
solutions necessary for the calibration curves. Then, the known quantities of synthesized
Ag-HA and Ga-HA powders were weighted out, dissolved in suprapure 63% HNO3 and
adequately diluted with distilled water. Finally, the obtained solutions were measured
by AAS spectrometry (ANALYST 400, Perkin Elmer, Llantrisant, UK), with detection at a
wavelength λ = 328.07 nm for silver and λ = 287.42 nm for gallium.

3.5. Physicochemical Analysis of the Granules

In order to determine the morphology of the prepared granules, a microscopical study
was performed using scanning electron microscopy (SEM) JSM 6390 LV (JEOL, Tokyo,
Japan) at 20 or 30 kV accelerating voltage. The survey was based on taking images of
granules (previously covered with a gold layer in a vacuum chamber) from both the outer
and the inner surface (after the cross-section). The cross-sections were prepared by carefully
cutting the granules with a surgical lancet.

The porosity and specific surface area of the granules were evaluated using the mer-
cury intrusion porosimetry method with the Autopore IV 9510 instrument (Micromeritics,
Norcross, GA, USA). The measurements were conducted with Hg intrusion pressure in
the range of 0.0035–400 MPa. The dried fragments of the tested sample were degassed in a
penetrometer to a pressure of 50 mmHg. Finally, the volumes and size distributions of the
pores were calculated using the Washburn equation [59], which is as follows:

PC =
2σ cos θ

r
(3)

where

PC—capillary pressure
σ—mercury interfacial tension
θ—contact angle
r—pore radius.

The samples were also tested in order to evaluate the mechanical compressive strength,
by measuring the strength needed for destruction of the granules. The study was performed
using the Tinius Olsen H 10K-S instrument (Tinius Olsen, Horsham, PA, USA). Briefly, the
granules were placed between the stationary plate and the measuring head, then were
put under a pressure test, while moving the head at a speed of 5 mm/s. The mechanical
compressive strength is a ratio of pressure used for the destruction of the granule (N) and
the diameter of the granule (mm).

In order to evaluate in vitro Ga3+ and Ag+ release from the granules, 0.5 g of each
sample was placed in a conical tube with a volume of 50 mL, then 50 mL of phosphate
buffered saline (PBS) of pH = 7.4 was added. Afterwards, the tubes were placed in a water
bath at 37 ◦C and stirred gently. The release study of silver and gallium ions was carried
out for three weeks. Sample aliquots of 10 mL were taken at specific time intervals, namely
1 h, 2 h, 3 h, 6 h, 12 h, 24 h, 2 days, 5 days, 1 week, 2 weeks and 3 weeks, and replaced with
the same amount of fresh PBS.

The amount of released ions was determined by inductively coupled plasma mass
spectrometry (ICP-MS), using an ICP mass spectrometer, Thermo Electron X Series II
(Thermo Electron Corporation, Allentown, PA, USA).

3.6. In Vitro Cytotoxicity Studies

In order to evaluate the cytotoxicity to mammalian cells, the materials (Ag-HA, Ga-HA
powders and six types of granules), were tested with the following two assays: the neu-
tral red uptake (NRU) test performed on the basis of the ISO 10993 guideline Annex
A [60] and the MTT assay, based on the reduction in 3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide by the mitochondrial succinate dehydrogenase. In the NRU
assay, the quantitative estimation of viable cells in the tested cultures was based on their
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neutral red uptake in comparison to the results obtained for untreated cells. Dead cells have
no ability to accumulate the dye in their lysosomes. The MTT assay allowed us to evaluate
the mitochondrial metabolic activity of the tested cultures. Only cellular oxidoreductase
enzymes in living cells have the ability to reduce the tetrazolium MTT dye into an insoluble,
purple formazan. Both tests were performed with the BALB/c 3T3 clone A31 mammalian
cell line (mouse embryonic fibroblasts from American Type Culture Collection).

For the NRU and MTT assays, the BALB/c 3T3 cells were seeded in 96-well microplates
(15,000 cells/100 µL) in DMEM (Lonza) culture medium (supplemented with 10% of calf
bovine serum, 100 IU/mL penicillin and 0.1 mg/mL streptomycin) and incubated for 24 h
(5% CO2, 37 ◦C, >90% humidity). At the end of the incubation, each well was examined
under a microscope to ensure that the cells formed a confluent monolayer. Subsequently, the
culture medium was replaced by the tested extracts of materials. The extracts were prepared
by incubation of the tested materials in the cell culture medium (100 mg/mL) with reduced
serum concentration (5%) at 37 ◦C for 24 h, then shaken and sterilized by filtration. The cells
were treated with four dilutions of each extract in a twofold dilution series for 24 h (three
data points for each). Subsequently, the treatment medium was removed. The cells were
washed with PBS and treated with the neutral red medium or MTT medium for 2 h. Then,
the medium was discarded, the cells were washed with PBS and treated with desorbing
fixative (ethanol and acetic acid water solution or isopropanol). The amount of neutral red
medium accumulated by the cells was evaluated colorimetrically at 540 nm. The amount of
insoluble purple formazan was evaluated colorimetrically at 570 nm. Polyethylene film
and latex were used as the reference materials (with no cytotoxicity and high cytotoxicity,
respectively). The percentage of viable cells in each well was calculated by comparing
its OD540 or OD570 result with the mean result obtained for untreated cells (incubated in
the same conditions with fresh culture medium). Samples were considered cytotoxic if
they reduced cell survival or mitochondrial metabolic activity below 70%, compared to the
untreated cells (a baseline cell viability and enzymatic activity). When the BALB/c 3T3 cell
viability was not decreased below 70% across the whole range of tested dilutions of the
samples, it was considered non-cytotoxic in this range of concentrations.

3.7. Antibacterial Activity Studies
3.7.1. Strains and Maintenance

The following bacterial strains from ATCC were used in this study: Staphylococcus
aureus ATCC 25923, Staphylococcus epidermidis ATCC 12228, Pseudomonas aeruginosa ATCC
27853 and Escherichia coli ATCC 25922. Bacteria, maintained in microbanks at −80 ◦C, were
cultured in Mueller–Hinton (M–H) agar medium (Biomaxima, Lublin, Poland), at 37 ◦C
for 20–24 h and then transferred into a Mueller–Hinton (M–H) broth (Biomaxima, Lublin,
Poland) for a further 24 h incubation at 37 ◦C. Depending on the particular experiment,
bacterial inoculates were obtained either by bacterial cell scrapping from agar medium
to sterile saline or by the dilution of the suspension in the culture broth prior to the
experiments. Bacterial titres were selected individually for each test. The tested biomaterials
were sterilized by EthO (ethylene oxide) before the tests. All tests of antibacterial activity
were performed in triplicate.

3.7.2. Agar Plate Test

Wells (Ø = 7.5 mm) were drilled in Mueller–Hinton agar (Biomaxima, Lublin, Poland)
in 90 mm Petri dishes (thickness: approx. 5 mm). A number of 25± 1 mg samples, sterilized
in EtOh, were placed inside the wells to evenly cover the surface of the wells. Then, liquid
Mueller–Hinton agar medium (approx. 40 ◦C) was poured into the wells and allowed to
set. Next, 100 µL of bacterial inoculate in sterile 0.9% NaCl (0.1 McFarland standard, an
equivalent of approx. 3.0 × 107 CFU (colony forming units)/mL) was placed onto the
agar and evenly spread. The test was performed individually for each bacterial strain.
Subsequently, plates were incubated at 37 ◦C for 20–24 h. Afterwards, bacterial growth
inhibition zones (in mm) were measured.
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3.7.3. Antibacterial Activity Test (AATCC Test Method 100-2004 “Antibacterial Finishes on
Textile Materials: Assessment of Developed from American Association of Textile
Chemists and Colorists”)

Pellets for antibacterial activity studies were obtained by weighting 0.2 g of powder
(HA, Ag-HA or Ga-HA) and forming it into a tablet, using a manual hydraulic pellet press.
An evaluation of the antibacterial activity of the tested samples was performed on the basis
of the AATCC test method 100-2004 for textile materials and adapted for porous ceramic
materials. Briefly, samples (200 ± 15 mg of pellets formed from the obtained powders
and 50 ± 2 mg of each synthesized granule) were sterilized by ethylene oxide. AgM and
GaM microgranules were not subjected to this test, due to their small size and low porosity
caused by high sintering temperature, which significantly reduced the accuracy of this
particular measurement. A working bacterial suspension (3.0 × 107 CFU/mL) of each
strain was prepared in M–H broth and diluted 250-fold in sterile 0.9% NaCl. Samples
were placed on sterile microscope slides (Chemland, Stargard Szczeciński, Poland) and
inoculated with a working bacterial suspension, which was completely absorbed by the
samples, leaving no remaining liquid (50 µL both for 200 mg tablets and 50 mg granule
portions). Then, all samples were transferred to sterile 50 mL Falcon tubes (Corning, Union
City, CA, USA), which were screwed to prevent evaporation and then incubated at 37 ◦C
for 24 h. An amount of 50 µL of working bacterial suspension of each strain was placed in
another sterile 50 mL Falcon tube and treated as above, to control the viability of bacteria,
without contact with the tested materials (control+). Afterwards, 5 mL of sterile 0.9%
NaCl was added to all samples and vigorously shaken (1 min) to elute the bacterial cells.
Samples of the collected eluate were plated onto M–H agar Petri dishes using an EasySpiral
Dilute (Interscience, Saint Nom La Bretèche, France) automatic plater (each sample in
triplicate). M–H agar plates with plated bacteria eluted from the samples were incubated at
37 ◦C for 20–28 h. CFUs were then counted for each plate using a Scan 300 colony counter
(Interscience, Saint Nom La Bretèche, France). The reduction in the number of bacteria was
calculated as a percentage of CFU in control+ for each bacterial strain individually.

3.7.4. Bacterial Adhesion Test

The samples (200± 15 mg of pellets formed from the obtained powders and 50± 2 mg
of each synthesized granule) were sterilized by ethylene oxide in the wells of a 12-well plate
(Corning, Union City, CA, USA). AgM and GaM microgranules were also not subjected to
this test for the same reason as mentioned in Section 3.7.3, namely due to the difficulty in
the test performance. Then, 2 mL of bacterial suspensions (3.0 × 108 CFU/mL) in M–H
broth were added to each well individually for each bacterial strain. Next, the plates were
protected with stripes of parafilm (Bemis, Neenah, WI, USA) to prevent evaporation at
the liquid phase, then incubated in an Innova 42 incubator (New Brunswick Scientific,
Enfield, CT, USA) at 37 ◦C, 2 h, 100 rpm. Afterwards, tablets and granules were aseptically
transferred onto a sterilized Whatman filter membrane to remove the excess of the bacterial
suspension, placed in sterile 50 mL Falcon tubes (Corning, Union City, CA, USA) and
washed carefully 4 times with 20 mL of 0.9% NaCl, to remove all unbound bacterial cells.
Then, the pieces were transferred again to the sterilized Whatman filter membrane to
remove excess saline, moved to another set of 50 mL Falcon tubes and treated with 1 mL of
0.25% trypsin-EDTA solution (Sigma-Aldrich, St. Louis, MO, USA) to digest the proteins,
which enable the cells to adhere to the prostheses (15 min at 37 ◦C). After intense vortexing
(1 min), trypsin was inactivated with 4 mL of M–H broth and diluted with 5 mL of 0.9%
NaCl. Finally, 50 µL of each resulting liquid was plated in triplicate on M–H agar plates
using the EasySpiral Dilute plater (Interscience, Saint Nom La Bretèche, France), then the
plates were incubated at 37 ◦C for 20–24 h and the CFU were counted on each plate using a
Scan 300 counter (Interscience, Saint Nom La Bretèche, France).
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3.7.5. Direct Contact with Powders Test

Sterilized HA, Ag-HA and Ga-HA powders were suspended in sterile PBS pH 7.4 to
obtain the suspensions 2 mg/mL and 0.2 mg/mL, which were sonicated (Sonic-6, Polsonic,
Warsaw, Poland) for 15 min for better dispersion. Bacterial working solutions were prepared
for each bacterial strain, including 6.0 × 106 CFU/mL of M–H broth diluted 125-fold in
sterile 0.9% NaCl. Then, the powder suspensions and bacterial working solutions were
mixed in sterile 5 mL screwed tubes in the proportion 1:1 (resulting in a mixture of 1 mg/mL
or 0.1 mg/mL of powder with 3.0 × 106 CFU/mL in M–H broth, diluted 250-fold in
sterile 0.9% NaCl). Positive controls (control+) for each bacterial strain were prepared
by mixing PBS pH 7.4 and bacterial working solutions under the same conditions as the
powder suspensions. The tubes were then incubated at 37 ◦C, for 24 h at 5 rpm using
a RM 5–30 V CAT roller mixer (Ingenieurbüro CAT M.Zipperer, Ballrechten-Dottingen,
Germany). Finally, samples of the mixtures (50 µL) were plated onto M–H agar Petri dishes
using an EasySpiral Dilute (Interscience, Saint Nom La Bretèche, France) automatic plater
(each sample in triplicate). M–H agar plates with plated bacteria eluted from the samples
were incubated at 37 ◦C for 20–28 h. CFUs were then counted for each plate, using a Scan
300 colony counter (Interscience, Saint Nom La Bretèche, France).

3.7.6. Antibacterial Activity in Sample Extracts

Samples of AgM and GaM microgranules were sterilized by ethylene oxide in 50 mL Falcon
tubes and were then immersed in sterile PBS pH 7.4 (proportion: 0.1 g of granules/1 mL PBS)
at 37 ◦C for 24 h in an Innova 42 incubator (New Brunswick Scientific, Enfield, CT, USA)
at 100 rpm. An amount of 100 µL of the extracts was collected under sterile conditions
and transferred into the wells of a 96-well plate, mixed with 100 µL of sterile M–H broth
and inoculated with 10 µL of bacterial working suspension to produce a final titre of
0.75 × 105 CFU/mL. An amount of 100 µL PBS with pH 7.4, mixed with 100 µL of sterile
M–H broth and inoculated with bacteria as above, served as a positive control, while the
non-inoculated variant served as an assay control. Then, the plates were incubated at 37 ◦C
and 200 rpm for 24 h in an Innova 42 incubator (New Brunswick Scientific, Enfield, CT,
USA) and absorbance of the extracts was measured at 660 nm using a Synergy H4 Hybrid
Microplate Reader (Thermo Electron Corporation, Allentown, PA, USA). The absorbance
of the assay control was subtracted from the absorbance of the samples.

3.7.7. Statistical Analysis

Statistically significant differences between the various samples were calculated ac-
cording to a one-way ANOVA with post-hoc Dunnett’s test or post-hoc Tukey’s test, or
according to a Student’s t-test, using GraphPad Prism 8.0.0 Software (San Diego, CA, USA).
Samples were used in different numbers for various tests but at least in triplicate (details in
appropriate sections).

4. Conclusions

In our work, we investigated the antibacterial activity of various materials with poten-
tial application as bone substitutes. We focused on two ionic dopants with antibacterial
properties, Ag+ and Ga3+, due to their different mechanisms of action and efficiency.

Three types of granules containing silver or gallium ions (ceramic microgranules,
hydroxyapatite/alginate composite granules, and granules made of ceramic microgranules
and alginate) were examined. The studied samples differed in morphology, porosity and
mechanical properties. The granules were tested for the release of silver and gallium
ions and for their antibacterial properties. It should be noted that the granules exhibited
different silver and gallium release. Two cytotoxicity tests showed that the majority of the
materials are not toxic, except the Ag-HA powder and AgT granules that were found toxic
in both assays. However, in the first of the dilutions in the twofold dilution series, none of
these samples negatively affected the cell culture condition. The results of the antibacterial
tests turned out to be promising, as all the silver-containing materials caused significant
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mortality of the tested bacterial strains. The antibacterial efficacy of gallium-containing
materials were significantly lower.

The aim of our future work is to investigate the porous granules doped with silver or
gallium as antibiotic delivery systems targeting bone tissue.

We assume that the presence of silver or gallium ions, together with an antibiotic, may
improve the effectiveness of the prevention and treatment of intraoperative infections of
osseous tissue.
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39. Kurtjak, M.; Vukomanović, M.; Krajnc, A.; Kramer, L.; Turk, B.; Suvorov, D. Designing Ga (iii)-containing hydroxyapatite with
antibacterial activity. RSC Adv. 2016, 6, 112839–112852. [CrossRef]

40. Melnikov, P.; Teixeira, A.; Malzac, A.; Coelho, M.d.B. Gallium-containing hydroxyapatite for potential use in orthopedics. Mater.
Chem. Phys. 2009, 117, 86–90. [CrossRef]

41. Dubnika, A.; Loca, D.; Rudovica, V.; Parekh, M.B.; Berzina-Cimdina, L. Functionalized silver doped hydroxyapatite scaffolds for
controlled simultaneous silver ion and drug delivery. Ceram. Int. 2017, 43, 3698–3705. [CrossRef]

42. Sampath Kumar, T.; Madhumathi, K.; Rubaiya, Y.; Doble, M. Dual mode antibacterial activity of ion substituted calcium phosphate
nanocarriers for bone infections. Front. Bioeng. Biotechnol. 2015, 3, 59. [CrossRef] [PubMed]

43. Nie, L.; Deng, Y.; Zhang, Y.; Zhou, Q.; Shi, Q.; Zhong, S.; Sun, Y.; Yang, Z.; Sun, M.; Politis, C. Silver-doped biphasic calcium
phosphate/alginate microclusters with antibacterial property and controlled doxorubicin delivery. J. Appl. Polym. Sci. 2021,
138, 50433. [CrossRef]

http://doi.org/10.1039/C6RA26124H
http://doi.org/10.3390/jfb6041099
http://doi.org/10.1002/jbm.10280
http://doi.org/10.1016/j.actbio.2009.12.041
http://doi.org/10.1080/21870764.2019.1636928
http://doi.org/10.1007/s10971-020-05222-1
http://doi.org/10.1002/jbm.b.33651
http://doi.org/10.1016/j.ceramint.2015.03.316
http://doi.org/10.1097/00003086-200208000-00027
http://www.ncbi.nlm.nih.gov/pubmed/12151901
http://doi.org/10.3390/antibiotics7030079
http://www.ncbi.nlm.nih.gov/pubmed/30135366
http://doi.org/10.1002/chem.202002143
http://doi.org/10.1155/2014/178123
http://doi.org/10.1053/j.jepm.2015.04.015
http://doi.org/10.3390/ijms19020444
http://doi.org/10.1186/s12951-017-0308-z
http://doi.org/10.1016/j.msec.2012.05.012
http://doi.org/10.1016/j.ceramint.2014.02.088
http://doi.org/10.1007/s10856-013-5079-y
http://www.ncbi.nlm.nih.gov/pubmed/24170340
http://doi.org/10.1016/j.msec.2015.04.025
http://www.ncbi.nlm.nih.gov/pubmed/26042697
http://doi.org/10.1002/adem.201901577
http://doi.org/10.1111/j.1476-5381.2010.00665.x
http://doi.org/10.1002/term.2396
http://doi.org/10.1016/j.matlet.2019.06.095
http://doi.org/10.1590/s0102-865020180090000010
http://doi.org/10.1039/C6RA23424K
http://doi.org/10.1016/j.matchemphys.2009.05.046
http://doi.org/10.1016/j.ceramint.2016.11.214
http://doi.org/10.3389/fbioe.2015.00059
http://www.ncbi.nlm.nih.gov/pubmed/25984512
http://doi.org/10.1002/app.50433


Int. J. Mol. Sci. 2022, 23, 7102 20 of 20

44. Klug, H.P.; Alexander, L.E. X-ray Diffraction Procedures: For Polycrystalline and Amorphous Materials; Wiley: New York, NY,
USA, 1974.

45. Landi, E.; Tampieri, A.; Celotti, G.; Sprio, S. Densification behaviour and mechanisms of synthetic hydroxyapatites. J. Eur. Ceram.
Soc. 2000, 20, 2377–2387. [CrossRef]

46. Okada, M.; Furuzono, T. Hydroxylapatite nanoparticles: Fabrication methods and medical applications. Sci. Technol. Adv. Mater.
2012, 13, 064103. [CrossRef]

47. Kolmas, J.; Kalinowski, E.; Wojtowicz, A.; Kolodziejski, W. Mid-infrared reflectance microspectroscopy of human molars:
Chemical comparison of the dentin–enamel junction with the adjacent tissues. J. Mol. Struct. 2010, 966, 113–121. [CrossRef]

48. Geng, Z.; Wang, R.; Zhuo, X.; Li, Z.; Huang, Y.; Ma, L.; Cui, Z.; Zhu, S.; Liang, Y.; Liu, Y. Incorporation of silver and strontium
in hydroxyapatite coating on titanium surface for enhanced antibacterial and biological properties. Mater. Sci. Eng. C 2017, 71,
852–861. [CrossRef]

49. Gopi, D.; Shinyjoy, E.; Kavitha, L. Synthesis and spectral characterization of silver/magnesium co-substituted hydroxyapatite for
biomedical applications. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2014, 127, 286–291. [CrossRef]

50. Ragab, H.; Ibrahim, F.; Abdallah, F.; Al-Ghamdi, A.A.; El-Tantawy, F.; Radwan, N.; Yakuphanoglu, F. Synthesis and in vitro
antibacterial properties of hydroxyapatite nanoparticles. IOSR J. Pharm. Biol. Sci. 2014, 9, 77–85. [CrossRef]

51. Lamkhao, S.; Phaya, M.; Jansakun, C.; Chandet, N.; Thongkorn, K.; Rujijanagul, G.; Bangrak, P.; Randorn, C. Synthesis of
hydroxyapatite with antibacterial properties using a microwave-assisted combustion method. Sci. Rep. 2019, 9, 4015. [CrossRef]

52. Jahangir, M.U.; Islam, F.; Wong, S.Y.; Jahan, R.A.; Matin, M.A.; Li, X.; Arafat, M.T. Comparative analysis and antibacterial
properties of thermally sintered apatites with varied processing conditions. J. Am. Ceram. Soc. 2021, 104, 1023–1039. [CrossRef]

53. Pang, Z.; Raudonis, R.; Glick, B.R.; Lin, T.-J.; Cheng, Z. Antibiotic resistance in Pseudomonas aeruginosa: Mechanisms and
alternative therapeutic strategies. Biotechnol. Adv. 2019, 37, 177–192. [CrossRef] [PubMed]

54. Asadpoor, M.; Ithakisiou, G.-N.; Van Putten, J.P.; Pieters, R.J.; Folkerts, G.; Braber, S. Antimicrobial Activities of Alginate and
Chitosan Oligosaccharides Against Staphylococcus aureus and Group B Streptococcus. Front. Microbiol. 2021, 12, 700605.
[CrossRef] [PubMed]

55. Aderibigbe, B.A.; Buyana, B. Alginate in wound dressings. Pharmaceutics 2018, 10, 42. [CrossRef] [PubMed]
56. Ertesvåg, H. Alginate-modifying enzymes: Biological roles and biotechnological uses. Front. Microbiol. 2015, 6, 523. [PubMed]
57. Pajor, K.; Pajchel, Ł.; Zgadzaj, A.; Piotrowska, U.; Kolmas, J. Modifications of hydroxyapatite by gallium and silver

ions—physicochemical characterization, cytotoxicity and antibacterial evaluation. Int. J. Mol. Sci. 2020, 21, 5006. [CrossRef]
[PubMed]

58. Yang, J.H.; Kim, K.H.; You, C.K.; Rautray, T.R.; Kwon, T.Y. Synthesis of spherical hydroxyapatite granules with interconnected
pore channels using camphene emulsion. J. Biomed. Mater. Res. Part B Appl. Biomater. 2011, 99, 150–157. [CrossRef]

59. Liu, M.; Wu, J.; Gan, Y.; Hanaor, D.A.; Chen, C. Evaporation limited radial capillary penetration in porous media. Langmuir 2016,
32, 9899–9904. [CrossRef]

60. EN ISO 10993-5:2009; Biological Evaluation of Medical Devices—Part 5: Tests for In Vitro Cytotoxicity (ISO 10993-5:2009), Annex
A Neutral Red Uptake (NRU) Cytotoxicity Test. International Organization for Standardization: Geneva, Switzerland, 2009.

http://doi.org/10.1016/S0955-2219(00)00154-0
http://doi.org/10.1088/1468-6996/13/6/064103
http://doi.org/10.1016/j.molstruc.2009.12.023
http://doi.org/10.1016/j.msec.2016.10.079
http://doi.org/10.1016/j.saa.2014.02.057
http://doi.org/10.9790/3008-09167785
http://doi.org/10.1038/s41598-019-40488-8
http://doi.org/10.1111/jace.17525
http://doi.org/10.1016/j.biotechadv.2018.11.013
http://www.ncbi.nlm.nih.gov/pubmed/30500353
http://doi.org/10.3389/fmicb.2021.700605
http://www.ncbi.nlm.nih.gov/pubmed/34589067
http://doi.org/10.3390/pharmaceutics10020042
http://www.ncbi.nlm.nih.gov/pubmed/29614804
http://www.ncbi.nlm.nih.gov/pubmed/26074905
http://doi.org/10.3390/ijms21145006
http://www.ncbi.nlm.nih.gov/pubmed/32679901
http://doi.org/10.1002/jbm.b.31882
http://doi.org/10.1021/acs.langmuir.6b02404

	Introduction 
	Results 
	Chemical Structure and Elemental Analysis of the Synthesized Powders 
	Ultrastructure, Porosity and Mechanical Strength of the Granules 
	Study of Silver and Gallium Ions Release from Granules 
	Cytotoxicity Studies of Powders and Granules 
	Results of Antibacterial Activity Studies 
	Preliminary Studies 
	Antibacterial Activity of Powders 
	Antibacterial Activity of Granules 


	Materials and Methods 
	Synthesis of Silver- or Gallium-Containing Hydroxyapatite Powders 
	Preparation of Microgranules 
	Preparation of Composite Granules 
	Physicochemical Analysis of Ag-HA and Ga-HA 
	Physicochemical Analysis of the Granules 
	In Vitro Cytotoxicity Studies 
	Antibacterial Activity Studies 
	Strains and Maintenance 
	Agar Plate Test 
	Antibacterial Activity Test (AATCC Test Method 100-2004 “Antibacterial Finishes on Textile Materials: Assessment of Developed from American Association of Textile Chemists and Colorists”) 
	Bacterial Adhesion Test 
	Direct Contact with Powders Test 
	Antibacterial Activity in Sample Extracts 
	Statistical Analysis 


	Conclusions 
	References

