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Abstract Mangrove is a complex ecosystem that contains

diverse microbial communities, including rare actinobac-

teria with great potential to produce bioactive compounds.

To date, bioactive compounds extracted from mangrove

rare actinobacteria have demonstrated diverse biological

activities. The discovery of three novel rare actinobacteria

by polyphasic approach, namely Microbacterium mangrovi

MUSC 115T, Sinomonas humi MUSC 117T and Monashia

flava MUSC 78T from mangrove soils at Tanjung Lumpur,

Peninsular Malaysia have led to the screening on antibac-

terial, anticancer and neuroprotective activities. A total of

ten different panels of bacteria such as Methicillin-resistant

Staphylococcus aureus (MRSA) ATCC 43300, ATCC

70069, Pseudomonas aeruginosa NRBC 112582 and others

were selected for antibacterial screening. Three different

neuroprotective models (hypoxia, oxidative stress,

dementia) were done using SHSY5Y neuronal cells while

two human cancer cells lines, namely human colon cancer

cell lines (HT-29) and human cervical carcinoma cell lines

(Ca Ski) were utilized for anticancer activity. The result

revealed that all extracts exhibited bacteriostatic effects on

the bacteria tested. On the other hand, the neuroprotective

studies demonstrated M. mangrovi MUSC 115T extract

exhibited significant neuroprotective properties in oxida-

tive stress and dementia model while the extract of strain

M. flava MUSC 78T was able to protect the SHSY5Y

neuronal cells in hypoxia model. Furthermore, the extracts

of M. mangrovi MUSC 115T and M. flava MUSC 78T

exhibited anticancer effect against Ca Ski cell line. The

chemical analysis of the extracts through GC–MS revealed

that the majority of the compounds present in all extracts

are heterocyclic organic compound that could explain for

the observed bioactivities. Therefore, the results obtained

in this study suggested that rare actinobacteria discovered

from mangrove environment could be potential sources of

antibacterial, anticancer and neuroprotective agents.

Keywords Microbacterium mangrovi MUSC 115T �
Sinomonas humi MUSC 117T � Monashia flava MUSC

78T � Antibacterial � Anticancer � Neuroprotective

Introduction

Actinobacteria is common soil inhabitant and have a high

proportion of total microbial biomass in soil [1]. They are

considered as the most economically significant as well as

biotechnologically valuable microbe, producing bioactive

compounds including antibiotics, antimicrobial, anticancer,
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antitumor, enzyme, enzyme inhibitors and immunosup-

pressive agents [2]. Actinobacteria such as Streptomyces

are excellent producer of bioactive compounds especially

secondary metabolites [3–8]. Over 10, 000 bioactive

compounds were derived from actinobacteria species, 7600

(76%) compounds were derived from Streptomyces while

2400 (24%) compounds isolated from rare actinobacteria

[9]. Unfortunately, repeated isolation of known compounds

and a reduced hit-rate of novel compounds have limited the

development of new and effective drugs to treat ever

increasing human diseases. [10–12]. At the same time, the

arising multi drug resistance (MDR) pathogen and other

deadly diseases caused the dramatic increase in demand to

look for new compounds [13] from other sources such as

rare actinobacteria.

Previously, the numbers of rare actinobacteria being

discovered were low, as compared to Streptomyces. This is

due to the facts that they are difficult to isolate, cultivate

and maintain under conventional conditions [14]. However,

the number of novel rare actinobacteria is increasing, from

only 11 genera in 1970 to 220 genera by 2010 [15]. At the

time of writing (March 2016), there are approximately 340

genera of rare actinobacteria (www.bacterio.net) discov-

ered from various environment thus demonstrating that rare

actinobacteria are widely distributed in the biosphere.

According to Goodfellow [16], there are a low number of

rare actinobacteria isolated from marine environments such

as the mangrove. Thus, mangrove environment has gained

attention from the researcher due to its location where it

situated at the inter-phase between the terrestrial and

marine environment, and have a special condition such as

high moisture, high salinity and hypoxia tolerant [17]. This

condition breeds many novel microorganism including rare

actinobacteria that contained special and unique metabolic

pathways to adapt with those conditions and lead to the

production of valuable metabolites [17].

The rare actinobacteria strains discovered in previous

work were Microbacterium mangrovi MUSC 115T, Si-

nomonas humi MUSC 117T and Monashia flava MUSC

78T. These strains were isolated from mangrove soils

located at Tanjung Lumpur, Peninsular Malaysia. The

taxonomic status of these strains was described in previous

publications using polyphasic approach [18–20]. Currently,

the study of bioactive compounds from mangrove rare

actinobacteria become popular as they possess great

potential to pharmaceutical industry [3, 10, 14]. An

example, Mangamuri et al. [21] reported that the bioactive

metabolites from Pseudonocardia endophytica VUK-10

was able to inhibit the growth of Gram-positive and Gram-

negative bacteria, yeast, fungi and also exhibited potent

cytotoxic activity against human breast adenocarcinoma

cell line (MDA-MB-231, MCF-7), human cervical cell line

(HeLa), human ovarian cyst adenocarcinoma cell line

(OAW-42). Janardhan et al. [22] showed the extracts of

strain Nocardiopsis alba isolated from mangrove soil of

Nellore regions, Andhra Pradesh, India, exhibited potent

total antioxidant property. Novel anticancer and anti-in-

fection compounds are being isolated from mangrove rare

actinobacteria, as represented by the discovery of the

salinosporomide A, an anti-cancer compound produced by

Salinispora tropica [23].

In light of this, the present study was initiated to

investigate the extracts of rare actinobacteria collected

from Tanjung Lumpur, Peninsular Malaysia for its bio-

logical activity such as antibacterial, anticancer or neuro-

protective activity.

Materials and Methods

Preparation of Microbacterium mangrovi MUSC

115T, Sinomonas humi MUSC 117T and Monashia

flava MUSC 78T Extracts

All novel strains were grown on ISP2 medium for 5 days

prior to fermentation process. The fermentation medium

used was FM3 [10, 24] with slight modification and auto-

claved at 121 �C for 15 min. The strains were cultured at

200 rpm, for 7–10 days at 28 �C. The resulting fermenta-

tion media were separated from the mycelium by cen-

trifugation at 4500 rpm at 4 �C for 30 min. The

supernatant was collected and subjected to freeze dry

process. Upon freeze-drying, the sample was extracted with

methanol for 72 h (ratio 3:1; methanol:sample) and the

residue was re-extracted under the same condition twice at

24 h interval with ratio of 2:1 and 1:1, respectively. All the

methanol-containing extract was filtered and evaporated

using a rotary vacuum evaporator and the extract were kept

in -20 �C until further analysis [25].

Bacterial Strains

Ten different pathogens were used for the antibacterial

screening; namely Acinetobacter calcoaceticus NBRC

13006, Salmonella typhi ATCC 19430, Escherichia coli

ATCC 25922, Vibrio parahaemolyticus VP103 (Jeffrey

Cheah School of Medicine and Health Science laboratory),

Pseudomonas aeruginosa NRBC 11258, Methicillin-resis-

tant Staphylococcus aureus (MRSA) ATCC 43300, ATCC

70069, ATCC 33591, ATCC BAA-44, Bacillus subtilis

ATCC 31098. The test organisms were maintained on

Mueller–Hinton agar (MHA).
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Minimal Inhibitory Concentration (MIC)

Determination

Minimal inhibitory concentration (MIC) is the lowest

concentration of an antimicrobial that able to inhibit the

growth of particular bacterium after overnight incubation.

The work was performed by the broth microdilution

method in 96 well plate as described by Wiegand et al.

[26], with slight modification. Chloramphenicol (0.1 mg/

mL) was used as positive control and untreated bacterial

culture was used as negative control. One hundred micro-

liters aliquot of the bacteria was added into the wells with

an approximate inoculum of 1 9 106 CFU/mL, previously

prepared as a 0.5 McFarland’s standard. Serial dilutions of

the extracts were done to achieve the final concentration of

5, 2.5, 1.25, 0.625 and 0.313 mg/mL. Aliquot (100 lL) of
the extract with different concentration was added into

each of the wells and incubated at 37 �C for 24 h. The MIC

was determined by assessment of turbidity by optical

density readings at 600 nm.

Minimal Bactericidal Concentration (MBC)

Determination

Minimal bactericidal concentration (MBC) is the lowest

concentration of an antimicrobial that prevent the growth

of particular microorganism. The MBC was determined by

sub-culturing 100 lL from well that exhibited no growth

onto MHA and incubated at 37 �C for 24 h.

Cell lines Maintenance and Growth Condition

The human cancer cell lines (HT-29 and Ca Ski) and the

neuronal cell lines (SH-SY5Y) involved in this study was

maintained in Roswell Park Memorial Institute (RPMI) and

Dulbecco’s Modified Eangle Medium (DMEM), respec-

tively, supplemented with 10% fetal bovine serum and 19

antibiotic–antimycotic at 37 �C humidified incubator con-

taining 5% CO2 [6].

Neuroprotective Assay

Cell viability of neuronal cells were determined by using

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bro-

mide (MTT) assay. In brief, SHSY-5Y cells were seeded

into a microtitre plate at a density of 3 9 104 cells/well

and allowed to adhere overnight. 20 lL of each extracts

were added into the cells with the final concentration

ranging from 6.25 to 200 lg/mL. Catechin (100 lM) (ox-

idative stress and hypoxia model) or gallic acid (1 lg/mL)

(dementia model) were used as a positive control in the

experiments of the study. The pre-treated cells were incu-

bated for 2 h followed by either 250 lM hydrogen

peroxide (H2O2), 400 lM streptozotocin (STZ) or 5 mM

cobalt (II) chloride (CoCl2) treatment for 24 h.

Anticancer Activity of the Extract on Human

Cancerous Cells

The effect of extracts on cell viability of human cancer

cells lines was determined by using 3-(4,5-dimethylthiazol-

2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Cells

were seeded into a microtitre plate at a density of 5 9 103

cells/well and allowed to adhere overnight. 20 lL of each

extracts were added into the wells with the final concen-

tration ranging from 6.25 to 200 lg/mL and incubated at

72 h. Curcumin (3 lg/mL) was included as positive

control.

MTT Assays

The MTT assay for neuroprotective and anticancer activi-

ties were performed by adding 20 lL of MTT (5 mg/mL)

into each well and the plates were incubated at 37 �C
containing 5% CO2 for 4 h [25]. After the incubation

period, the medium was then aspirated carefully and

100 lL of DMSO was added. The absorbance of the pro-

duct was determined spectrophotometrically at 570 nm,

with 650 nm as reference using a microplate reader. The

percentage of cell viability was calculated as follows:

Percentage of cell viability ¼ Absorbance of treated cells

Absorbance of untreated cells
� 100%

Statistical Analysis

All values expressed as mean ± standard deviations (SD)

by Microsoft Excel. Data were analyzed for statistical

significance using one-way ANOVA, followed by Dun-

nett’s test as a post hoc test with GraphPad Prism 6.0

software for Windows (Inc., San Diego, USA).

Gas Chromatography–Mass Spectrometry

(GC–MS) Analysis

Gas chromatography–mass spectrometry (GC–MS) analy-

sis was performed in accordance with our previous devel-

oped method with slight modification [27, 28]. The

instrument used was Agilent Technologies 6980N (GC)

equipped with 5979 Mass Selective Detector (MS), HP-

5MS (5% phenyl methyl siloxane) capillary column of

dimensions 30.0 m 9 250 lm and helium as carrier gas at

1 mL/min. The column temperature was programmed ini-

tially at 40 �C for 10 min, followed by an increase of 3 �C/
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min to 250 �C and was kept isothermally for 5 min. The

MS was operating at 70 eV. The constituents were identi-

fied by comparison of their mass spectral data with those

from NIST 05 Spectral Library.

Results and Discussions

Antibacterial Assays

Results of antibacterial activity are represented in Table 1.

Showed that all extracts demonstrated good inhibitory

activity against different bacteria tested, with MICs values

of 2.5 mg/mL, except for P. aeruginosa NRBC 112582, V.

parahaemolyticus VP103 and E. coli ATCC 25922, where

the inhibitory concentration was 1.25 mg/mL. These find-

ing indicates that the extracts inhibited the growth of the

bacteria tested at low concentrations.

The MBC result in Table 1 presented M. mangrovi

MUSC 115T and S. humi MUSC 117T extracts were

completely inhibiting the growth of P. aeruginosa NRBC

112582, S. typhi ATCC 19430 and E. coli ATCC 25922 at

a concentration of 5 mg/mL. However, a higher concen-

tration might be needed for complete inhibition of the

growth of the other bacteria tested.

In addition, some of the extracts displayed bactericidal

effects on few numbers of bacteria. According to Ocampo

et al. [29], bacteriostatic can be defined as the agent inhibit

the growth of bacteria without killing effects, while bac-

tericidal means agents that kill bacteria. An extract is

considered as bactericidal when the ratio of MBC/MIC is

B4 and bacteriostatic when this ratio is[4 [30]. This effect

was observed with the M. mangrovi MUSC 115T extract

against P. aeruginosa NRBC 112582, S. typhi ATCC

19430, and E. coli ATCC 25922 with the ratios of MBC/

MIC equal to 4, 2, and 2 respectively. The S. humi MUSC

117T extract was also bactericidal against E. coli ATCC

25922 with the ratio of MBC/MIC equal to 2. Overall, the

extracts of each strains possessed activity to inhibit the

growth of bacteria tested.

Neuroprotective Assays

In this study, the neuroprotective assays were performed by

using three different experimental models focusing on

hypoxia, oxidative stress and dementia. Results of each

experimental model were show in Figs. 1, 2 and 3,

respectively.

Neuroprotective Property of Extracts on Hypoxia Induced

Cytotoxicity

Hypoxia can be defined as the reduction or lack of oxygen

in organs, tissues or cells. A common experimental model

of hypoxia was created using a transition metal, cobalt (II)

chloride (CoCl2) [31, 32]. CoCl2 is a chemical agent that

Table 1 Minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), and MBC/MIC ratios of the extracts of strains

Microbacterium mangrovi MUSC 115T, Sinomonas humi MUSC 117T and Monashia flava MUSC 78T

Bacterium tested MUSC 115T MUSC 117T MUSC 78T

MIC MBC MBC/MIC MIC MBC MBC/MIC MIC MBC MBC/MIC

*Staphylococcus aureus ATCC 43300 2.5 [5 – 2.5 [5 – 2.5 [5 –

*Staphylococcus aureus ATCC 70069 2.5 [5 – 2.5 [5 – 2.5 [5 –

*Staphylococcus aureus ATCC 33591 2.5 [5 – 2.5 [5 – 2.5 [5 –

*Staphylococcus aureus ATCC BAA-44 2.5 [5 – 2.5 [5 – 2.5 [5 –

Acinetobacter calcoaceticus

NBRC 13006 2.5 [5 – 2.5 [5 – 2.5 [5 –

Bacillus subtilis

ATCC 31098 2.5 [5 – 2.5 [5 – 2.5 [5 –

Pseudomonas aeruginosa

NRBC 112582 1.25 5 4 1.25 [5 – 1.25 [5 –

Salmonella typhi

ATCC 19430 2.5 5 2 2.5 [5 – 2.5 [5 –

Vibrio parahaemolyticus VP103 1.25 [5 – 1.25 [5 – 1.25 [5 –

Escherichia coli

ATCC 25922 2.5 5 2 1.25 5 2 1.25 [5 –

* Methicillin-resistant Staphylococcus aureus (MRSA)

* (-): not calculated for MBC/MIC as the MBC value was[5 mg/mL
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reportedly induces a biochemical and molecular response

similar to that observed under low-oxygen conditions in

mammalian systems [33]. Beside it is widely used to

establish the model of hypoxia in both in vitro and in vivo

study. Theoretically, the Co2? will replace the Fe2? in

heme on the cell surface, thus weaken the oxygen signaling

and transport, leading to the generation of reactive oxygen

species (ROS) and cell death [34]. In fact, a study done by

Lee et al. [35] and Vengellur and LaPres [36] have shown

that both hypoxia and cobalt affecting a similar group of

genes on a global gene expression level. This implies that

the robustness and suitability use of this model of experi-

ment for experimental purposes.

Figure 1 showed that the neuronal cells subjected to

CoCl2 exposure showed a significant reduction in viability

of cells up to 77.8%. Based on the analysis, the extract of

M. flava MUSC 78T was able to protect the neuronal cells

from the CoCl2 insult at lower concentration; 6.25–50 lg/
mL. The neuroprotective activity reduced when the con-

centration of the extracts reached at 50 lg/mL. The sta-

tistical analysis of S. humi MUSC 117T and M. mangrovi

MUSC 115T extracts showed the percentages of cell via-

bility for each concentration tested were not significant

when compared to CoCl2 induced cells and concluded that

these two extracts were not able to protect neuronal cells

from the hypoxia induced neuronal damage.

Neuroprotective Property of Extracts on Oxidative Stress

Induced Cytotoxicity

One of the most common methods applied for studying the

in vitro neuroprotective activity of antioxidants is H2O2

induced cytotoxicity [37, 38], hence this method was

employed to study the extracts of each strain. The insults of

H2O2 have been linked to the formation of oxidative stress

which is known to cause neurodegenerative diseases such as

Alzheimer’s [39] and Parkinson diseases [40]. H2O2 has a

short half-life, and its dissociation into hydroxyl and super-

oxide ions may affect the membrane integrity and leading to

cellular damage [39, 41]. In fact, H2O2 has been observed to

exert toxic effect on different cell types while neuron was

found to be most susceptible to H2O2-induced toxicity [42].

Based on Fig. 2, it was observed that only M. mangrovi

MUSC 115T extract was able to protect the neuronal cells

against H2O2 challenge at low concentration, 6.25 lg/mL.

Furthermore, there is a significant decreased in cell via-

bility in M. mangrovi MUSC 115T extract treated cells

from 50 lg/mL to 200 lg/mL as compared to H2O2 con-

trol. This indicates the effect of the treatment reached its

maximum efficacy at around 12.5 lg/mL. Further increase

of treatment will eventually found to be toxic towards the

neuronal cells. On the other hand, the S. humi MUSC 117T

and M. flava MUSC 78T extracts were found to exhibit no

protective activity on SH-SY5Y neuronal cells when

challenged by H2O2.

Neuroprotective Property of Extracts on Dementia Induced

Cytotoxicity

Dementia is known as a multisystem-related neurodegen-

erative disorder. A set of symptoms are associated to this
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Fig. 1 The neuroprotective activity of methanolic extracts on the cell

viability of SH-SY5Y cells treated with CoCl2. Cells viability was

measured using MTT assay. *p\ 0.05 indicates statistically signif-

icant differences compared to CoCl2 induced cells
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Fig. 2 The neuroprotective activity of methanolic extracts on the cell

viability of SH-SY5Y cells treated with H2O2. Cells viability was

measured using MTT assay. *p\ 0.05 indicates statistically signif-

icant differences compared to H2O2 induced cells
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Fig. 3 The neuroprotective activity of methanolic extracts on the cell

viability of SH-SY5Y cells treated with STZ. Cells viability was

measured using MTT assay. *p\ 0.05 indicates statistically signif-

icant differences compared to STZ induced cells
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disease which include impairment in short- and long-term

memory, impairment in thinking, judgment, other distur-

bance of higher cortical function, or personality change

[43]. In order to understand the pathological aspect of

dementia in human, researcher have made use of STZ as an

inducer in rats to create the experimental model of

dementia [44]. It was also commonly utilized in preparing

the in vitro dementia model of experiment particularly on

SH-SY5Y neuronal cells [45]. The induction of STZ was

found to generate excessive free radicals which leading to

formation of oxidative stress [46], inflammation [47],

abnormal protein [48] and leads to mitochondrial dys-

function and apoptosis in cell [49].

Figure 3 demonstrated the result of neuroprotective

activity of extracts on dementia model of experiment. From

the data, the percentage of cell viability of SH-SY5Y

neuronal cells treated with STZ only was found to be

significantly (p\ 0.05) reduced up to about 70.0%. The

pre-treatment of M flava MUSC 78T and S. humi MUSC

117T extracts on the STZ treated cells showed that both of

these extracts were unable to protect SH-SY5Y cells from

the STZ induced neuronal damage. However, only M.

mangrovi MUSC 115T extracts treatment was found to

demonstrating neuroprotective activity at different con-

centration ranging from 6.25 to 25 lg/mL.

Anticancer Activity of the Extracts on Human

Cancerous Cells

Rare actinobacteria, represent a promising reservoir of

different kinds of therapeutics drugs. In this study, the

anticancer effect of the extracts were tested on two dif-

ferent types of human cancer cell lines; human colon

cancer cell lines (HT-29) and human cervical carcinoma

cell lines (Ca Ski). The effects of the extract on the tested

cancerous cells are shown Figs. 4 and 5.

All the extracts displayed varying levels of anticancer

against the Ca Ski cells (Fig. 4). Interestingly, a dose-de-

pendent response was observed for the M. flava MUSC 78T

and M. mangrovi MUSC 115T extracts treatment as there

was a significant reduction of the viability of cells when

compared to the untreated cells. The Ca Ski cells was

found to be the most vulnerable to the treatment of M.

mangrovi MUSC 115T extracts with the strongest growth

inhibition at high concentration tested (200 lg/mL), sec-

onded by the treatment activity displayed by M. flava

MUSC 78T. In the case of S. humi MUSC 117T extract,

there was no significant reduction of the viability of Ca Ski

cells as compared to control. Overall, M. flava MUSC 78T

and M. mangrovi MUSC 115T extracts are effective in

inhibiting the growth of Ca Ski cells.

Similarly, the anticancer effect of M. flava MUSC 78T,

M. mangrovi MUSC 115T and S. humi MUSC 117T

extracts on HT-29 cells were examined as well. Results in

Fig. 5 displayed that there is a mild growth inhibition

activity of HT-29 cells as the viability of HT-29 cells was

significantly reduced especially at the highest concentra-

tion of treatment at 200 lg/mL.

Taken altogether, the extracts of M. mangrovi MUSC

115T, S. humi MUSC 117T and M. flava MUSC 78T were

shown to be effective in causing cytotoxic effect on this

two different cancer cell lines namely human colon cancer

cell lines (HT-29) and human cervical carcinoma cell

lines (Ca Ski). The results of the studies also demon-

strated that two cancer cell lines showed different reaction

towards the concentration of extracts tested. M. mangrovi

MUSC 115T and M. flava MUSC 78T extracts exhibiting a

cytotoxic activity on Ca Ski cells except for S. humi

MUSC 117T, meanwhile all the extracts exhibiting a low

anticancer activity against HT-29 cells. In general, vary-

ing strength at the effect possessed by extracts are most

likely affected by the differences in the chemical com-

position that present in.
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Fig. 4 The anticancer activity of methanolic extracts on the cell

viability of Ca Ski cells. Cells viability was measured using MTT

assay. *p\ 0.05 indicates statistically significant differences com-

pared to untreated cells
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Fig. 5 The anticancer activity of methanolic extracts on the cell

viability of HT-29 cells. Cells viability was measured using MTT

assay. *p\ 0.05 indicates statistically significant differences com-

pared to untreated cells
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Chemical Profiling Analysis

Following the assessment of bioactivities possessed by M.

mangrovi MUSC 115T, S. humi MUSC 117T and M. flava

MUSC 78T extracts, GC–MS analysis were performed in

order to analyze the chemical constituents that present in

the extracts. GC–MS is an effective combination of tech-

nologies which meant for the analysis of chemical com-

pounds. Basically, the compounds will be separated by GC

while MS generates the characteristic mass profile for each

of the compounds detected [50, 51]. As shown in Table 2, a

total of six chemical compounds were identified in M.-

mangrovi MUSC 115T extract, ten compounds were

detected in S. humi MUSC 117T extract while M. flava

MUSC 78T extract analysis yielded a total of twenty

compounds. Through GC–MS analysis, the obtained results

indicating the majority of the compounds that present in

extracts are consisted of organic heterocyclic compounds.

These heterocyclic compounds include phenolics, pyrazi-

nes, and pyrrolopyrazine.

Phenolic are a class of organic compound consisting of a

hydroxyl group bonded to an aromatic hydrocarbon group.

Among other heterocyclic organic compound, phenolic

compounds have attracted the attention of researchers as

they are well known for their antioxidant and free radical-

scavenging abilities. These potent bioactivities are associ-

ated with potential beneficial effects on human health [52].

In fact, phenolic compounds have been reported to possess

potent antioxidative, anticancer or anticarcinogenic/an-

timutagenic, antiatherosclerotic, antibacterial, antiviral,

and anti-inflammatory activities [53–56]. Through GC–MS

analysis, the phenolic compound known as, 2,4-di-tert-

butyl phenol (2,4 DTBP) (2, 9, 27) was detected in all of

the extracts tested in current study. Literature has shown

that 2,4 DTBP can be produced by microorganisms such as

fungus [57] and bacteria [58]. For example, this compound

has been detected in Pseudomonas monteilii PsF84 and was

found to be effective against Fusarium oxysporum [59].

Besides, the existene of this compound in Lactococcus sp

was associated to its antifungal and antioxidant properties

as well as its cytotoxic activity [58]. It was also reported

that, the antibacterial activity of Monochaetia kansensis

could be due to the presence of 2,4 DTBP as well [60].

Another group of compound that was found in this study

was pyrazines. Pyrazines are known to exist in form of

complex structure with the present of nitrogen atoms in

their aromatic ring. These compounds are greatly known

for their strong odor properties and have been detected in

several bacteria. The value of this group of compound

reside with theirs bioactivities, as pyrazines are commonly

known to exhibit antimicrobial, anticancer, antioxidant as

well as neuroprotection properties [6, 61–64]. In current

study, the pyrazines compounds; 19, 21, 22, 23 and 24

were found in M. flava MUSC 78T extract. Previous study

has shown that compound 19 and 21 were detected in

myxobacteria Stigmatella WXNXJ-B which known to

exhibit a significant high level of antitumor activities [65].

Meanwhile, compound 22, 23 and 24 were detected pre-

viously in Streptomyces antioxidans and were found to

have a strong antioxidant activities [64].

The complex structure form with incorporation of one or

more pyrrole compound into a pyrazine is normally known

as pyrrolopyrazine. The GC–MS characterization analysis

have also demonstrated the existence of pyrrolopyrazine

compounds in all of the extracts. For example, compounds

such as pyrrolo[1,2-a]pyrazine-1,4-dione, hexahydro- (4,

11, 32) and (3R,8aS)-3-methyl-1,2,3,4,6,7,8,8a-octahy-

dropyrrolo[1,2-a]pyrazine-1,4-dione (3, 10, 31) were found

as the constituents of the mixture. Literature has shown that

these compounds were detected in different Streptomyces

species [6, 64, 66] which include Nocardia sp. [67], and

Bacillus sp. [68] and was associated to antioxidant activity.

Another pyrrolopyrazine compound identified in MUSC

115T and MUSC 78T strains was 3-benzyl-1,4-diaza-2,5-

dioxobicyclo[4.3.0]nonane (BDDB) (6, 36). Gohar et al.

[69] have reported the present of BDDB in Burkholderia

cepacia may responsible for the antibacterial activity

against Aeromonas hydrophila, Edwardsiella tarda and

Vibrio ordalli. Besides, the detection of BDDB in Strep-

tomyces cacaoi GY525 [70] was believed to contribute for

the mortality of second-stage juvenile and hatch inhibition

of Meloidogyne incognita. Therefore, the detection of

pyrrolo[1,2-a]pyrazine-1,4-dione, hexahydro-3-(phenyl-

methyl)- (16) in S. humi MUSC 117T and pyrrolo[1,2-

a]pyrazine-1,4-dione, hexahydro-3-(2-methylpropyl)- (35)

in M. flava MUSC 78T might contribute for the observed

bioactivities. In fact, these compounds were seen to occur

in quite a number of different Streptomcyes species which

have demonstrated to exhibit a wide range of bioactivities

[6, 64, 66, 71, 72]. For example, the present of these

compounds in microorganism has been associated to the

strong antibacterial activity against E. coli, P. aeruginosa

and E. faecalis [73]. Besides, Hong et al. (2008) [74] have

also showed 16 was able to inhibit expression of serine/

threonine kinase Akt which may be useful for inhibition of

cell proliferation and activation of apoptosis activity in

cancer cells. Perhaps, the detection of 1,4-diaza-2,5-dioxo-

3-isobutyl bicyclo[4.3.0]nonane (6, 17) in M. mangrovi

MUSC 115T and S. humi MUSC 117T may explain for the

anticancer activity exhibited by these microorganisms. As

the present of those compounds in Streptomyces strains of

previous studies were suggested to be responsible for the

observed cytotoxic effect on human cancer cell line [5, 75].

Overall, majority of the pyrrolopyrazine compounds

detected are known to exhibit antioxidant activity. Since

antioxidants were suggested to play important role in
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cellular mechanisms [76], the detection of pyrrolopyrazine

compounds in these strains of bacteria could be con-

tributing to the observed cytotoxic effects on cancer cells

and neuroprotective effect on SH-SY5Y cells against the

insults of H2O2.

Taken altogether, the existence of heterocyclic com-

pounds such as phenolics, pyrazines and pyrrolopyrazines

as part of the constituents of M. mangrovi MUSC 115T, S.

humi MUSC 117T and M. flava MUSC 78T extracts may

account for the observed antibacterial, anticancer activities

Table 2 Compounds identified from Microbacterium mangrovi MUSC 115T, Sinomonas humi MUSC 117T and Monashia flava MUSC 78T by

using GS-MS

Extract No Retention time

(min)

Compound Formula Molecular weight

(MW)

Quality

(%)

MUSC

115T
1 9.684 Methyllaurate C8H10 106 80

2 44.422 2,4-di-tert-butyl phenol C14H22O 206 97

3 51.592 (3R,8aS)-3-methyl-1,2,3,4,6,7,8,8a-octahydropyrrolo[1,2-

a]pyrazine-1,4-dione

C8H12N2O2 168 90

4 53.188 Pyrrolo[1,2-a]pyrazine-1,4-dione, hexahydro- C7H10N2O2 154 96

5 59.008 1,4-diaza-2,5-dioxo-3-isobutyl bicyclo[4.3.0]nonane C11H18N2O2 210 83

6 70.761 3-benzyl-1,4-diaza-2,5-dioxobicyclo[4.3.0]nonane C14H16N2O2 244 76

MUSC

117T
7 9.936 Butanoic acid, 3-methyl- C5H10O2 102 72

8 10.880 Butanoic acid, 2-methyl- C5H10O2 102 53

9 44.428 2,4-di-tert-butyl phenol C14H22O 206 95

10 51.563 (3R,8aS)-3-Methyl-1,2,3,4,6,7,8,8a-octahydropyrrolo[1,2-

a]pyrazine-1,4-dione

C8H12N2O2 168 90

11 53.137 Pyrrolo[1,2-a]pyrazine-1,4-dione, hexahydro- C7H10N2O2 154 96

12 54.865 Methyl n-pentadecanoate C16H32O2 256 93

13 59.025 1,4-diaza-2,5-dioxo-3-isobutyl bicyclo[4.3.0]nonane C11H18N2O2 210 64

14 59.174 5,10-Diethoxy-2,3,7,8-tetrahydro-1H,6H-dipyrrolo[1,2-

a:10,20-d]pyrazine
C14H22N2O2 250 53

15 61.462 Methyl 14-methylhexadecanoate C18H36O2 284 93

16 70.749 pyrrolo[1,2-a]pyrazine-1,4-dione, hexahydro-3-

(phenylmethyl)-

C14H16N2O2 244 92

MUSC

78T
17 7.538 2-Methylpyrazine C5H6N2 94 80

18 9.181 Pyrrole, 2-methyl- C5H7N 81 80

19 13.438 Pyrazine, 2,5-dimethyl- C6H8N2 108 80

20 17.094 2,3,4-Trithiapentane C2H6S3 126 72

21 19.383 Pyrazine, 2-ethyl-6-methyl- C7H10N2 122 60

22 19.480 Pyrazine, 2-ethyl-5-methyl- C7H10N2 122 95

23 19.555 Pyrazine, trimethyl- C7H10N2 122 87

24 24.184 Pyrazine, 3-ethyl-2,5-dimethyl- C8H12N2 136 90

25 25.900 4H-Pyran-4-one, 3-hydroxy-2-methyl- C6H6O3 126 70

26 34.935 1H-Indole C8H7N 117 95

27 44.439 2,4-di-tert-butyl phenol C14H22O 206 96

28 45.567 1H-Pyrrole, 2-phenyl- C10H9N 143 87

29 49.475 1-Naphthalenamine, N-ethyl- C12H13N 171 90

30 50.213 3,4-Dimethyl-2-phenyl-1H-pyrrole C12H13N 171 72

31 51.649 (3R,8aS)-3-Methyl-1,2,3,4,6,7,8,8a-octahydropyrrolo[1,2-

a]pyrazine-1,4-dione

C8H12N2O2 168 90

32 53.349 Pyrrolo[1,2-a]pyrazine-1,4-dione, hexahydro- C7H10N2O2 154 97

33 54.596 Methyl 13-methyltetradecanoate C16H32O2 256 98

34 57.995 Hexadecanoic acid, methyl ester C17H34O2 270 93

35 59.122 Pyrrolo[1,2-a]pyrazine-1,4-dione, hexahydro-3-(2-

methylpropyl)-

C11H18N2O2 210 95

36 70.743 3-benzyl-1,4-diaza-2,5-dioxobicyclo[4.3.0]nonane C14H16N2O2 244 92
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as well as the neuroprotective properties. Based on current

findings, rare actinobacteria may serve as important sour-

ces for the potential new drugs development.

Conclusions

The results have demonstrated M. mangrovi MUSC 115T,

S. humi MUSC 117T and M. flava MUSC 78T possessed

antibacterial, anticancer and neuroprotective activities. The

chemical analysis study afforded a further in depth

understanding on the mixture of chemical constituents that

present in these strains of bacteria. Based on the literature

evidences, the occurrence of these chemical compounds

might accounted for the observed bioactivities. In short, the

current study has showed these novel rare actinobacteria

were able to produce a wide range of bioactive compounds

which could serve as potential sources for future drug

development. Further in depth studies focusing on isolation

and characterization of bioactive principle(s) through

bioassay-guided isolation is currently undertaking. As we

deeply believe the procedure will eventually enabling us to

identify the bioactive principle(s) that present in these

mixtures and the findings might potentially generate useful

knowledge for the future development of new drug(s).
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