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Abstract

Previous studies have revealed the potential of powder mixed electrical discharge machining (PMEDM)
with regards to concurrently machining part geometry and coating an antibacterial layer on medical devices.
This study is aimed at further demonstrating this potential. In order to do so, the PMEDM process was
varied by adding different concentrations of silver nano-particles into the dielectric fluid and used to machine
Ti-6A1-4V. Afterwards, the resulting machined and coated surfaces were characterized with regards to surface
integrity, the coating layer’s thickness, microhardness and chemical elements as well as antibacterial property.
Material removal rate, tool wear and pulse signals were also analysed in order to give an insight on process
feasibility. From both qualitative and quantitative results, it could be established that the surfaces machined
and coated by PMEDM method have demonstrated a significant reduction of not only the amount of S.
aureus bacteria, but also the number of bacterial clusters on the coating layer’s surface. Moreover, the
coating layer’s silver content, which depends on the powder concentration suspended in the dielectric fluid,
plays a vital role in the antibacterial property. As compared to surfaces without silver, surfaces containing
approximately 3.78% silver content showed a significant decrease in both bacterial numbers and clusters,
whereas a further increase in silver content did not result in a considerable bacterial number and cluster
reduction. Regarding the machining performance, as compared to EDM without powder, machining time is

remarkably decreased by using the PMEDM method.
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1. Introduction

The demand for medical implants has been rapidly increasing. For example, it is predicted that the
medical device market will record a minimum compound annual growth rate of 4.5% between 2017 and
2024 [1, 2]. However, implant related infections still pose a major challenge for the medical device industry.
Although antibiotics have been successfully used in clinical treatments [3], antibacterial coatings of metal

implants are considered as potential long term solutions to this problem [4].

1.1. Antibacterial coating processes

In order to coat an antibacterial layer on metal surfaces, several methods have been studied and their
efficiency demonstrated. For example, titanium oxide layers deposited on titanium substrates by anodic
oxidation showed a significant reduction in the number of viable E. coli on the coating surface [5]. These
layers were combined with silver using plasma electrolytic oxidation [6], anodic spark deposition [7] or plasma
spraying [8], in order to enhance the antibacterial properties. In other studies, coating layers with a thickness
of approximately 2 pym were deposited on titanium surfaces by physical vapor deposition (PVD), with a
significant antibacterial potency and the absence of cytotoxic effects being reported [9]. Moreover, chemical
vapour deposition (CVD) has been used for silver-silica surface coatings and has shown a significant reduction
of a variety of bacteria [10]. Furthermore, PVD and CVD methods have also been studied appertaining to
coating thin films for medical application [11, 12]. On the other hand, thermal spraying has been used in
coating silver-containing hydroxyapatite layers on titanium implant surfaces. The results of both in wvitro
and in vivo studies showed a significant reduction in the number of S. aureus bacteria on these layers as
compared to hydroxyapatite layers [13, 14]. Another method, namely ion implantation, has been studied
and has shown excellent antibacterial effects [15] and no cytotoxicity of the coating surface [16]. Other
results have shown that silver ion implantation is more suitable than copper ion implantation for coating

antibacterial surfaces of medically applied metals [17].

1.2. PMEDM for surface modification

PMEDM has been studied for surface modification whereby emphasis has been on characterizing how
the process mechanism allows for material deposition in and onto the machined surface [18]. During the
machining process, materials from particles that are mixed into the dielectric fluid are transferred to the
workpiece surface, therefore modifying its characteristics. Research has shown that the microhardness of -
titanium implant surfaces has been increased 2-fold when silicon particles are suspended in the dielectric fluid
[19]. The PMEDM process also enhances fatigue endurance and biocompatibility of S-titanium implants
for orthopedic applications [20]. An approximate 76% surface hardness increase as well as an elimination of
microcracks on the machined surface have been reported after adding titanium powder into hydrocarbon-
based dielectric fluid [21]. In another study, silicon and manganese powders were used to improve recast layer
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hardness by approximately 40% as compared to EDM process without powder [22]. Both microhardness
and wear resistance were significantly increased by mixing tungsten powder into the dielectric fluid [23].
PMEDM using titanium carbide particles has also been combined with ultrasonic vibration to not only
improve machining performance, but also to enhance the hardness and wear resistance of the workpiece
surface [24].

Similar to conventional EDM, the modified layer while using PMEDM is also affected by machining
parameters such as current and pulse-on-time. Besides, powder concentration is an important parameter
which influences the properties of the resulting machined surface [25]. Powder material has shown its impact
during PMEDM. For example, using AlsO3 powder provided a higher modified layer thickness whereas TiC
powder resulted in a higher machined surface hardness [26]. The thickness of the modified layer has also
been increased by using smaller powder particle sizes [27]. However, the modified layer thickness was not

affected by varying machining time [28].

1.3. Summary of literature review

From literature, it can be established that many methods have been used for coating antibacterial
layers on medical materials. However, these methods, until now, are only used for coating. PMEDM has
demonstrated its ability in, not only machining medical materials, but also in modifying their surfaces.
Therefore, a method that has the ability to concurrently machine and coat an antibacterial layer on medical
device surfaces is proposed and investigated in this study. Moreover, so as to clearly understand how the

process influences the coating layer, the PMEDM machining and coating mechanism is explained.

2. PMEDM’s machining and coating mechanism

The PMEDM machining and coating mechanism is, as shown in Fig. 1, best explained by categorizing

it into four discharge phases as follows:

(i) Preparation phase: After applying a potential difference between the tool and workpiece electrodes,
powder particles in the electric field arrange themselves in chains (Fig. 1(a)) [29].

(ii) Ignition phase: Where voltage is highest and exceeds the dielectric resistivity, a single ignition occurs
after which multiple ignitions take place (Fig. 1(b)) [30].

(iii) Discharge phase: A plasma channel, composed of ion and electron flows which collide and implant
into the workpiece and tool electrode surfaces respectively, is formed (Fig. 1(c)). Thermal energy
causes the melting of materials from workpiece, tool electrode as well as powder particles. The plasma
channel grows until reaching a balance point between the internal pressure of the formed bubble and
the dielectric fluid’s hydrostatic pressure (Fig. 1(d)). Thereafter, it bursts (Fig. 1(e)) and blows

off most of the molten mixture of materials from the tool electrode, powder particles and workpiece.

3
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Figure 1: PMEDM’s machining and coating mechanism of a single spark. Stages (c-f) represent the duration of the concurrent

machining and coating process.

65 However, some of the molten material remains on the workpiece surface thus generating the main part

66 of the coating layer.

e (iv) Interval phase: During this phase, the dielectric fluid cools the workpiece and removes the machined

68 debris. Nevertheless, some of the molten materials, after bursting, are sputtered and re-solidified onto
69 the machined surface. In addition, some particles, which remain partially or fully molten during the
70 recast layer’s formation process, stick to sections of the machined surface and forms the rest of the
n resulting coating layer (Fig. 1(f)). Afterwards, fresh dielectric fluid, containing new powder particles,
7 continues flowing and cooling the workpiece in anticipation of a new discharge cycle (Fig. 1(g)).
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3. Methodology

3.1. Material selection

Ti-6Al1-4V is one of the key materials used to manufacture medical devices owing to its desirable properties
which include excellent biocompatibility, corrosion resistance and high fatigue strength among others. In this
study, (30 x 20 x 1) mm? Ti-6A1-4V sheets were used as workpieces. To analyse the chemical composition
of the samples before machining, Energy dispersive X-Ray spectroscopy (EDS) was used. The results were

as presented in Fig. 2.

10pm

EMT=2000K/  WD= 15mm Detartor = 5E1 Mag= 500X
Spectrum Al Ti v Tatal (%)
Spectrum 1 £.03 89.7% 4.18 100.00

Figure 2: Chemical composition of the sample before machining and coating.

From literature, it is clear that silver has a stronger antibacterial effect and is more biocompatible than
other materials such as copper, zinc or titanium dioxide. In addition, various coating methods have shown
no cytotoxicity when depositing silver on medical device surfaces. For these reasons, silver nano-particles
(99.9 % purity) with diameters of ~ 50-60 nm were utilised. The choice of particle size is significant since it
not only influences the coating layer, but is also significant to the stability of the PMEDM process because

large particles could clog the narrow machining gap that is necessary for the sparking process.

3.2. Sample preparation

In this study, the antibacterial property of the coating layer, which is dependent on silver content
deposited in the coating surface during the PMEDM process, is evaluated. In order to do so, the surface
roughness and structure of the samples have to be relatively similar, since they influence bacterial adhesion
and growth. Moreover, surfaces with R, > 0.2 pm not only increase plaque accumulation [31], but also
facilitate biofilm formation [32]. Therefore, this R, value was referenced for designing surface roughness of

the investigated samples.
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For the antibacterial evaluation, 11 points were concurrently machined and coated on the workpiece
surface as shown in Fig. 3. The point numbered “0” was machined without silver powder whereas points
“1” to “10” were machined with varying silver powder concentrations suspended in the dielectric fluid from

low to high respectively.
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Figure 3: Arrangement of the machined points (white color) on the workpiece.

3.3. Ezxperimental setup

The results from preliminary researches [33, 34] showed that silver powder concentration plays a vital
role in the deposited silver content. However, it only caused a negligible change on surface roughness.
Furthermore, other factors such as discharge energy, dielectric material and electrode size have significant
influences on both roughness and chemical composition of the machined surface. Based on these findings,

experimental conditions for this study were established as can be seen in Table 1.

Table 1: Experimental conditions.

Machine Sarix 100 p-EDM machine

Tool electrode - Material: WC-6 wt.% Co
- Outer diameter: 0.6 mm

- Inner diameter: 0.17 mm

Dielectric fluid HEDMAT111 hydrocarbon

Powder concentrations 0; 2.5; 5; 7.5; 10; 12.5; 15; 17.5; 20; 22.5 and 25 (g/1)

Discharge energy ~ 9.98 (ud)

Polarity Positive at tool electrode

In addition, since discharge energy plays an essential role in not only the surface roughness, but also the

6
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thickness of the resulting coating layer, it is necessary to establish the discharge encrev boundary which iy
suitable for realising the aforementioned R,, = 0.2 pm in PMEDM. Tt enables a discharge energy increment
which results in a thicker coaling layer and consequently allows for a better analysis. For this reason, extra
experinients were carricd ouk nsing various discharge encrgics (a2 9.98 g, &= 17.5 4] and = 24.46 pJ) using
a 25 g/1 powder concentration in the dielectric fluid.

In order Lo carry oul the experimenis, due Lo a high-density powder settling at the bottom of the tank, a
suitable cirenlation system as showi in Fig. 4 was angularly designed for tank 1. Tt ensures that all dicleetric
fluid Hows out of this tank and into tank 2 where a stirrer is used to contimuously mix silver particles with

the dieleciric Duid.

Tool holder

Tool electrode Nozzle

Powder mixed
Holder ' dielectric
Tank 1 - Stirrer
s /
/ / Tank 2
—. i Pump
X¥lable  piglectric flow

(©,

Fipure 4: Schemalic showing the designed PMEDM diclectric Muid circulalion systeimn.

As regards the gcomoetry of the machined and coated surface, an arca was machined and coated as shown
in Fig. 5. Five overlapping machining paths of the tool electrode’s trajectory (shown in blue color) with a

20 pun cubiing depth are repeated three times 1o achieve a 60 pm Largel depth.

2.2mm

Workpiece

Ending point

Machined and
coated area

2mm

Starting point

Tool electrode

Figure 5: Schemalic showing the machined and coaled area and ool clectrode’s lrajectory,
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3.4. Coating characterization

For effective analysis of the coating layer, the samples have to be carefully analysed. To do so, after
machining, the samples were cleaned for 10 minutes in an ultrasonic bath filled with ethanol at room
temperature, and then dried. Afterwards, their surface topography and composition was analysed using a
scanning electron microscope (SEM) and energy dispersive X-Ray spectroscopy. A Keyence VK9700 3D
Laser scanning confocal-microscope was used to scan the machined surfaces after which MountainsMap 7.4
scanning topography software was used to analyse surface roughness, surface structure and the volume of
removed material. For microhardness testing, the measurement according to “Quasi Continuous Stiffness
Measurement” (DIN EN ISO 14577) was performed by an UNAT nanoindenter for not only the Ti-6Al-4V
substrate, but also the coating surfaces containing different silver contents.

In order to analyse the coating layer’s cross section, the samples were carefully grinded, polished by a
wet abrasive paper and then chemically etched using a Kroll solution (1.5% hydrofluoric acid and 4% nitric
acid in water). Afterwards, SEM and EDS were used to observe and analyse the thickness as well as the

elemental composition of the coating layer.

3.5. Material removal rate and tool wear rate characterization

Apart from demonstrating the PMEDM’s performance on machining, it is also important to investigate
the material removal rate (MRR) and tool wear rate (TWR). In order to do so, wear length, after specified
machining duration, was measured by an in-process measuring program. Furthermore, the machining time
of each experiment was recorded, thus allowing MRR or TWR to be calculated by a quotient of “material

removal volume” or “tool wear volume” per machining time, respectively.

3.6. Antibacterial tests

As regards to the antibacterial property of the layer coated by PMEDM method, S. aureus SH1000
pSB2035 [35] constitutively expressing green fluorescent protein (GFP) was cultured overnight. The coated
Ti-6Al-4V test plate was incubated with 25 ml lysogeny broth (LB) and inoculated with a 1:1000 dilution
of the S. aureus overnight culture with an optical density of 1 at t 600 nm (ODggp). After 24 hours of
incubation, the coated Ti-6Al-4V test plate was removed, washed once with phosphate buffered saline and
subsequently fixed with 4% paraformaldehyde for 30 minutes at room temperature. The amount of bacteria
and clusters was analysed in 630 x magnification microscopic pictures (Zeiss fluorescence microscope Axio
Observer.Z1) of the respective areas on the coated Ti-6Al-4V test plate. GFP fluorescence was excited at
488 nm and read out at 500-550 nm. Four areas on each numbered coating surface (from “0” to “10”) were

evaluated and the mean values are given with SEM.
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4. Results and discussion

To cvaluate the PMEDM's efficicniey in conenrrent machining part geometry and coating an antibacto-
rial surface, different analysis criteria such as discharge energy, the coating layer’s antibacterial property
and iicrohardness, the deposited silver distribution, as well as machining performance are analysed and

discussed.

4.1. Influence of discharge energy on surfoce roughness
Regarding the influence of the pulse energy on surface roughness, as shown in Fig. 6, the roughness
valies of the smnples are rapidly inercased on inercasing the discharge energy. Tr can also be realised that

a 0.2 pm R, value of the PMEDMed surface could be achieved as long as Lthe discharge energy was < 17.5 p.
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Figure f: R, surface roughness values of samples machined at various discharge energies using 25 g/1 silver powder concentration.

4.2, Silver content and in vitro antibocterial evaluation

As can be seen in Mg, 7, powder concentration plays a vital role in the silver content of the coating
layer, wherehy a higher powder concentration results in an increase of the deposited silver. Consequently, 11
sawples machined and coated without silver and with silver contents [rom 1.58% o 9.61% were performed
by applyving 11 powder concentrations, thus allowing for the antibacterial evaluation based on the coating
layer’s silver content. The silver content’s results from DS analysis are semi-quantitative and include a
possible 0.2 wt.% orror. Nevertheless, these results are sufficient for the purpose of this study.

Fig. ¥ shows microscopy evalnation of 5. anreus hacteria exprossing green Hnorescent provein., in which

each viable bacterium is visible as a green dot on the dark background at different silver contents of the

9
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Tigure 8: 5. qureus bacterial mapping on the surfaces coated by silver contents of a) 0%, b} 3.78%;, ¢) 5.15% and d) 9.61%

coated Ti-6AL4V test plate. The hacteria were cultivated for 24 hours before evaluating the amount of
plate-adherent individual 5. eurcus bacteria and 5. awrens clusters using epiflnorescence microscopy. The
guantilication ol adhereni bacteria in Fig. 9 and bacterial clusters coniaining a larger nuunber ol S, aureus

in Tig. 10 is shown in the graphs below. 1t was obscerved that the surfaces containing silver exhibit an

10
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antibacterial offcet with a significant reduction of both individual bacteria as well as bacterial clusters, A
gignificant reduction in bacterial numbers and clusters wag observed already at 3.78% of silver with no
signilicant [urther decrease in bacterial and cluster numbers at higher silver contents. O[ note, some S.
aurens bacteria, as well as clusters, ranained even at very high silver concentrations 9.61%.

Tt is known that bacteria can acquire a resistance towards silver mediated by the silver-resistance genes
(silE, sil3 and =il1*) in bacleria [36], which can alsc oceur In 8. aurews strains [37 . A recent study, however,
showed that the prevalence in silver resistance in 8. euwrens was only abont 6% and restricted to the presence
ol the sillE gene. Interestingly the silver resistant bacteria remained sensilive against silver in the tested
wound dressing anyway [38]). Aunother study using a silver-hydroxyapatite coating on linplants has also shown
that about 3% silver embedded in a hydroxyapatite matrix reduced, but did not fully prevent, Methicillin-
Resistant Staphylococcus Aureus (MRSA) biolilm [ormation [39], which is in line with the resulls [roin
this study. Silver has been shown to enhance the effectivencess of antibiotics 40|, therefore, the incomplete
cradication of 5. aurens in our cxperiments should not he a problem for the in vivo application, as normally

antibiotics are given aller endoprosthetlic joinl replacement.,

4.8, Analysis of sifver distribulion on and in the coaling loyer

It can be seen [rom Fig. 11 that some silver was stuck on the machined surface. Since the samples were
cleaned in an ultrasonic bath for 10 minutes with the machined surface facing downwards, it can therefore
he concluded that this sticking phenoimenon was not caused by settling of silver powder during the cleaning
process. Based on the PMEDM mechanism, il is possible lo explain that some ol the observed silver powder

was as a result of the spattering process, whoercas the rest are from a fresh reflow of diclectric fluid which

11
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occurred when the coating layer was still molten after discharge. Silver sticking ou the machined surface is

one of the major challenges facing PMEDM for medical applications.

Figure 11: Distribulion of silver on Lhe coating layer [or samples machined using diclectric (nid with 15 g/1 powder concentra-

tion: (a) SEM image and (b) silver mapping (identical area).

As shown in Fig. 12, the coaling layver's cross scction was analvsed. It can be established that it is
possible to coat a continuous layer on the Ti-6AL4V suwrface. EDS analvsis shows that materials from the
workpiece, 1ool electrode as well as the dielectric [uid are contained in the coating layer. Furthermore, Figs.
11 and 12 show that silver is not only deposited on the machined surface, but also implanted in the recast
layer. During machining, owing to a very high temperature in the plasia channel (approximately 10.000 °K)
as well ag a thermal evaporation process, silver is mollen and mixed with other molien material [tom ool
clectrode and workpicee, as well as inixed with carbon from the hyvdrocarbon-based diclectrie fluid. After
discharge, the coating layer is formed throngh a re-solidification process. Silver contaitied in the coating layer
can be caiegorized into three morphologies: alloving of mollen silver with the molten ool and workpiece

materials; cnboedded silver particles on and into the coating layver; and spattered silver re-solidified on the

coating surface. Therefore, the gilver distribution of the coating layer is complex. Tlowever, silver content
decreases within the coating layer towards the substrate surface.

In order to analyse the coating layer thickness, a Kevenee VRK9700 3D Lascr scanning confocal-microscope
was used to scan the surface after which a Keyence VK analyser software was used to analyse the coating
layer’s cross scoetional thickness as shown in Fig. 13, Tifty arcas with different coating thicknesses were
analysed thus allowing for a calenlation of an average thickness as well ag standard deviation. From the
tesults, it can be established that a 2.49 %% um thick coating layer could be coated by using a 17.5 uJ

discharge energy.
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4.4, Analysis of the coating layer’s microhardness

A nanoindenter was used to measure the microhardness of both Ti-GAl-4V substrate as well as the

coating surfaces varving silver contents. The tested nanoindentation positions on the sample are shown

in Fig.

14. The indentation point was also scanned by a Kevenee VIKOT00 3D Laser scanning confocal-

13
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microscope. Afterwards, MountainsMap 7.4 scanuing topography software was used to analvse and check

the indentation depth. From Fig. 14, a = 0.7 yim depth of the indentation could be realised.
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Figure 14: {a) Sample surface showing nanoindentation positions (in red color) nsed to test for microhardness, (b)) the nanoin-

dentation’s praph and {¢) depth prolile.

As shown in Tab. 2, the microhardness of Ti-6AL4V is 379.18 (HV). After EDM without powder, a
coating layer with a 528.39 (HV} microhardness was coated on the substrate surface. By using nano-silver
particles mixed inlo the dielectric Nuid in PMEDM, a reduction of the coaling layer’s microhardiness, due
to the deposition of silver, could be established, whereby an increase of silver content reduces the surface

hardness.

Table 20 Microhardness values for both Ti-6AL1Y subsirale as well as Lthe coaling layers conlaining various silver conlents

Ti-GAI-AV "The coating layers containing dillerent silver contents
substratc 0 (wt.%) Ag 378 (wt.%) Ag 961 (wt.%) Ag
Microhardness (HV)  379.18 H28.39 527.19 521.62

4.5, Analysis of the process efficiency
It is clear that EDM without powder has been widely used for machining inedical devices. However, long
mnachining titne is still a challenge for this process. The addition of silver nano-particles into the diclectric

Nuid, in this study, is used nol only for machining Ti-6AL-4V, bul also for reducing the machining time. The

results showoed that MRRR, compared to the EDM without powdoer, is significantly cuhanced by suspending

powder particles in a hydrocarbon-based dielectric fluid. For example, as can be seen in Fig. 15, the material

removal rate is improved from = 0.007 to /= 0.02 (i /min) by using 10 g/1 silver powder concentration.
In explanation, this increase can he attributed to tact that the addition of silver powdoer reduces dicleetric

resistivity, resulting in an enlargement of the machining gap, which enhances flushing conditions. Simulta-

14
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Figure 15: Comparison of material removal rate (MRR} and tool wear rate (TWR) between EDM without powder and PAMEDM

using 10 g/l silver powder concentration and 9.98 pl discharge energy.

neously, the presence of silver particles in the discharpge gap facilitates better spark ignition. Therefore, the
number of pulses, which is a primary reason [or the iinprovement in MRBR, is increased.

In order to prove this explanation, during the experiments, pulse signals were recorded for 20 wms using
a Tektronix DPO4101 digital oscilloscope with a TCP312 current and P6139A voltage probe. Afterwards,
MATLAB R2017 sollware was ulilised lo analyse these signals. The resulis show thal Lthe pulse number per
time of PMEDM is higher than that of EDM without powder (Fig. 16). The unmber of pulses for 20 ms,
as compared to DM without powder, increases from 1758 to 5090 by using 10 g/1 powder concentration.

This pulse increase affects both MBR and TWER whoerchy, owing to the relative crosive wear hotween elee-
trodes, as compared to EDM without powder, TWR using PMEDM is also significantly increased (IMig. 15).
TTowever, wear ratio, which ig calculated by the quotient of TWR. per MRR, is reduced from ==2.54 to =2.32.

As part of the PMEDM efficiency on machining, surface roughness and structure, on the other hand, duc
to the influence on the bacterial adhesion and growth, are important factors that needed to be analysed.

As can be seen in Tab. 3. the surface roughness of the samples machined by EDM without powder
and PMEDNM using varving powder concentrations and 9.98 o pulse cuergy are represented. It ean be
realized that all samples have surface roughness values not larger than 0.2 pm in R, which fits with the
alorementioned desighed surface roughness upper threshold. Other surface roughness paramelers such as
R, and R, are also vikal as they have a relationship with the adhesion of bacteria |41).

Furthermore, surface roughness values of all samples are relatively similar. This similarity of the surface
roughness values is significant [or [urther antimicrobial evaluation since it allows Lo atiribule any dillerences
on the observed antibacterial propertics to the silver content. If the surface roughness values were signifi-

cantly varied, then their contribution to bacterial adhegion and accommodation would have to be separately
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Figure 16: Current and voltage waveforms: (a) EDM without powder and (b) PMEDM with 10 g/1 powder concentration.

Table 3: Surface roughness of the samples machined by EDM without powder and PMEDM with different powder concentra-
tions, using 9.98 pJ discharge energy.

Powder concen- 0 2.5 5 7.5 10 125 15 175 20 225 25
tration (g/1)

R, (pm) 0.2 0.169 0.173 0.166 0.155 0.167 0.181 0.162 0.169 0.159 0.171
R, (um) 145 125 114 126 121 133 123 127 114 123 115
Rop (pm) 0.283 0.227 0.218 0.22 0.214 0.215 0.223 0.206 0.231 0.203 0.221

factored into the analysis.

Although having relatively similar surface roughness values by varying powder concentration suspended in
the dielectric fluid, surface structures of the samples should be analysed. EDMed surface structures are very
complex because they are formed by a combination of overlapping craters and layers of spattered material
from the discharges. Consequently, in order to analyse surface structure of the samples, MountainsMap 7.4
scanning topography software was used. Fig. 17 shows 3D images of the machined surfaces with various
silver concentrations mixed into the dielectric fluid (Fig. 17b, ¢ and d) and without powder (Fig. 17a). It
can be seen that the surface machined using EDM without powder has slightly bigger and higher peaks than
PMEDMed surfaces. However, there is no obvious difference in the surface structure of the samples.

Based on the results regarding material removal rate, tool wear, the surface roughness and structure, as

well as the deposited silver content, it can be established that the machining time of PMEDM is significantly
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Figure 17: 3D images: {a} EDMed surlace machined withoul powder; and PMEDMed surfaces machined using (b} 5 g/1, (e}

15 g/l and (d) 25 g/1 silver powder concenlraiions.

reduced ag compared to WDM without powder, whereas the surface quality ig similar. Therefore, PMEDM
has demonstrated its ability in nol only improving the machining efliciency, but also in coaling layers with
controllable silver contents on the workpicee surtface, while at the same time resulting in negligible changes in
surface roughness and structure. All of thege abilities of PMTDM have an effect on antibacterial properties.
Therefore, it is possible Lo concurrently machine and coal surlaces [ullilling specilic requireinents regarding

hoth silver content and surface quality using the PMEDM method.

5. Conclusions

In this study, the capability of PMEDM using silver nano-particles in machining Ti-6A1-4V inedical
material and coating an antibacterial layer on the machined surface has been investigated. From the results,

the [ollowing conclusions can be drawn:
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e It is possible to realise a continuous coating layer incorporating constituent elements from tool elec-
trode, workpiece, dielectric fluid as well as powder particles which were deposited during the machining

and coating process.
e Silver content in the coating layer tends to decrease with increasing depth of coat.

e Both qualitative and quantitative antibacterial results have demonstrated an excellent antibacterial

property of the surfaces which are machined and coated by the PMEDM method.

e Silver content in the coating layer plays a vital role in reducing the amount of not only S. aureus, but

also bacterial cluster on the coating surfaces.

e Machining efficiency is significantly enhanced by suspending silver particles into dielectric fluid. It is
possible to increase material removal rate of EDM process up to ~ 286% whereas wear ratio is reduced

by ~ 8.7%.

e PMEDM has demonstrated a considerable potential to concurrently machine geometry’s part and coat

antibacterial layers on medical devices.
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