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Bacterial resistance has been increasingly reported worldwide and is one of themajor causes of failure in the treatment of infectious
diseases. Natural-based products, including plant secondary metabolites (phytochemicals), may be used to surpass or reduce
this problem. �e objective of this study was to determine the antibacterial e�ect and mode of action of selected essential oils
(EOs) components: carveol, carvone, citronellol, and citronellal, against Escherichia coli and Staphylococcus aureus. �e minimum
inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were assessed for the selected EOs components.
Moreover, physicochemical bacterial surface characterization, bacterial surface charge, membrane integrity, and�+ leakage assays
were carried out to investigate the antimicrobial mode of action of EOs components. Citronellol was the most e�ective molecule
against both pathogens, followed by citronellal, carveol, and carvone. Changes in the hydrophobicity, surface charge, andmembrane
integrity with the subsequent �+ leakage from E. coli and S. aureus were observed a�er exposure to EOs. �is study demonstrates
that the selected EOs have signi	cant antimicrobial activity against the bacteria tested, acting on the cell surface and causing the
disruption of the bacterial membrane. Moreover, these molecules are interesting alternatives to conventional antimicrobials for the
control of microbial infections.

1. Introduction

Antimicrobial resistance is one of the most serious public
health threats that results mostly from the selective pressure
exerted by antibiotic use and abuse [1, 2]. During the last
decades, rapid evolution and spread of resistance among clin-
ically important bacterial species have been observed. Due
to this growing increase of resistance, many antimicrobial
agents are losing their e
cacy [3–5]. Consequently, the ther-
apeutic options for the treatment of infections have become
limited or even unavailable. According to the World Health

Organization (WHO) infectious diseases are the second cause
of death around the world [6]. It is also estimated that
antimicrobial resistance causes more than 2,049,442 illnesses
and 23,000 deaths per year in the United States and these
cases are increasing every year [7].�erefore, it is necessary to
develop new alternative compounds to decrease the problem
of the microbial resistance.

Plants produce an enormous array of functional relevant
secondary metabolites (phytochemicals) that exhibit a diver-
sity of medicinal properties [8]. �e majority of these com-
pounds are used by plants as a defense mechanism against
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Figure 1: Chemical structure of selected essential oils (EOs) components.

other microorganisms, herbivores, and competitors [9]. �e
principal phytochemicals present in plants are essential oils
(EOs), phenolic compounds, alkaloids, lectins/polypeptides,
and polyacetylenes [10].

EOs are a complex mixture of natural, volatile, and
aromatic compounds synthesized by aromatic plants that
have been o�en used in traditional medicine [11]. �ey are
classi	ed as monoterpenes and sesquiterpenes, according to
the number of isoprene units, monoterpenes being the most
abundant in EOs components. �e second group present in
EOs (less predominance) are aromatics compounds, derived
from phenylpropane (mixtures of aldehydes, alcohols, phe-
nols, methoxy derivatives, and methylenedioxy compounds)
[11].

Nowadays, more than 3000 EOs have been identi	ed
and only 10% are approved for use in diverse areas (phar-
maceutical, food, and cosmetic). In addition, these natural
compounds are generally recognized as safe by FDA (Food
and Drug Administration, US) [11–13]. A large number of
biological activities have been reported for EOs such as
antimicrobial, antiviral, antimycotic, antiparasitic, insectici-
dal, antidiabetic, antioxidant, and anticancer [14, 15].�e bio-
logical activities are related with EOs bioactive compounds,
as well as the functional groups and structure arrangement
from these molecules [16].

EOs exhibit antimicrobial potential against a large num-
ber of Gram-negative and Gram-positive bacteria [17, 18]. It
has been observed that the mode of action of EOs is based on
their ability to disrupt cell wall and cytoplasmic membrane,
leading to lysis and leakage of intracellular compounds [16].
However, there is limited detailed information about how
these compounds achieve this antimicrobial activity, and at
the same time, additional information is required on the
antimicrobial potential of pure compounds present in EOs.

�e objectives of this work were to investigate the
antibacterial activity and aspects on the mode of action of
selected EOs components, carveol, carvone, citronellol, and
citronellal (Figure 1), against two bacteria of clinical concern,
Escherichia coli and Staphylococcus aureus.

2. Materials and Methods

2.1. Bacterial Strains and Growth Conditions. �e microor-
ganisms used in this study were E. coli CECT 434 and S.

aureus CECT 976. �ese bacteria were previously used in
antimicrobial tests with phytochemical products [19–21]. All
strains were preserved at−80∘C in cryovials containing liquid
medium (700�L) and 30% (vol/vol) glycerol and subcultured
in Mueller-Hinton agar (MHA, Merck, Germany), at 30∘C
during 24 h before testing.

2.2. Essential Oils (EOs) Components. Carveol and carvone
were obtained from Sigma-Aldrich (Portugal) and citronellol
and citronellal were obtained from Acros Organics (USA).
Each compound (the compounds were weighed out leading
to �g/mL units) was tested at various concentrations in the
range of 0.066 to 3000 �g/mL in dimethyl sulfoxide (DMSO,
100%) (Sigma-Aldrich). �e solutions of EOs components in
DMSO did not exceed 10% (v/v) of the 	nal volume of cell
suspensions. Cell suspensions with DMSO (10%, v/v) and cell
suspension without EOs components were used as controls.
To assess themode of action, each EOs component was tested
at MIC concentration. All tests were performed in triplicate
with three repeats.

2.3. Determination of Minimum Inhibitory Concentration
(MIC) andMinimumBactericidal Concentration (MBC). �e
MIC of EOs components was determined by the microdi-
lution broth method [22]. Brie�y, a�er overnight growth at
30∘C in Mueller-Hinton broth (MHB, Merck, Germany) an
inoculum was taken and cell density OD600 nm was adjusted

to 0.134 ± 0.02 (1 × 106 cells/mL). A�erwards, for each
bacterium, at least 16 wells of sterile 96-well polystyrene
microtiter plates (Orange Science,USA)were inoculatedwith
180 �L of cells and 20�L of each compound. �e percentage
of DMSO did not exceed 10% (v/v) of the volume used
per well (200�L). No antimicrobial activity was detected by
DMSO (data not shown). �e microtiter plates were then
incubated for 24 h at 30∘C in an orbital shaker (150 rpm).
�e absorbance was measured at 600 nm using a Microplate
Reader (SpectraMax M2e, Molecular Devices, Inc.), and
the lowest concentration of EOs components at which no
growth was detected was de	ned as the MIC [22]. A�er
MIC determination, 10 �L of each well corresponding to
the EOs components concentrations equal and above the
MIC was taken and plated out on plate count agar (PCA,
Oxoid, England) and incubated at 30∘C for 24 h.�e complete
growth absence was considered as the MBC.
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2.4. Physicochemical Characterization of Bacterial Surfaces.
For the physicochemical characterization, bacterial suspen-
sion was prepared in ultrapure water at pH 6. Bacterial sus-
pensions with each EOs component (at corresponding MIC)
were incubated for 1 h at 30∘C. Subsequently, physicochemical
properties were determined by sessile drop contact angle
measurement on bacterial lawns [23]. To determine contact
angles an OCA 15 Plus (DATAPHYSICS) video based optical
measuring instrument was used, allowing image acquisition
and data analysis. �e contact angle measurements (≤25,
determination per liquid and test compounds was evaluated)
were determined following the methodology described by
Simões et al. [24]. �e components reference values of the
liquid surface tension were taken from the literature [25].
�e degree of hydrophobicity was evaluated and expressed as
the free energy interaction between two entities on surface

immersed in water (�)−Δ���� (mJ/m2) [26–28]. A material
is considered hydrophobic if the interaction between two
entities is stronger than the interaction of each separately.�e
surface tension components of the interacting entities can be
calculated Δ���� with the next equation:

Δ����
= − 2(√
LW� −√
LW� )

+ 4(√
+� 
−� +√
−� 
+� −√
+� 
−� −√
−�
+�) .

(1)

�e Lifshitz-van der Waals components of the free surface

are indicated by 
LW, and 
+, 
− represented the electron
acceptor and electron donor parameters, respectively, of the

Lewis acid-based component (
AB), with 
AB = 2√
+
−. In
solidmaterial, the surface tension components were obtained
by measuring the contact angles of three di�erent polarity
liquids: -bromonaphthalene (apolar), formamide (polar),
and water (polar). �e liquids used are known as surface
tension components.�e values obtained were analyzed with
the next equation:

(1+ cos �) 
Tot� = 2(√
LW� 
LW� +√
+� 
−� +√
−� 
+�) , (2)

where � represented the contact angle and 
Tot = 
LW
AB.

2.5. Bacterial Surface Charge (Zeta Potential). �e zeta
potential was determined using a Nano Zetasizer (Malvern
Instrument) by applying an electric 	eld across the bacterial
suspensions [22]. �e zeta potential of bacterial suspensions
was measured before and a�er exposure to the selected EOs.

2.6. Assessment of Membrane Integrity: Propidium Iodide
Uptake. �e Live/Dead BacLight kit (Invitrogen) assesses
membrane integrity by selective stain exclusion [29].�is is a
rapid method commonly used to determine both viable and
total counts of bacteria [22]. �e BacLight kit is composed
of two nucleic acid-binding stains: SYTO 9 and propidium
iodide (PI). Bacterial strains were cultured overnight at 30∘C
in MHB, centrifuged (3772 g, 10min), and washed once with

Table 1: MIC and MBC of selected EOs components for E. coli and
S. aureus.

EOs
MIC (�g/mL) MBC (�g/mL)

E. coli S. aureus E. coli S. aureus

Carveol 200 2000 1500 2500

Carvone 200 NA 1500 NA

Citronellol 5 375 15 400

Citronellal 300 400 500 800

NA: no activity (MIC/MBC > 3000�g/mL).

saline solution (NaCl, 0.85%). Subsequently, bacteria were
resuspended in NaCl to obtain an OD600 nm of 0.134 ± 0.02.
�en, 1mL of each cell suspension was maintained in contact
with test compounds (at corresponding MIC) for 1 h. Cell
suspension with DMSO at 10% and without EOs components
was used as controls.�en, bacterial suspensionswere diluted
(1 : 10) in NaCl and 300 �L of each diluted suspension was 	l-
tered through a Nucleopore (Whatman) black polycarbonate
membrane (pore size 0.22mm) and stained with 250mL of
diluted SYTO 9 and 250mL of diluted component PI. �e
dyes were le� to react for 15min in the dark, at 27 ± 3∘C.
�e membrane was then mounted on BacLight mounting
oil, as described in the manufacturer’s instructions. A LEICA
DMLB2 microscope with mercury lamp HBO/100W/3 was
used to observe stained bacteria, incorporating a color digital
camera to acquire images using IM50 so�ware (LEICA) and
a ×100 oil immersion �uorescence objective.�e optical 	lter
combination for optimal viewing of stainedmounts consisted
in a 480–500 nmexcitation 	lterwith a 485 nmemission 	lter
(Chroma 61000-V2 DAPI/FITC/TRITC). �e total number
of cells (both stains) and the number of PI stained cells
(damaged) were calculated using a program path (Scan Pro
5). �e total cell number and the number of PI stained cells
on each membrane were estimated from minimum counts
of >20 	elds of view. �e total cells number per 	eld was
approximately 50–200 cells.

2.7. Potassium (K+) Leakage. �e potassium leakage was
determined using a �ame emission and atomic absorption
spectroscopy used for �+ titration in solution (bacterium +
EOs) [22]. �e solution was 	ltrated a�er contact with the
test compounds. �e samples were analyzed in a GBC AAS
932 plus device using GBC Avante 1.33 so�ware.

2.8. Statistical Analysis. Statistical analysis was evaluated
using the NCCS, 2007 so�ware. One way analysis of variance
was performed. Di�erences were evaluated by using Tukey-
Kramer test. �e signi	cance level in error was � ≤ 0.05.

3. Results

3.1. Inhibitory and Bactericidal Concentrations of EOs. �e
MIC and MBC values obtained for the selected EOs com-
ponents against E. coli and S. aureus are shown in Table 1.
All compounds presented inhibitory and bactericidal e�ects
against E. coli. However, no inhibitory activity was observed
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Table 2: Hydrophobicity (Δ�TOT) and apolar (
LW) and polar (
AB) components of the surface tension of E. coli and S. aureus a�er 1 h of
exposure to MIC of selected EOs components.

Bacteria EOs
Surface tension parameters


LW 
AB 
+ 
− Δ�TOT (mJ/m2)

E. coli

Control 33.58 ± 1.99b 20.74 ± 1.98bc 2.17 ± 0.42bc 49.52 ± 0.03a 25.86 ± 0.31a
Carveol 34.40 ± 0.74b 16.71 ± 1.94a 1.28 ± 0.29a 54.60 ± 0.62b 33.80 ± 0.76b
Carvone 34.45 ± 0.38b 17.33 ± 0.30ab 1.37 ± 0.03ab 54.64 ± 0.51b 33.44 ± 0.24b
Citronellol 35.88 ± 0.90b 15.74 ± 1.17a 1.13 ± 0.17a 54.66 ± 0.17b 33.86 ± 0.48b
Citronellal 27.8 ± 0.95a 25.93 ± 1.59c 3.41 ± 0.43c 49.34 ± 0.42a 24.48 ± 0.97a

S. aureus

Control 35.44 ± 1.15a 17.09 ± 0.28a 1.48 ± 0.05a 49.57 ± 0.91a 27.68 ± 1.35a
Carveol 34.14 ± 0.60a 15.74 ± 2.00a 1.10 ± 0.32a 56.82 ± 2.49b 37.11 ± 3.96b

Citronellol 35.05 ± 0.38a 14.87 ± 0.34a 1.10 ± 0.03a 50.03 ± 0.56a 29.23 ± 0.64b
Citronellal 34.15 ± 0.01a 16.74 ± 0.35a 1.47 ± 0.11a 47.55 ± 1.53a 25.56 ± 2.04a

a–cDi�erent superscripts within the same column indicate statistical signi	cant di�erences (� < 0.05). Mean values ± standard deviation for at least three
replicates are illustrated.

against S. aureus with carvone, at the maximum concen-
tration tested (3000 �g/mL). �erefore, this molecule was
not used against S. aureus, for the mode of action assays.
E. coli was strongly inhibited by citronellol (5 �g/mL),
followed by carveol/carvone (200 �g/mL) and citronellal
(300 �g/mL). For S. aureus, citronellol (375 �g/mL) and
citronellal (400�g/mL) presented the lowest MIC values
followed by carveol (2000 �g/mL). Regarding the bactericidal
e�ect, citronellol and citronellal were the most e�ective
EOs component with MBC of 15�g/mL and 500�g/mL,
respectively, for E. coli.�eMBC of both carveol and carvone
against E. coli was 1500 �g/mL. For S. aureus, MBC values
of 400 �g/mL, 800�g/mL, and 2500�g/mL were assessed
for citronellol, citronellal, and carveol, respectively. Carvone
showed no bactericidal activity against S. aureus. In general
citronellol was the most e�ective molecule against both
pathogens.

3.2. E�ects of EOs onBacterial Physicochemical Surface Proper-
ties: Hydrophobicity and Surface Charge. �e hydrophobicity
and polar and apolar components of the surface tension of
E. coli and S. aureus a�er 1 h of exposure to selected EOs
components were determined using the van Oss approach
(Table 2). �is method allows the assessment of the total
degree of hydrophobicity of any surface in comparison with
its interaction with water. Both E. coli and S. aureus have
hydrophilic surfaces (Δ�TOT > 0mJ/m2), before exposure to
the EOs. In general, the application of EOs leads to changes
in the physicochemical surface properties. E. coli cell surface

(25.86mJ/m2) became more hydrophilic in the presence of

carveol (33.8mJ/m2), carvone (33.44mJ/m2), and citronellol
(33.86mJ/m2) and no signi	cant e�ect was observed on the

cell surface properties with citronellal (24.48mJ/m2) (� >
0.05). �e same behavior was veri	ed for S. aureus; that is,
carveol and citronellol promoted a cell surface hydrophilic
character, and no alteration was found with citronellal.
Moreover, the apolar properties (
LW) of both bacteria were
not modi	ed (� > 0.05) by EOs. �e values of the polar

component (
AB) of E. coli and S. aureus were reduced (� <
0.05) a�er treatment with all EOs components tested, except

Table 3: Zeta potential values (mV) of E. coli and S. aureus a�er 1 h
of exposure to MIC of selected EOs components.

EOs
Zeta potential (mV)

E. coli S. aureus

Control −22.78 ± 2.85a −27.10 ± 2.42a
Carveol −13.58 ± 1.02c −18.86 ± 2.02b
Carvone −18.46 ± 1.37b NE

Citronellol −8.13 ± 1.21d −16.03 ± 0.66b
Citronellal −11.71 ± 0.73c −15.16 ± 1.00b
a–dDi�erent superscripts within the same column indicate statistical signif-
icant di�erences (� < 0.05). NE: not evaluated. Mean values ± standard
deviation for at least three replicates are illustrated.

with citronellal for E. coli which acquired polar properties.
�e electron acceptor component (
+) decreased with EOs
components application for both E. coli and S. aureus (except
with citronellal).�e values of the electron donor component
increased (� < 0.05) a�er treatment with carveol (for both
bacteria), carvone (for E. coli), and citronellol (for E. coli).

�e zeta potential measurement provides information
about the surface charge of the cells and is calculated from
themobility of cells in the presence of an electrical 	eld under
speci	c pH and salt concentrations. Table 3 shows that before
treatment with EOs the two bacteria tested had negative
surface charge: −22.78mV for E. coli and 27.10mV for S.
aureus. Signi	cant changes in the cellular surface charge of E.
coli and S. aureus (� < 0.05) were observed a�er exposure to
the EOs (Table 3). �e zeta potential values of E. coli became
less negatives a�er contact with all molecules tested, wherein
citronellol (−8.13mV) promoted the greatest alteration fol-
lowed by citronellal (−11.71mV), carveol (−13.58mV), and
carvone (−18.46mV). �e same surface charge alteration
patterns were observed for S. aureus following EOs exposure,
although not so pronounced as for E. coli.

3.3. E�ects of EOs Components on Bacterial Membrane
Integrity. �e integrity of cell membranes can be assessed
based on the ability of PI to penetrate cytoplasmic mem-
brane. PI only penetrates cells with damaged membrane.
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Figure 2: Permeability of E. coli and S. aureus to propidium iodide
(PI) a�er 1 h of exposure to the selected EOs components at their
MIC. ∗: not evaluated. Mean values ± standard deviation for at least
three replicates are illustrated.

In this way, the potential of selected EOs components to
interfere with membrane integrity a�er 1 h exposure was
analyzed (Figure 2). �e PI uptake results suggest that all
the tested EOs components compromise the integrity of
the cytoplasmic membrane of both bacteria (� < 0.05).
For E. coli the percentage of cells stained with PI a�er 1 h
of treatment (at corresponding MIC) was carveol (32%),
carvone (35%), citronellol (93%), and citronellal (98%). For
S. aureus exposed to carveol, citronellol, and citronellal the
damage in cytoplasmic membrane was about 44%, 99%, and
95% of the total cells, respectively.

3.4. E�ects of EOs Components on Intracellular Potassium
Leakage. �e K+ leakage determination is used to identify
alterations of the cell membrane permeability. �e e�ects of
EOs components on K+ release from E. coli and S. aureus
cells are shown in Table 4. No loss of intracellular K+ was
observed for E. coli cells with all EOs components, at the
tested concentration. For S. aureus, K+ leakage was found
with application of carveol, citronellol, and citronellal (� <
0.05).

4. Discussion

In the last decades, the incidence of human pathogens
resistant to several antimicrobials has increased worldwide
[7]. �e lack of e�ectiveness of traditional antibiotics has
created serious problems on the treatment of infectious
diseases [30].�erefore, it is necessary to 	nd new alternative
therapies to combat or reduce cases of infectious diseases
associated with resistant pathogens. Due to the accepted safe
status of some natural products, the interest in antimicrobials
derived from nature has increased [10]. Indeed, a notable
amount of drugs has been obtained from natural sources,

Table 4: Concentration of K+ (�g/mL) in solution of E. coli and S.
aureus a�er 1 h of exposure to MIC of selected EOs components.

EOs E. coli S. aureus

Control 0.0 ± 0.0 0.0 ± 0.0a
Carveol 0.0 ± 0.0 0.34 ± 0.098b
Carvone 0.0 ± 0.0 NE

Citronellol 0.0 ± 0.0 0.63 ± 0.008c
Citronellal 0.0 ± 0.0 0.48 ± 0.053bc
a–dDi�erent superscripts within the same column indicate statistical signif-
icant di�erences (� < 0.05). NE: not evaluated. Mean values ± standard
deviation for at least three replicates are illustrated.

particularly from plants [31]. Plants are used for thousands of
years in traditional medicine to treat infections and currently
they continue to play an important role in the discovery of
newmolecules [32].Within plant secondarymetabolites, EOs
contain a diversity of bioactive compounds with chemical
and structural variance that make them versatile in terms
of functions. Due to their chemical variety, EOs represent
a distinctive group of possible novel antimicrobial agents
that have attracted special attention [33]. Although there are
many reports about the antimicrobial activity of EOs from
plants, few studies have been reported on the antimicrobial
properties of their single molecules. In fact, most of the
available studies reported the e�ects of eugenol, thymol, and
carvacrol. In addition, information on the mode of action
of individual EOs components is scarce and the speci	c
mechanism is still not completely understood [34]. In order
to contribute to the 	lling of these gaps, the present study
provides new information on the antimicrobial activity and
mode of action of four selected EOs components (carveol,
carvone, citronellol, and citronellal) belonging to the class
of terpenes (monoterpenoids). �e MIC and MBC were
assessed followed by the study of di�erent bacterial physi-
ological indexes (surface hydrophobicity, surface charge, PI
uptake, and intracellular K+ release).

�e analysis of inhibitory and bactericidal activity
showed that all EOs components tested were active at di�er-
ent extents against E. coli and S. aureus, with the exception of
carvone to S. aureus. Generally, it was observed that citronel-
lol displayed the higher inhibitory and bactericidal activity
against both pathogens, followed by citronellal, carveol, and
carvone. �e MIC and MBC values, obtained in the present
study, are in the range of those observed in others’ works.
In a study performed by Hussain et al. [30], citronellal
demonstrated bactericidal e�ect against strains of E. coli and
S. aureus at concentrations <1000�g/mL and <490 �g/mL,
respectively. Cimanga et al. [35] tested the antibacterial
activity of EOs from 15 Congolese aromatic plant species
against 11 clinical bacterial isolates, including E. coli and S.
aureus strains.�ey veri	ed that EOs ofEucalyptus citriodora,
in which 73% of their constituents are citronellal and 6% are
citronellol, presented higher antimicrobial activity against E.
coli strains (isolated from feces and urine) than S. aureus
strains (isolated from abscess). Contrarily, Wattanastcha et
al. [36] observed that citronellal was e�ective on growth
inhibition of S. aureus; however, for E. coli no antimicrobial
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activity was observed. Moreover, Gri
n et al. [37] found that
citronellol and citronellal exhibited lower antimicrobial activ-
ity against E. coli compared with S. aureus while carveol and
carvone showed an opposite behavior on these pathogens.
Simic et al. [38] obtained an MIC of 6 �g/mL and 2 �g/mL
with Cymbopogon winterianus (citronellal and citronellol
as main EOs components) and Carum carvi (carvone as
main EOs component) EOs, respectively, against E. coli. �is
e�ect was more evident against S. aureus with both EOs (C.
winterianus: 2�g/mL; C. carvi: 2 �g/mL). Similar behavior
was found relative to MBC. EO of C. carvi, where carvone is
the dominant constituent, has stronger antibacterial activity
than C. winterianus EOs. In the present study, Gram-positive
bacterium was more resistant than the Gram-negative one
to the EOs components tested. �is behavior was similar
to that obtained by other authors [21, 22, 39, 40]. In this
sense, some studies suggest that the di�erence in the suscep-
tibility to antimicrobials between Gram-positive and Gram-
negative bacteria could be attributed to the cell envelope
(cytoplasmic membrane and/or outer membrane and cell
wall) structure and composition [41, 42]. In Gram-negative
bacteria cell wall is more complex. It is constituted by a thin
peptidoglycan layer adjacent to cytoplasmic membrane and
an outer membrane (OM) composed by phospholipids and
lipopolysaccharides (LPS) [43]. �e passage through the OM
is regulated by the presence of hydrophilic channels, named
porins, which generally exclude the entry of hydrophobic
substances. In this study the presence of an OM, in addition
to the cytoplasmic membrane in Gram-negative bacteria,
did not increase the resistance to EOs components. In fact,
some compounds have now demonstrated their capacity to
disrupt the OM through the release of LPS [44]. Additionally,
certain EOs phenolic constituents (carvacrol and thymol)
with hydrophobic character have revealed potential to inter-
act with OM with consequent bactericidal activity [45, 46].
On the other hand Gram-positive bacteria lack the OM, but
the cell wall is formed by a thicker peptidoglycan layer that
confers rigidity to cells and makes it di
cult to penetrate
by antimicrobials. �is characteristic can be one explanation
to the lower activity of EOs constituents against the Gram-
positive bacterium S. aureus.

�ere are several targets described for EOs, namely,
destabilization of bacterial membranes, membrane proteins
damage, proton motive force depletion, and cell contents
release [47–52]. Inmost of the cases EOs confer antimicrobial
activity by damaging the cell wall and membranes, which
lead to cell lysis and leakage of cell contents [16]. Several
reports suggest that the antimicrobial mode of action of EOs
and corresponding components depends on their chemical
composition and on the amount of single components.
Also, the presence and location of functional groups in the
molecule can a�ect its bioactivity [43]. In this study the
acyclic compounds presented higher antimicrobial activity
compared with cyclic compounds. Concerning the acyclic
compounds, the di�erence between citronellol and citronellal
is the substitution of an alcohol by an aldehyde group. �is
replacement and consequently the absence of a double bond
in citronellol were therefore responsible for their higher
activity against both bacteria. �e presence of a carbonyl

group in carvone instead of a hydroxyl group in position 3
of carveol appears to have been responsible for the lack of
activity of carvone against S. aureus. However, this di�erence
did not a�ect the activity against E. coli.

Regarding the physicochemical surface properties of bac-
terial cells, in general the selected EOs components changed
the hydrophobicity and also the surface tension parameters
of both bacteria. It is known that EOs have a hydrophobic
nature, which allows them to penetrate microbial cells and
cause disruption of the cell wall/membranes structure and
impairment of cell functions. �is leads to an increase in
the permeability due to the incapability to separate the EOs
from bacterial cell membranes [43]. �us, it is possible to
hypothesize that the hydrophobicity changes of bacterial
membranes, a�er treatment with EOs constituents, can lead
to destabilization of the phospholipid bilayer of cytoplasmic
membrane of Gram-positive bacteria. In the same way, these
compoundsmay also have a�ected the hydrophobic character
of LPS from the OM, in addition to the interaction with the
cytoplasmic membrane. As cell membranes provide a barrier
that is indispensable for many cellular processes taking place
within the cells, their damage entails deleterious e�ects that
can cause cell inactivation and/or death.

Another characteristic that plays a vital role in the
microbial balance and resistance to antimicrobials is the
charge of the cell surfaces [22]. Normally, at physiological
conditions bacterial cells have a negative surface charge due to
the presence of anionic groups (e.g., carboxyl and phosphate)
in the membrane [53–55]. Nonetheless, the magnitude of the
charge varies with the species and can be a�ected by several
conditions, including the age of the culture, ionic strength,
and pH [55, 56]. In this study, zeta potential measurements
demonstrated that a�er exposure to EOs components a
reduction in the negative surface charge (less negative values)
of E. coli and S. aureus was observed. �is change in the
surface charge was more evident for the Gram-negative
bacterium. �is behavior suggests that EOs components
interacted more strongly with E. coli than with S. aureus.
Similar 	ndings were obtained by Kim et al. [57] with
eight EOs constituents (citral, carvacrol, geraniol, terpineol,
perillaldehyde, eugenol, linalool, and citronellal) against four
Gram-negative bacteria (E. coli, E. coli 0157:H7, Salmonella
typhimurium, and Vibrio vulnicus) and one Gram-positive
bacterium (Listeria monocytogenes). �e majority of studies
indicate that in general EOs and their components are
most e�ective against Gram-positive bacteria, becauseGram-
negative bacteria do not allow the entrance of hydrophobic
molecules [43]. However, this study shows that the presence
of an OM was not relevant for antimicrobial resistance.
Moreover, the cell shape may be involved in the distinct
susceptibility of E. coli and S. aureus. Normally, rod shaped
bacterial cells are more sensitive to EOs than coccoid cells
[58].

Cytoplasmic membrane permeabilization was observed
based on the uptake of PI, a nucleic acid stain to which intact
cell membrane is usually impermeable. �e percentage of
S. aureus cells with damaged membrane a�er exposure to
carveol and citronellol was higher than for E. coli. Citronellol
and citronellal were the most e�ective molecules against S.
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aureus and E. coli, respectively. In the presence of these
molecules the percentage of damaged cells reached almost
100% of the total population. Based on these results, it is
possible to conclude that membrane/cell wall permeabiliza-
tion can be related with alterations on their physicochemical
properties (hydrophobicity and charge). Indeed, Sikkema et
al. [59, 60] showed that as a result of lipophilic charac-
ter of monoterpenoid components they are preferentially
partitioned from an aqueous phase into membrane struc-
tures. �is results in membrane expansion, increased mem-
brane �uidity and permeability, disturbance of membrane-
embedded proteins, inhibition of respiration, and alteration
of ion transport processes [61]. Helander and coworkers
[45] described the e�ect of various EOs components on the
OM permeability in Gram-negative bacteria, evidencing that
monoterpene capture is determined by the permeability of
the envelope of the target microorganism.

�e cytoplasmic membrane has a very important role in
the maintenance of cellular homeostasis, as it controls the
input and output of intracellular components. �e internal
environment of cells is generally rich in K+, so their presence
in the extracellular medium is an indication of serious and
irreversible cytoplasmic membrane damage [31, 62]. Some
EOs are recognized to have membrane active properties
against several microorganisms, causing leakage of cell con-
stituents, including K+ [49, 63–65]. Cox and collaborators
[63] evaluated the antimicrobial mode of action of tea tree oil
against E. coli and S. aureus strains and reported increased
uptake of PI and leakage of K+. In this study K+ release
was veri	ed for S. aureus treated with carveol, citronellol,
and citronellal. Nevertheless, no K+ release was found for
E. coli with all molecules. �is suggests that selected EOs
components were only able to cause structural alterations
of the outer envelope without promoting release of cellular
content. However, these cell surface changes were su
cient
to induce cell death.Moreover, although EOs constituents did
not cause K+ leakage, they promoted PI uptake. �erefore, it
can be hypothesized that the K+ absence in the supernatant
was due to retention in the thin layer of E. coli cell wall. In
fact, given the increased permeability to PI, it seems unlikely
that the cytoplasmic membrane has remained impermeable
to K+.

In conclusion, the selected EOs components have an
interesting antimicrobial activity (except carvone against S.
aureus), targeting mainly the bacterial membranes. Based on
the overall results, it can be hypothesized that thesemolecules
interact strongly with cell surface constituents such as mem-
brane proteins and othermolecules essential for themicrobial
growth and survival. A�er binding to the cell surface, they can
form a monolayer around the cell that modi	es the electro-
static potential and hydrophobicity and therefore destabilizes
the membrane integrity, resulting in internal cellular compo-
nents release. Also, the results propose that the selected EOs
components can be a natural-based alternative to conven-
tional synthetic antimicrobials to control bacterial infections
caused by E. coli and S. aureus, particularly topical infec-
tions. However, more studies are necessary to explore their
toxicity to mammalian cells and drug-like properties (phar-
macokinetic and pharmacodynamic) in order to ascertain

their potential as therapeutic agents, including for the treat-
ment of systemic infections.
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