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Abstract: The increase in β-lactam-resistant Gram-negative bacteria is a severe recurrent problem
in the food industry for both producers and consumers. The development of nanotechnology and
nanomaterial applications has transformed many features in food science. The antibacterial activity
of zinc oxide nanoparticles (ZnO NPs) and their mechanism of action on β-lactam-resistant Gram-
negative food pathogens, such as Escherichia coli, Pseudomonas aeruginosa, Salmonella typhi, Serratia
marcescens, Klebsiella pneumoniae, and Proteus mirabilis, are investigated in the present paper. The
study results demonstrate that ZnO NPs possesses broad-spectrum action against these β-lactamase-
producing strains. The minimal inhibitory and minimal bactericidal concentrations vary from 0.04
to 0.08 and 0.12 to 0.24 mg/mL, respectively. The ZnO NPs elevate the level of reactive oxygen
species (ROS) and malondialdehyde in the bacterial cells as membrane lipid peroxidation. It has been
confirmed from the transmission electron microscopy image of the treated bacterial cells that ZnO
NPs diminish the permeable membrane, denature the intracellular proteins, cause DNA damage,
and cause membrane leakage. Based on these findings, the action of ZnO NPs has been attributed
to the fact that broad-spectrum antibacterial action against β-lactam-resistant Gram-negative food
pathogens is mediated by Zn2+ ion-induced oxidative stress, actions via lipid peroxidation and
membrane damage, subsequently resulting in depletion, leading to β-lactamase enzyme inhibition,
intracellular protein inactivation, DNA damage, and eventually cell death. Based on the findings
of the present study, ZnO NPs can be recommended as potent broad-spectrum antibacterial agents
against β-lactam-resistant Gram-negative pathogenic strains.

Keywords: food pathogens; beta-lactamase; membrane disintegration; broad spectrum; nanoparticles

1. Introduction

Foodborne pathogens are significant causative agents of foodborne disease and mal-
ady, therefore causing a severe threat to food safety. The World Health Organization
reports that 2 billion people are affected annually by foodborne diseases in developed
and developing countries [1], and produce significant morbidity and mortality rates [2].
Some foodborne pathogens include Escherichia coli, Pseudomonas aeruginosa, Salmonella typhi,
Serratia marcescens, Listeria monocytogenes, and Klebsiella pneumoniae, and Proteus mirabilis is
the most important pathogen in the food industry [3–5]. A recent study estimated that the
growing demand for food production in middle- and low-income countries will lead to 69%
of global antibiotic use between 2010 and 2030 [6]. In recent years, foodborne outbreaks of
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pathogens have been associated with antimicrobial resistance [7]. Antimicrobial resistance
in food pathogens is linked to antibiotic use in food animals, aquacultures, other agriculture
products, soil and water, and even food preservation [8]. It has been reported that food
animals, food products, and the food processing industry can be the primary reservoirs
of multiple drug-resistant (MDR) bacteria. Such a scenario may play a role in disseminat-
ing drug-resistant bacteria to humans via food [9]. On the other hand, a food industry
environment rich in nutrients confers many advantages to the pathogens that can easily
bind to surfaces. Additionally, the food equipment’s surfaces, such as milk tanks, cheese
tanks, butter centrifuges, pasteurizers, rubbers, polyethylene, polypropylene, and packing
materials, are influenced by the surface properties, such as roughness, and hydrophobic
interactions. These properties augment bacterial interfaces to surface adhesion by extracel-
lular organelles, such as extracellular polymeric substances, flagella, and pili, during food
processing or production. In this stage, environmental factors influence the interactions
between the bacteria and surface, resulting in an irreversible adhesion, and regulate the
signals to facilitate the formation of the MDR bacterial colony. Additionally, MDR bacterial
colonization is more stable against physical, mechanical, and chemical processes, such as
desiccation, liquid stream in the pipeline, chemicals, and disinfectant, used in the food
industry [10]. Hence, critical hindrances to the food processing industry, including poultry
and meat, dairy, and seafood [11], are prevalent.

The survival of drug-resistant (DR) bacteria, especially β-lactam-resistant bacteria,
has become an increasingly relevant issue in the food sector due to extensive applications
in food processing, from production to consumption [12]. Beta-lactam and the fluoro-
quinolone class of antimicrobials are the primary therapeutic choices in the agriculture,
food, veterinary, and health sectors [13]. Beta-lactam antibiotics consist of a 4-membered
beta-lactam ring targeting the substrates of tanspeptidase and carboxypeptidase that me-
diate cell wall biosynthesis [14]. Beta-lactam antibiotics are one of the most prescribed
antibiotics (involved in 60% of antibiotics); thus, the frequent and quantitative use col-
lectively promotes the survival of bacteria via the development of a resistance against
these antimicrobials [15]. The β-lactam-resistant bacterial strains hydrolyze the penicillins,
cephalosporins, monobactams, and carbapenems by producing a β-lactamase enzyme,
thereby inactivating these drugs and remaining resistant. Currently, different types of
β-lactamase have been reported, including penicillinases, extended-spectrum β-lactamases
(ESBLs), cephalosporinases (AmpCs), metallo lactamases (MBLs), and carbapenemases
(KPCs) [16]. Gram-negative bacteria are the predominant group of pathogens in the food
and agriculture industry and β-lactamase producers [17,18]. Currently, β-lactam-resistant
bacterial strains are categorized as number three out of the top six dangerous bacterial
pathogens listed by the Infectious Diseases Society of America [19]. Studies reported the
progression of β-lactamase producing bacterial pathogens in livestock, raw materials, food
processing equipment, and food animals [20–22]. The first, second, and third-generation
cephalosporin groups of antibiotics, penicillin, and aztreonam, are the outdated antimicro-
bials for these strains [23]. Moreover, β-lactamase strains have altered outer-membrane
proteins, penicillin-binding proteins, efflux pumps, and enhanced metabolisms [24]. Ad-
ditionally, these strains can transfer resistance genes through mobile genetic elements,
insertion sequences, and integrons; hence, previous studies showed an increased incidence
of β-lactam resistance in raw vegetables, food animals, food products, food packing materi-
als, and ready-to-eat foods [25]. Hence, the indulgence of nanomaterial applications has
gained much more attention, due to their exciting properties, making them competent for
food processing [26,27]. Among these, zinc oxide nanoparticles (ZnO NPs) attracted more
attention due to their multifaceted properties, such as stability, a high surface-to-volume
ratio, chemical reactivity, electrical and magnetic properties, non-cytotoxicity, biosafety, and
biocompatibility, and are barely prone to bacterial resistance [28]. Some studies proposed
that antibacterial activity and bactericidal actions occur via the generation of hydrogen
peroxide [29,30]; other studies suggest that the binding action of ZnO NPs to the bacterial
surface causes an electrostatic force, resulting in membrane damage and cell death [31].
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However, the antibacterial potential of ZnO NPs and their mechanisms of action have not
been studied on β-lactamase strains. Hence, in the present study, we aim to synthesize
ZnO NPs using zinc oxide, and investigate their antibacterial activity against β-lactam-
resistant strains. The outcome of ours study will help to discover suitable alternatives for
food-packing applications.

2. Results
2.1. The Characterization of ZnO NPs

The ZnO NPs were synthesized using the microwave-assisted method. The absorption
spectrum of synthesized ZnO NPs in the UV-Vis spectra is shown in Figure 1a. We observed
the sharp absorption maximum at a wavelength of 375 nm in synthesized ZnO NPs, which
is attributed to the ZnO π–π* electronic excitation [32]. Figure 1b shows the XRD pattern of
the prepared ZnO NPs. The ZnO NPs show sharp diffraction peaks located at 2θ = 31.6◦,
34.2◦, 36◦, 47.3◦, 56.4◦, 62.6◦, and 67.8◦, which corresponds to the (100), (002), (101), (102),
(110), (103), and (112) planes, respectively. There is no other diffraction peak, which confirms
the presence of synthesized ZnO NPs without other impurities. These results indicate a
hexagonal wurtzite-type ZnO NP formation. Additionally, the XRD result matches the
JCPDS data 36-1451. The morphology of the synthesized ZnO NPs was analyzed by SEM
micrographs. The obtained images are depicted in Figure 1c,d. The image clearly shows
that ZnO NPs have a spherical shape, with an average particle size ranging from 60–80 nm.
Our results suggest that microwave irradiation triggers ZnO NP formations. Additionally,
we assessed the ZnO NPs’ particle-size distribution using dynamic light scattering. Figure 2
shows that the average particle size of ZnO NPs is 456 nm. These results suggest that ZnO
NPs are aggregated in water. Overall, the physicochemical analysis results indicate ZnO
NP formations.

Molecules 2022, 27, x FOR PEER REVIEW 4 of 19 
 

 

 
Figure 1. The size and morphology analysis of (a) UV-Vis absorption spectrum, (b) X-ray 
diffraction spectra, and (c,d) scanning electron microscopic images of the synthesized ZnO NPs. 

 
Figure 2. The particle-size distribution of the synthesized ZnO NPs. 

  

Figure 1. The size and morphology analysis of (a) UV-Vis absorption spectrum, (b) X-ray diffraction
spectra, and (c,d) scanning electron microscopic images of the synthesized ZnO NPs.



Molecules 2022, 27, 2489 4 of 17

Molecules 2022, 27, x FOR PEER REVIEW 4 of 19 
 

 

 
Figure 1. The size and morphology analysis of (a) UV-Vis absorption spectrum, (b) X-ray 
diffraction spectra, and (c,d) scanning electron microscopic images of the synthesized ZnO NPs. 

 
Figure 2. The particle-size distribution of the synthesized ZnO NPs. 

  

Figure 2. The particle-size distribution of the synthesized ZnO NPs.

2.2. The In Vitro Antibacterial Activity of ZnO NPs against β-Lactam-Resistant Bacterial Strains

The ZnO NPs demonstrated robust anti-microbial activity against all selected β-lactam-
resistant bacterial food pathogens. The MIC and MBC of the ZnO NPs are shown in Table 1.

Table 1. The minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC)
of ZnO NPs against β-lactam-resistant bacterial food pathogens.

Bacterial Strains MIC (mg/mL) MBC (mg/mL)

E. coli ATCC 25922 0.04 0.12
K. pneumoniae ATCC 700603 0.04 0.2

E. coli 0.04 0.2
P. aeruginosa 0.04 0.24

S. typhi 0.08 0.24
S. marcescens 0.04 0.2
K. pneumoniae 0.04 0.24

P. mirabilis 0.08 0.24

The MIC and MBC concentrations varied from 0.04 to 0.08 and 0.12 to 0.24 mg/mL,
respectively. Non-β-lactamase-producing bacterial strains were the most susceptible organ-
isms, with an MIC of 0.04 and MBC of 0.12 mg/mL. Among the β-lactam-resistant strains,
K. pneumoniae (ATCC) E. coli, P. aeruginosa, S. marcescens, and K. pneumoniae exhibited MIC
at 0.04 mg/mL, except for P. mirabilis and S. typhi (MIC-0.08 mg/mL). The variations
were observed at MBCs between the β-lactam-resistant strains of K. pneumoniae (ATCC) E.
coli, S. marcescens (0.2 mg/mL), and S. typhi, P. aeruginosa, K. pneumoniae, and P. mirabilis
(0.24 mg/mL).

2.3. The Inhibition of β-Lactamase Activity

Nitrocefin is a chromogenic cephalosporin, and β-lactamase hydrolyzes the nitrocefin
results in the generation of a colored product, which can be detectable at 490 nm. The
formation of colored products is directly proportional to β-lactamase activity. This study
found that colored-product formation was high in all untreated bacterial pathogens; hence,
the high OD value was recorded. However, the lowest OD values were found on all
ZnO NP-treated cells, which indicates the least hydrolysis due to less β-lactamase activity.



Molecules 2022, 27, 2489 5 of 17

The present results suggest that ZnO NPs can be potent β-lactamase inhibitors (Figure 3).
Interestingly, our study results found variations in β-lactamase activity among the untreated
strains. The highest activity was exhibited in food pathogenic K. pneumoniae, S. typhi, K.
pneumoniae control strain, E. coli, and P. aeruginosa, while P. mirabilis and S. marcescens
showed low activity compared to the other tested strains. All the obtained values are
statistically significant.
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Figure 3. The dynamics of ZnO NPs on beta-lactamase activity. UT: untreated control; T: ZnO NPS
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2.4. The Generation of the Reactive Oxygen Species

We examined the ROS produced in ZnO NPs treated and untreated with β-lactam-
resistant bacterial strains. All the obtained values were statistically highly significant
(p < 0.001). The study results demonstrate that intracellular ROS produced in response
to ZnO NPs was increased in all tested strains compared to untreated strains (Figure 4).
Moreover, for the statistically significant correlation between the treated and untreated
strains, the highest ROS production was observed in S. marcescens, P. mirabilis, K. pneumoniae
E. coli, and S. typhi. The lowest ROS production was observed in P. aeruginosa. However,
the results confirm that the increased ROS production in treated bacterial cells indicates
abnormal cellular metabolisms.



Molecules 2022, 27, 2489 6 of 17

Molecules 2022, 27, x FOR PEER REVIEW 6 of 19 
 

 

 
Figure 3. The dynamics of ZnO NPs on beta-lactamase activity. UT: untreated control; T: ZnO NPS 
treated; KP C: K. pneumoniae ATCC 700603; EC: E. coli; PS: P. aeruginosa; ST: S. typhi; SM: S. 
marcescens; KP: K. pneumoniae; and PM: P. mirabilis. The data are the averages of the triplicates and 
the error bar represents the mean ± SD. Compared to the ZnO NP free control *** p < 0.001. 

2.4. The Generation of the Reactive Oxygen Species  
We examined the ROS produced in ZnO NPs treated and untreated with 

β-lactam-resistant bacterial strains. All the obtained values were statistically highly 
significant (p < 0.001). The study results demonstrate that intracellular ROS produced in 
response to ZnO NPs was increased in all tested strains compared to untreated strains 
(Figure 4). Moreover, for the statistically significant correlation between the treated and 
untreated strains, the highest ROS production was observed in S. marcescens, P. mirabilis, 
K. pneumoniae E. coli, and S. typhi. The lowest ROS production was observed in P. 
aeruginosa. However, the results confirm that the increased ROS production in treated 
bacterial cells indicates abnormal cellular metabolisms.  

 
Figure 4. The action of ZnO NPs on the intracellular production of reactive oxygen species. The data
are the average of the triplicates and the error bar represents mean ± SD. Compared to ZnO NP free
control *** p < 0.001.

2.5. Membrane Lipid Peroxidation

The accumulation of ROS leads to bacterial membrane lipid peroxidation, which
increases the cell permeability that causes the uncontrolled transport of intra- and extracel-
lular molecules. Lipid peroxidation was assessed by the malondialdehyde quantity, which
was the by-product of membrane lipid peroxidation. Figure 5 shows that the level of malon-
dialdehyde was significantly increased in all the ZnO NPs treated with β-lactam-resistant
bacterial strains. All the obtained values are statistically significant. The obtained results
confirm the effects of the ZnO NPs on the ROS-mediated membrane lipid peroxidation of
the tested strains.
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2.6. Membrane Damage and Leakage

SYTO9 penetrates all bacterial membranes (intact/injured) and colors the bacterial
cells green. PI can only penetrate injured/damaged bacterial cells and color the bacterial
cell red. Figure 6 represents the presence of the intact and injured tested bacterial cells.
The study results show that all the untreated cells appear green, and the mean fluorescent
intensity is high; hence, the experimental setup did not affect the bacterial growth. On the
other hand, all the ZnO NPs with treated bacterial cells appear red and the red fluorescent
mean intensity is higher than the green fluorescent mean intensity. Hence, the study results
confirm that the ZnO NPs cause membrane damage to treated bacterial cells.

Molecules 2022, 27, x FOR PEER REVIEW 9 of 19 
 

 

 
Figure 6. The double staining (SYTO9 and PI) assay for membrane damage; live bacteria with intact 
membranes appear green, and the injured/damaged bacterial cells appear yellow/red. The bar 
diagram represents the fluorescent mean intensity. 
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The endogenous generation and accumulation of ROS in bacterial cells oxidize the
intracellular protein and sugars and cause DNA fragmentation. Figure 7a describes the
membrane leakage caused by reducing the sugar in the ZnO NPs with treated and untreated
bacteria. Significantly, tenfold increases were observed in K. pneumoniae, S. marcescens, and
P. mirabilis; in comparison, lower activity was presented in S. typhi (sixfold), E. coli (fivefold),
and P. aeruginosa (threefold) than in the untreated control. Protein leakage is presented in
Figure 7b; all the treated β-lactam-resistant bacterial strains expressed a similar pattern of
leakage that represented five-to-eight-fold increases than the control. Figure 7c displays
the variation of DNA leakage in the treated bacteria. The E. coli, P. aeruginosa, S. typhi, and
P. mirabilis showed tenfold increases, whereas five-to-eight-fold increases were observed
in K. pneumoniae and S. marcescens. These results suggest that ZnO NPs disrupt the cell
membrane integrity and increase cell permeability, hence the acceleration of reducing
sugar, protein, and DNA leakage from the cytoplasm in different ways in the different
tested strains.
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and the error bar represents the mean ± SD. Compared to ZnO NP free control ** p < 0.01, *** p < 0.001.
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2.7. Transmission Electron Microscopy Analysis

To demonstrate the interaction of ZnO NPs with β-lactam-resistant K. pneumoniae
cellular events and internal modifications, Figure 8 presents the various cellular events
that occur in relation to K. pneumoniae, upon being treated with ZnO NPs, compared to the
untreated control. Figure 8a shows the untreated β-lactam-resistant K. pneumoniae cells that
appear as clear and distinct with a uniform morphology. The cytoplasm of the cells that
is presented is intact with the semipermeable membrane and cell envelope. Additionally,
a thick cell wall with a high lipid bilayer density can be observed, hence ensuring that
the experimental conditions of the present study were optimum and cell function was
normal without any environmental disturbances. The TEM images of 8b–e represent the
various significant modifications that occur in the K. pneumoniae cells at 2x MIC of the
ZnO NPs. Figure 8b shows that the ZnO NPs cause cytoplasmic shrinkage, appearing
as a dense region, lose cellular integrity due to membrane disruption, and cytoplasmic
leakage as electron-dense granules surrounding the cell. Figure 8c,d represent the complete
disintegration of the cell wall; the cell membrane, cytoplasm, and lipid bilayer appear
as translucent, electron-light regions; and the dense aggregation of proteins appear as
an electron-dense region in the bacterial cells. Figure 8e shows that the cell consists of
a denatured protein that appears as a dark electron-dense region. These results visually
confirm the broad-spectrum potential of the ZnO NPs on β-lactam-resistant bacterial strains
and provide evidence of β-lactamase inhibition, ROS, the inhibition of membrane lipids,
and membrane leakage.
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3. Discussion

The hydrolytic potential of β-lactamase is the primary source of bacterial resistance
to β-lactam antibiotics. This enzyme can break the β-lactam ring and deactivate β-lactam
drugs [33]. The continuous evolution and spreading of β-lactam-resistant bacterial strains
have prompted the modern food industry to search for antimicrobial alternatives. Thus,
ZnO NPs are commonly considered as potent antimicrobial agents; however, the exact way
in which they exert their activity is still speculative [34]. Nevertheless, the present study
demonstrates that ZnO NPs can be potent antimicrobials for β-lactam-resistant bacterial
strains. The antibacterial test showed that 0.04 mg/mL of ZnO NPs is sufficient to inactivate
the K. pneumoniae ATCC 700603 strain, which is capable of producing β-lactamase SHV-
18. Additionally, similar results were observed for E. coli, and S. marcescens isolated food
pathogenic strains. For the bacterial strains that produce SHV-18 β-lactamase, the relative
rate of the hydrolysis/inactivation of cephaloridine was two-fold higher than SHV-7 [35].

SHV-18 differs from SHV-7 by a single amino acid substitution: alanine for serine [36].
However, the hydrolysis/drug inactivation potential was increased in other classes of SHV
β-lactamase-producing strains; hence, in our study, foodborne β-lactamase producing K.
pneumoniae, P. aeruginosa, S. typhi, and P. mirabilis exhibits a higher MBC (0.24 mg/mL)
value than the SHV-18 strain (0.2 mg/mL); these variations may occur due to other classes
of β-lactamase and other virulence factors. In previous studies on the antibacterial activity
of ZnO NPs against non-resistant Gram-negative bacterial strains, it was observed that
the inhibition dose was 0.015 mg/mL against E. coli and S. typhimurium, and, in the
case of K. pneumoniae, the lowest dose of 0.005 mg/mL was sufficient to inactivate these
strains [37,38]. However, in the present study, the growth was strongly inhibited at the
concentration range of 0.04 to 0.08 mg/mL, against tested β-lactam-resistant bacterial
strains. The study results demonstrate that ZnO NPs can be effective antimicrobial agents
in the case of β-lactam-resistant bacterial food pathogens. Nonetheless, their success is
strongly associated with the class of β-lactamase they produce and dependent strains,
since the differences in terms of MIC and MBC can be observed among the tested strains.
Additionally, many other factors strictly related to each strain, as demonstrated in the
case of S. typhi and P. mirabilis that were equipped with an efflux pump, altered the cell
membrane, fimbriae, an array of enzymes, and reduced compounds for detoxification;
thus, increased concentrations of MIC and MBC were observed in our test results [39,40].
It has been reported that Salmonella is capable of surviving and proliferating in diverse
niches [41], due to its protective response, which is known as its antigenic property; thus,
it has numerous serotypes [42]. P. aeruginosa virulence factors of the quorum-sensing
protein, elastase, and pigment production facilitate the bactericidal action of ZnO NPs
at a slightly increased concentration [43]. Nanoparticles with different sizes consist of a
different surface area-to-volume ratio; the physical interactions between nanoparticles and
bacterial cells were facilitated [44], which featured the bactericidal action of ZnO NPs and
the production of reactive oxygen species (ROS) that play an important role in biological
applications [45]. The different sizes of the nanoparticles may act differently on bacterial
cells and cumulatively cause cell death; however, smaller-sized nanoparticles exhibit a
greater effect [46].

The bacterial cell membrane is the first barrier against ROS attachment; however,
the normal metabolism of ROS is regulated via a cellular antioxidant defense system
to maintain equilibrium in the redox system. Thus, the ROS levels were low in all the
untreated (Figure 4) bacterial strains [47]. The enhanced production of ROS in the ZnO
NPs treated cells caused the excess accumulation of ROS, and eventually diminished
the cellular GSH pool, leading to inadequate antioxidants and an over-accumulation of
ROS, resulting in abnormal metabolism. We investigated lipid peroxidation, membrane
damage and leakage, and the β-lactamase inhibition assay to obtain a comprehensive
understanding of the accumulated ROS. Our results show that the exposure cells of the
ZnO NPs produce a high level of malondialdehyde (Figure 5), which is a highly reactive
by-product of membrane lipid peroxidation, which likely contributes to the disintegration
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of the bacterial cell membrane (Figure 8c) [48]. This, together with the physical interaction
between the ZnO NPs and bacterial cells, leads to cell membrane dysfunction, as evidenced
by the damage to the membrane (Figure 6), and cytoplasm leakage caused by reduced
sugars, proteins, and DNA (Figure 7a–c). This phenomenon allows the ZnO NPs to enter
the cytosol to interact with cytoplasmic proteins and enzymes, leading to further ROS
generation, and causing internal cellular protein aggregation and enzyme inhibition [49].
Figure 3 presents the evidence of β-lactamase activity inhibition by the ZnO NPs. The β-
lactamase protein is involved in the mechanisms for many Gram-negative bacteria against a
wide range of β-lactam antibiotics [50]. It has been reported that the ionic metal properties
of the ZnO NPs inhibit the enzyme activity of bacteria, and zinc plays a catalytic function
and structural role in a large number of macromolecules and enzymes. In turn, structures
called zinc fingers provide a unique scaffold that allows protein subdomains to interact
with DNA and proteins [51,52]. Different β-lactam bacterial strains produce a different
class of these enzymes. Each has a different catalytic efficiency, so that the rates for β-lactam
antibiotics can approach the limit of diffusion control [53]. Hence, a variation was observed
in the β-lactamase inhibition assay between the K. pneumoniae isolate and the ATCC strain;
likewise, the inhibition rate was different among the other isolates. However, our study
results found that all the treated ZnO NP strains that were tested, exhibited a β-lactamase
inhibition. The mechanisms underlying the ZnO NPs act as nano inhibitors that enhance the
ROS-mediated surface functional modification and significantly alter β-lactamase activity
through multivalent interactions or steric hindrances [54]. More research is needed to
clarify these phenomena in the future.

By examining ROS production, membrane lipid peroxidation, membrane leakage,
β-lactamase inhibition, cell morphology, and membrane integrity, we found that all aspects
were affected by the ZnO NPs and demonstrated a broad-spectrum antibacterial activity.
Dramatic changes in the morphology of K. pneumoniae were revealed by the TEM micro-
graph (Figure 8). The primary antimicrobial response of the ZnO NPs begins with the
release of Zn2+ ions, their ability to penetrate the cell, and their intracellular response and
enhanced ROS production [29]. The consequences of the concentration gradient of ROS
caused the inactivation of proteins/enzymes, followed by a denatured protein aggregation
that appeared in the TEM micrograph as a dark electron-dense region (Figure 8e). The lipid
peroxidation (Figure 5) of polyunsaturated fatty acids, such as cell membrane phospho-
lipids, leads to membrane disruption (Figures 6 and 8f) and disintegration (Figure 8c) [55].
Further mediated oxidative stress may cause DNA and cytoplasmic leakage, including
reduced sugars, DNA, and proteins (Figure 7) [54]. Previous studies suggested that a
low concentration of ZnO NPs cannot have a negative impact on the digestive system of
human beings. The consumption of zinc via food can protect the stomach and intestinal
tract from damage by E. coli [56]. However, Zn2+ ions support the activation of human
digestive enzymes, such as carboxypeptidase, carbonic anhydrase, and alcohol dehydro-
genase [57]. In the present study, the synthesized ZnO NPs have a spherical shape with
varying size exert a high dispersion of antimicrobial activity [51]; hence, the synthesized
ZnO NPs possess potent antibacterial activity against β-lactam-resistant Gram-negative
food pathogens. Additionally, the adopted method for the synthesized ZnO NPs, such
as pH and temperature, is suitable for antimicrobial-based food packing applications to
reduce the risk of pathogen contaminations [58].

4. Materials and Methods
4.1. The Synthesis of the ZnO NPs and Their Characterization

The ZnO NPs were prepared using zinc acetate dihydrate as a precursor. Approx-
imately 100 mL of 0.01 M zinc acetate aqueous solution was prepared, and its pH was
adjusted to 10 using NH3OH. The solution was treated in a microwave oven at 900 W for
15 min. Consequently, the obtained white color precipitates were washed with water twice
by centrifugation. Subsequently, a white pellet was dried at 70 ◦C. The synthesized material
was subjected to characterization. The crystalline nature of the synthesized ZnO NPs was
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studied using X-ray diffraction (Shimadzu XRD 6000) with Cu Kα radiation (λ = 1.5406 Å).
The optical behavior of the ZnO NPs was analyzed using UV-Vis-NIR spectroscopy (Carry
5000, Agilent Technologies, Santa Clara, CA, USA). The sample surface morphological fea-
tures were observed using a scanning electron microscope (Jeol JSM 6390). The particle-size
distribution was analyzed using a dynamic light scattering zeta size analyzer (Zetasizer
Nano-ZS90, Malvern, UK).

4.2. Bacterial Strains

The bacterial strains were isolated from spoiled meat and chicken samples collected
from a local market in the Batha region of Riyadh, Saudi Arabia. Each sample was inocu-
lated on two selective media: MacConkey broth and a subculture on MacConkey agar that
contained ceftazidime (1 mg/L) and cefotaxime (1 mg/L). The isolated pathogens, such as
Escherichia coli, Pseudomonas aeruginosa, Salmonella typhi, Serratia marcescens, Klebsiella pneu-
moniae, and Proteus mirabilis, were identified by 16s rRNA sequencing, and β-lactam drug
resistance and ESBL production were evaluated using Clinical and Laboratory Standards
Institute (CLSI) guidelines [59]. The E. coli ATCC 25922 was used (non-ESBL producer) as a
negative control, and K. pneumoniae ATCC 700603 was used as an ESBL-producing control
strain in the present study. All the strains were maintained in nutrient agar slants at 4 ◦C.

4.3. The Minimal Inhibitory Concentration (MIC) and Minimal Bactericidal Concentration
(MBC) Assay

The anti-microbial activity of the ZnO NPs was tested by determining the minimal in-
hibitory concentration (MIC) and the minimal bactericidal concentration (MBC), according
to the standard microdilution method (CLSI), with some modifications [60]. Briefly, the
bacteria were grown in Mueller–Hinton (MH) broth (Hi-media, Mumbai, India), until the
mid-log growth phase, and the initial suspension was adjusted to reach a final density of
3 × 105 CFU/mL. A volume of 10µL of different strains of diluted bacterial suspensions
was added to respective wells in a 96-well plate that contained a different concentration of
ZnO NPs ranging from 0.02 to 0.4 mg/mL. The inoculated plates were incubated at 37 ◦C
for 24 h. the MIC was defined as the lowest concentration of the ZnO NPs that inhibits the
visible growth. The MBC was determined by plating 10 µL of the samples from wells on
MH agar, and the plates were incubated at 37 ◦C for 24 h. After incubation, no growth on
the MH agar was considered as an MBC. Imipenem (IMP) was used as a positive control.

4.4. The Inhibition of β-Lactamase Production

Initially, β-lactamase inhibition activity was induced by treating bacterial culture with
imipenem (0.08 mg/L) for 6 h [61]. Subsequently, the cells were washed twice with fresh
MH broth by centrifugation at 5000× g for 10 min and diluted into MH broth to finally
attain OD600 nm 0.07 (1 × 107 CFU/mL confirmed upon a retrospective plate count on the
MH agar). The bacterial suspension was treated with the ZnO NPs at an MIC concentration
in the MH broth at 37 ◦C for 18 h. The untreated bacterial suspension was used as a control.
After the incubation, bacterial pellets were obtained by centrifugation at 10,000× g for
30 min. The collected pellet of each bacterium was suspended with 1 mL of cell lysis buffer
per mg sample. Subsequently, the samples were sonicated for 5 min. The samples were
immersed in ice during the sonication process and centrifuged at 10,000× g, at 4 ◦C for
20 min. The β-lactamase activity was indicated by measuring the absorbance at 490 nm
for 15 min after adding the collected 100 µL of the obtained β-lactamase samples to the
respective tubes that contained nitrocefin (50 µM) in 1 mL of 0.1 M phosphate buffer. The
β-lactamase activity level was compared to the untreated control.

4.5. The Reactive Oxygen Species (ROS) Assay

The reactive oxygen species produced by the treated and untreated β-lactamase-
resistant bacterial cells were estimated by the Nitro Blue Tetrazolium (NBT) assay, as
previously described [62,63]. Briefly, the bacterial suspension was treated with the ZnO
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NPs (2x MIC/mL−1); both the treated and untreated (control) bacterial suspensions were
incubated in an orbital shaker at 80 rpm and 37 ◦C for 6 h. Following the incubation, the
bacterial pellet was collected by centrifuging at 10,000× g for 15 min. The collected pellet
was mixed with a 2% NBT solution and incubated in dark conditions at 37 ◦C for 1 h.
Subsequently, the incubation pellet was collected by centrifuging at 5000× g for 5 min and
the extracellular NBT was removed by washing with PBS, followed by methanol. The
NBT that was deposited inside the cells was obtained via solubilizing the cell membrane
with a 2 M potassium hydroxide solution. To dissolve the formazan crystals, 50% of a
dimethylsulfoxide (DMSO) solution was added and incubated at 37 ◦C for 15 min, and then
centrifuged at 5000 g for 5 min. The collected supernatant was transferred to 96 micro-well
plates, and the absorbance was measured at 620 nm using a microplate reader.

4.6. The Membrane Lipid Peroxidation Assay

Lipid peroxidation can be measured by the thiobarbituric acid reactive substance
test (TBARS) [64]. The oxidative stress causes the formation of unstable lipid peroxide
in β-lactam-resistant bacterial cells that decompose to form reactive compounds, such as
malondialdehyde (MDA). Briefly, the bacterial suspension was treated with the ZnO NPs
(2x MIC/mL−1) and incubated in an orbital shaker at 80 rpm and 37 ◦C for 6 h. Following
the incubation, the bacterial suspension was centrifuged at 10,000× g for 30 min; the
collected pellet was washed and resuspended in 10% of SDS, then 20% of acetic acid was
added and incubated at 37 ◦C for 10 min. Following incubation, the thiobarbituric acid
(TBA) buffer (2 M NaOH and 0.8% TBA solutions) was added and incubated at 95 ◦C for
60 min. After cooling to 25 ◦C, the reaction mixture was centrifuged at 5000× g for 15 min.
The absorbance of the supernatant was recorded at 532 nm using a microplate reader.

4.7. The Membrane Damage and Membrane Leakage Assay

The bacterial membrane damage caused by the ZnO NPs was assessed by using the
LIVE/DEAD BacLight kit (Invitrogen, Waltham, U.S.A). This kit consists of the membrane-
permeable stain SYTO9 and impermeable stain, propidium iodide (PI), which enter the cell
through a permeabilized/damaged membrane. The green and red fluorescent intensity
of the double-stained treated and untreated ZnO NP cells was measured using a confocal
laser scanning microscope (ZEISS, Oberkochen, Germany).

The membrane leakage, such as the reduced sugars, proteins, and DNA, in the in-
tracellular cytosol were analyzed for both the treated and untreated β-lactam-resistant
bacteria. Briefly, bacterial suspension was treated with the ZnO NPs (2x MIC/mL−1) and
incubated in an orbital shaker at 100 rpm, at 37 ◦C for 6 h. Following incubation, the
bacterial suspension was centrifuged at 10,000× g for 30 min at 4 ◦C, and the supernatant
was collected and stored at −20 ◦C. The dinitrosalicylic acid test was employed to quantify
the reducing sugar, the protein was estimated by the Bradford method, and the DNA was
estimated using the absorption spectra at 260 nm, as described in the previously published
protocol [63].

4.8. Transmission Electron Microscopy (TEM) Analysis

Both the treated and untreated ZnO NP (control) β-lactam-resistant bacterial cells were
centrifuged at 2000 rpm for 10 min. The collected pellets were placed in a sterile Eppendorf
tube that contained 0.1 M of sucrose with buffered 2.5% glutaraldehyde. Then, the post-
fixation was performed for each sample using 1% of osmium tetroxide and incubated for
12 h. The fixative and the buffer were removed by centrifugation; then the cells were rinsed
with MilliQ water, and 1% of uranyl acetate was used for staining. The fixed specimen
samples were dehydrated using 20%, 40%, 60%, 90%, and 100% of ethanol series and then
propylene oxide was added for 20 min. The dried cell blocks were infiltrated by a mixture of
1:1 (v/v) propylene oxide and eponate 12 resin for 1 h at 37 ◦C, then by a mixture of 1:2 (v/v)
polypropylene/resin overnight at room temperature on a rotator. Finally, the cells were
infiltrated in 2 changes of 100% eponate 12 resin over 2 to 6 h at 37 ◦C [65]. Following the
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infiltration, plastic capsules were used to embed the tissue blocks, and then polymerized
for 12 h at 60 ◦C. Ultra-thin sections (70 nm) were prepared using an ultramicrotome (Leica
EM UC6, Leica Microsystem GmbH, Vienna, Austria). The cells were stained in 2% of
aqueous uranyl acetate for 20 min, washed with distilled water, stained in Reynold’s lead
citrate for 15 min, and washed again with distilled water. After air drying, TEM images of
the cells were obtained using a JEOL transmission electron microscope.

4.9. Statistical Analysis

All the experiments were performed in triplicates. The obtained values are expressed
as the mean ± SD. Statistical significance was calculated using one way ANOVA with
Microsoft Excel 2010, and the value of p < 0.05 is considered as statistically significant.

5. Conclusions

Ultimately, it can be concluded from these results that the bactericidal activity of
the ZnO NPs against β-lactam-resistant Gram-negative food pathogens is mediated by
Zn2+ ion-induced oxidative stress, mechanisms via lipid peroxidation, and membrane
damage, subsequently resulting in depletion, which leads to β-lactamase enzyme inhibition,
intracellular protein inactivation, DNA damage, and eventually cell death. Based on the
findings of the present study, ZnO NPs can be recommended as potent antibacterial
agents against β-lactam-resistant Gram-negative pathogenic strains for food production
and processing. However, the biosafety, long time exposure, and toxicity of ZnO NPs at
an accumulated concentration need to be explored. Thus, as a future perspective, it is
important that further research must be conducted in this regard.
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