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ABSTRACT: The extensive and increasing global use of anti-
biotics results in the ubiquitous presence of antibiotics in the
environment, which has made them “pseudo persistent organic
contaminants.” Despite numerous studies showing wide adverse
effects of antibiotics on organisms, the chronic environmental risk
of their exposure is unknown, and the molecular and cellular
mechanisms of antibiotic toxicity remain unclear. Here, we
systematically quantified transgenerational immune disturbances
after chronic parental exposure to environmental levels of a
common antibiotic, chlortetracycline (CTC), using zebrafish as a
model. CTC strongly reduced the antibacterial activities of fish
offspring by transgenerational immunosuppression. Both innate
and adaptive immunities of the offspring were suppressed, showing
significant perturbation of macrophages and neutrophils, expression of immune-related genes, and other immune functions.
Moreover, these CTC-induced immune effects were either prevented or alleviated by the supplementation with PDTC, an
antagonist of nuclear factor-κB (NF-κB), uncovering a seminal role of NF-κB in CTC immunotoxicity. Our results provide the
evidence in fish that CTC at environmentally relevant concentrations can be transmitted over multiple generations and weaken the
immune defense of offspring, raising concerns on the population hazards and ecological risk of antibiotics in the natural
environment.
KEYWORDS: antibiotic, chlortetracycline, immunosuppression, transgenerational toxicity, NF-κB

1. INTRODUCTION

The overuse and misuse of antibiotics is a global public health
issue. Global antibiotic consumption increased by 65%
between 2000 and 2015 (from 21.1 to 34.8 billion defined
daily doses) and is estimated to reach 128 billion defined daily
doses by 2030.1 Their overuse results in resistance to
antibiotics.2 Over 700,000 deaths every year are attributed to
antimicrobial resistance and are predicted to be 10 million
deaths by 2050.3 The estimated annual use in North America
varies between 1300 and 11,200 tons,4 whereas the total
consumption in 2013 for antibiotics in China was 92,700 tons,
approximately half of which was excreted by humans and
animals, which eventually enters the natural environment.5

Although the half-life of most antibiotics is short6 (a few hours
to several days), their uninterrupted and increasing emission
makes them “pseudo persistent organic contaminants”.7

Antibiotics have been frequently detected in wastewater and
aquatic environments at concentrations ranging from ng/L to
low mg/L levels.8,9 Among a long list of detectable
environmental antibiotics, chlortetracycline (CTC) is one of
the most abundant ones due to its global use.10 High levels of
CTC have been detected in surface water (a maximum level of

276.3 μg/L), groundwater (a maximum level of 126.8 μg/L),
wastewater (1.8 ± 0.5 mg/L), and even bottled drinking water
(a maximum level of 64 ng/L).11−13 The ubiquity of
antibiotics in the environment, especially in aquatic environ-
ments, potentially exposes them to various environmental
organisms, which may threaten the whole population through
the intergenerational transmission of antibiotics. Innate and
adaptive immunity is the effective defense mechanism of
different organisms against inherent and environmental
threats; however, the immune system during early life is
more susceptible and is largely influenced by parental diet,
environmental contaminants, and micronutrients.14,15 Prenatal
and postnatal exposure to antibiotics may suppress the
immunity over multiple generations, further affecting pop-
ulation structure and damaging ecological functions.16−18
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Epidemiological evidence and biological assays in mammals
have demonstrated a link between the disruption of the
immune response by antibiotics and autoimmune dis-
eases.19−21 Environmental antibiotic-induced autoimmune
diseases, however, to date, have yet been demonstrated in
fish.22 Our recent nontarget transcriptomic analysis predicted
the nuclear factor-κB (NF-κB) signaling pathway as one of the
most important mechanisms of antibiotic toxicity.23 NF-κB is
an important molecular regulator of innate and adaptive
immune responses, which can accelerate cell proliferation,
inhibit apoptosis, promote cell migration and invasion, and
stimulate angiogenesis and metastasis.24 Few anti-inflammatory
and immunosuppressant drugs show inhibition of the NF-κB
pathway.25−28 However, we still do not know their long-term
and potential transgenerational immune effects and the exact
molecular and cellular mechanisms.
In our previous study, the toxicities of 15 common

antibiotics were screened in zebrafish, among which CTC
was identified to exhibit the highest bioenrichment in the F0
ovary and F1 eggs and reduced the survival of F1 offspring.29

The (eco)toxicity of antibiotics, including CTC, has also been
reported in other organisms30−34 but little is known about the
chronic impacts of CTC on environmental organisms at
environmentally relevant concentrations. In addition, it has
been shown that relatively low levels (0.01−100 μg/L) of four
antibiotics (i.e., cefotaxime, enrofloxacin, tetracycline, and
sulfamonomethoxine) can induce NF-κB-mediated immune
response in fish’s primary macrophages.23 Thus, we hypothe-
sized that prolonged exposure to low environmental levels of
CTC could weaken the immune defense system of animals via
disrupting the NF-κB pathway during early life. To test this
central hypothesis, multigenerational experiments were de-
signed to evaluate the chronic immune effects of CTC after
parental exposure to low environmental levels of CTC using
the zebrafish model. By integrating chemical, toxicological,
molecular, and modeling methods, we provide the compre-
hensive evidence that environmentally relevant concentrations
of CTC itself can be transmitted over multiple generations and
weaken the immune defense of offspring via NF-κB.

2. METHODS

2.1. Zebrafish. A wild-type zebrafish AB line was raised in
recirculating zebrafish housing systems at the Southern
University of Science and Technology (China). Tg-
(mpeg1:EGFP) transgenic zebrafish (labeled with the macro-
phage-expressed gene 1 reporter) was obtained from the China
Zebrafish Resource Center (China). Animal work was done in
compliance with national guidelines and approved by the
Institutional Animal Care and Use Committee of Southern
University of Science and Technology (SUSTC-JY2019067).
2.2. Antibodies and Reagents. Antibodies used for the

western blot were: lysozyme C (LYSO, dilution 1/1000,
ab229657) and anti-succinate dehydrogenase complex flavo-
protein subunit A (SDHA) antibody (dilution 1/1000,
ab137040) were obtained from Abcam (U.K.). Nuclear
factor-κB 3 (NFKB3) antibody (dilution 1/1000, catalog no.
GTX107678) was obtained from Genetex. Chlorotetracycline
hydrochloride (C22H23ClN2O8·HCl, molecular weight 515.34,
CAS No. 64-72-2) was obtained from Sigma-Aldrich. NF-κB
antagonist pyrrolidine dithiocarbamate (PDTC) was obtained
from Sigma-Aldrich. All other chemicals used were of analytical
grade and were obtained from Sigma-Aldrich.

2.3. Animals and CTC Treatments. Adult zebrafish (AB)
were fed live brine shrimp (Artemia nauplii) twice daily and
maintained in flow-through aquarium systems for a 14 h light/
10 h dark cycle at 28 ± 0.5 °C. Embryonic zebrafish were
collected and examined to remove unfertilized and poor-
quality embryos. Embryonic zebrafish (2 hpf) were randomly
transferred into glass beakers that contained 500 mL of CTC
solutions at environmentally relevant concentrations of 0, 0.01,
0.1, 1, 10, and 100 μg/L CTC. Each treatment consisted of
three replicate beakers (n = 3), with each replicate containing
200 embryos per beaker. At 20 dpf, zebrafish larvae were
transferred into 25 L glass tanks, and at 90 dpf, each treatment
group was separated into males and females and separately
raised in 25 L tanks. Zebrafish were continuously exposed to
CTC treatments until 150 days, and the exposure medium was
renewed daily. After exposure, zebrafish were allowed to mate
(F0; males: females was 1:1) in clean water, and the offspring
(F1) were collected for biological assays or continually raised
in clean water for 150 days to mate to get the F2 generation
embryos. F1 and F2 generation embryos were both tested for
antibacterial ability between 0−72 hpf and 5 dpf for
immunodevelopmental functions. All experiments were
approved by the Institutional Animal Care and Use Committee
at the Southern University of Science and Technology
(SUSTC-2019-049).

2.4. Chemical Analysis. CTC levels in fish were analyzed
using high-performance liquid chromatography−tandem mass
spectrometry (HPLC−MS/MS, Agilent) with quality assur-
ance (QA) and quality control (QC) based on our previous
study29 and described in the Supporting information (Text
S1). The optimized HPLC−MS/MS parameters for CTC are
shown in Supporting Information Table S1. CTC concen-
trations in the test solutions were measured to make sure that
the exposure doses were similar to targeted nominal exposure
concentrations (Supporting Information Table S2).

2.5. Developmental and Behavioral Measurements
and Imaging. Body weight (g), body length (cm), intestinal
weight (g), and ovary weight (g) in F0 zebrafish; egg
production (number per parent) of F0; and egg death rate at
birth (0 hpf, %), fertilization rate (4 hpf, %), egg death rate at
120 hpf (%), hatching rate (72 hpf, %), body length at 120 hpf
(mm), swimming speed at 120 hpf (mm, 0−10 min), and
swimming distance at 120 hpf (mm, 0−10 min) in F1 and F2
fish larvae were determined as previously described.29 Images
of Tg(mpeg1:EGFP) transgenic zebrafish at 5 days were
acquired using a LEICA M205 FCA microscope, and
macrophage numbers were counted using ImageJ software
(version 1.8.0).

2.6. Antibacterial Ability. Antibacterial ability of F1 and
F2 larvae against Gram-negative Vibrio parahaemolyticus
(CGMCC 1.1615, common pathogenic bacteria in fish) was
determined following modified protocols described by the
previous studies.35 Embryos were collected at 0 hpf and then
inoculated with freshly prepared concentrations of bacteria (0,
10, 102, 103, 104, 105, 106, and 107 cfu/mL). Bacterial solutions
were renewed every 12 h. The mortality of larvae was detected
after a pathogenic challenge for 72 hpf. Bacteria on the surface
of F1 larvae were analyzed with a fluorescence microscope
(LSM 780 NLO, ZEISS).

2.7. Whole-Mount In Situ Hybridization (WISH). As the
lysozyme C gene is specifically expressed in fish neutrophils,
WISH of the lysozyme C gene was used to define the
neutrophils in F1 larvae as previously described.36,37 The
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antisense RNA probes were generated in vitro from linear
plasmids using RNA polymerase T3 or Digoxigenin T7
(Promega, Madison, WI). WISH was performed as previously
described.38

2.8. Quantitative PCR (qPCR). Total RNA was isolated
using the TRIzol reagent (Invitrogen), and cDNA was
generated by following the instruction of a Transcriptor First
Strand cDNA Synthesis Kit (Roche). Transcripts were
quantified via SYBR Green qPCR (Roche) performed using
the iQ5 Multicolor Real-Time PCR Detection System (Bio-
Rad). The primers for zebrafish genes are presented in Table
S3.
2.9. Immune Indicators. Concentrations of C3, CRP,

IgM, and LYSO were measured using zebrafish special ELISA
kits according to the manufacturer’s instructions (Nanjing
Jiancheng Bioengineering Institute). The intraassay and
interassay coefficients of variance (CVs) were <10 and
<12%, respectively. The R2 of dilution test (specificity) ranged
from 97.5 to 99.3%.
2.10. Immunoblotting Analysis. Immunoblotting was

performed as previously described.39 Antibodies for immuno-
blots were used before specific detection for zebrafish samples.
Immunoblots were detected via standard secondary detection
and chemiluminescent exposure to the film. Target proteins
were normalized with the reference protein SDHA.40 Digitally

captured films were analyzed densitometrically using ImageJ
software.

2.11. NF-κB Pathway Inhibition Test. An NF-κB
inhibition experiment was designed separately using the
exposure of embryonic Tg(mpeg1:EGFP) zebrafish (2 hpf)
to 10 or 100 μg/L CTC and in the presence or absence of NF-
κB antagonist pyrrolidine dithiocarbamate (PDTC, Sigma) at 1
μM. Zebrafish were exposed for 150 days and then mated to
get F1 embryos. All of the procedures were in the same
conditions as CTC treatments. F1 generation embryo was
collected for biological assays at 5 dpf.

2.12. Protein−Ligand Docking. Molegro virtual docker
7.0 software was used for molecular docking analysis. The
chemical structure of CTC was taken from PubChem (CID:
54675777), and crystal structures of NFκB1 (PDB: 1SVC),
NFκB2 (PDB: 1A3Q), NFκB3 (PDB: 2RAM), IL-6R
(Interleukin-6 receptor, PDB: 1P9M), BCR (B-cell receptor,
PDB: 1IGY), TCR (T-cell receptor, PDB: 1NFD), TLR2
(Toll-like receptors 2, PDB:), and TLR4 (Toll-like receptors 4,
PDB: 4G8A) were obtained from Protein Data Bank. Then, all
cavities of proteins were set as binding sites separately and
other parameters were set as defaults. The molecular docking
simulations of proteins and CTC were run based on MolDock
SE algorithm and achieved binding energy minimization after
docking. The number of all trial runs for calculations was 10.

Figure 1. Antibiotic CTC exposures inhibit antibacterial activities of zebrafish offspring. (A) Experimental scheme for CTC exposures. (B)
Antibacterial ability of the F1 larvae (after F0 fish exposure to CTC) against Gram-negative Vibrio parahaemolyticus (CGMCC 1.1615) determined
by measuring the mortality of 72 hpf larvae after pathogen challenge. Concentrations of challenged bacteria were 0, 10, 102, 103, 104, 105, 106, and
107 cfu/mL. Significant differences between the control group and the 10 or 100 μg/L CTC group were detected at 105, 106, and 107 cfu/mL
challenged bacteria (n = 12; P < 0.05, ANOVA). (C) Antibacterial ability of the F2 larvae (after F0 fish exposure to CTC) against Gram-negative V.
parahaemolyticus. *P < 0.05, by one-way ANOVA with LSD’s test (n = 12). Error bars indicate the s.e.m.
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Finally, the top pose based on the highest MolDock score
(kcal/mol) of docking result of each protein was selected to be
visualized by Discovery Visualizer version 20.
2.13. Statistical Analysis. Statistical analysis was

performed with SPSS Statistics 18.0 (SPSS, Inc., Chicago,
IL). All results were checked for normality and homogeneity of
variance using Kolmogorov−Smirnov one-sample test and
Levene’s test. All statistical tests were justified as appropriate
and data met the assumptions of the tests. Significant
differences between groups were evaluated by one-way analysis
of variance (ANOVA) followed by LSD’s test. All data are
shown as the mean ± standard error. Each experiment was
repeated independently with similar results. The number of
animals, number of independent experiments, and methods of
the statistical tests used are indicated for each experiment in
the figure legends.

3. RESULTS
3.1. CTC Suppresses the Antibacterial Activities of

the Offspring. It is increasingly recognized that antibiotics are
related to immune interference but the potential impacts on
the immune system of offspring are unclear. We phenotyped
antibacterial activities in the larvae in zebrafish offspring (F1
and F2 generations) after parental exposure (F0) to the
antibiotic CTC (Figure 1a). After a 105, 106, and 107 cfu/mL
pathogen challenge, the F1 larvae at 72 hpf showed a
significantly increased mortality and decreased antibacterial
activity under parental exposure to 10 or 100 μg/L CTC
(Figure 1b), but no significant changes following a 0, 10, 102,
103, or 104 cfu/mL pathogen challenge. The results indicated a
significantly decreased antibacterial activity in the offspring

after a high-level pathogen challenge under parental exposure
to CTC. Further microscopic observation showed that the
number of bacteria on the body surface of zebrafish offspring
also increased after parental exposure to CTC (Figure S1). It
should also be noted that after a one-generation recovery in
clean water, the antibacterial activities of F2 larvae were not
significantly affected (Figure 1c).

3.2. CTC Reduces Immune Cell Abundance in
Offspring. To understand the cellular mechanisms of the
reduced antibacterial activities of offspring by CTC exposure,
we measured the number of innate immune cells, macro-
phages, and neutrophils in zebrafish offspring after F0 exposure
to CTC. In F1 larvae (5 dpf), the number of macrophages was
significantly decreased at parental exposure to the 10 or 100
μg/L CTC group, and the number of neutrophils was
significantly decreased in the 100 μg/L group (Figure 2a,b).
In F2 larvae (5 dpf), the inhibition of immune cell number was
only observed for macrophages at F0 exposure to the 100 μg/L
CTC group and the number of neutrophils was not affected
(Figure 2c,d). The decreased numbers of macrophages and
neutrophils suggest significant immunosuppression in zebrafish
offspring in response to parental exposure to CTC, which is
associated with the reduced resistance to acute bacterial
challenges in CTC parental treatment (Figure 1b,c).

3.3. CTC Inhibits the Expression of Immune-Related
Indicators. Immunoglobulin has a wide spectrum of antibod-
ies to pathogens, and the main immunoglobulin classes in
zebrafish include IgD, IgM, and IgZ. In 5 dpf of F1 larvae, the
expressions of immunoglobulin genes igd, igm, and igz were
significantly inhibited after parental exposure to CTC (Figure
3a). The gene expressions of immune indicators of c3, crp, and

Figure 2. Antibiotic CTC exposures decrease the immune cell abundance of zebrafish offspring. (A) Number of macrophages in F1 larvae (5 dpf)
after F0 exposure to CTC. The green fluorescent dots represent macrophages in Tg(mpeg1:EGFP) transgenic zebrafish, and the fluorescent images
compare macrophage numbers between the control group and the 1, 10, and 100 μg/L CTC groups. Scale bar = 200 μm. (B) Number of
neutrophils in F1 larvae (5 dpf). The purple points in fish represent neutrophils using whole-mount in situ hybridization, and the hybridization
images compare the neutrophil numbers between the control group and the 1, 10, and 100 μg/L CTC groups. (C) Number of macrophages in F2
larvae (5 dpf). (D) Number of neutrophils in F2 larvae (5 dpf). *P < 0.05, by one-way ANOVA with LSD’s test (n = 12). Error bars indicate the
s.e.m.
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antimicrobial peptide hepcidin were also significantly down-
regulated. The mRNA levels of cytokines including tnfa, ifn-γ,
il-1b, il-4/13a, il-4/13b, il-6, il-8l1, il-8, il-10, il-11, il-12b, and il-
15l were also significantly downregulated in response to CTC
parental treatment (Figure 3b). Consistently, the results of
ELISA showed a significant decrease of immune indicators
including C3, IgM, and CRP in the 0.01, 1, 10, or 100 μg/L
CTC treatment groups (Figure 3c). Low expression of
lysozyme gene lyso and low protein levels of LYSO were also
found in F1 larvae in the 100 μg/L CTC treatment group
(Figure 3d). Compared with F1, similar trends were also found
in F2 larvae (Figure 3e−h). In summary, the low expression of
immunoglobulin and cytokines, as well as low LYSO content in
both F1 and F2 larvae evidenced a persistent immunocom-
promisation across two generations after CTC parental
exposure. In addition, developmental and behavioral effects
of CTC exposure, including survival rate, sex differentiation,
body weight, body length, and tissue weight, were recorded in
F0, as well as in F1 and F2 generations (egg production, egg
death, fertilization rate, body length, swimming behavior;
Table S4).
3.4. CTC Activates NF-κB Pathway. Based on our earlier

nontarget transcriptomic results,43 we hypothesized that NF-
κB signaling the key pathway is involved in CTC
immunotoxicity. The results of the molecular binding
modeling suggested that CTC can bind to the groove in the

RING domain of NF-κB1, NF-κB2, and NF-κB3 (Figure 4a).
The MolDock score of highest activities on CTC binding to
NF-κB1, NF-κB2, and NF-κB3 were −104.394, −104.434, and
−93.0463 kcal/mol, respectively (Supporting Information
Table S5). The binding between the ligand and NF-κB was
predicted to be stabilized as the formation of conventional
hydrogen bonds and Pi-Alkyl (Figure 4a and Supporting
Information Figure S2). Moreover, the MolDock score of
highest activities on CTC binding to NF-κB1, NF-κB2, and
NF-κB3 were the three lowest values among the classical
immune pathway including B-cell receptor, T-cell receptor,
toll-like receptor, and IL-6 receptor, suggesting the most
stabilized binding of CTC to NF-κB (Supporting Information
Table S5). Also, the transcriptional levels of nfκb1, nfκb 2, and
nfκb3 (Figure 4b), the protein level of nfκb3 (Figure 4c), and
their related genes (Figure 4d) were all significantly increased
in F1 and F2 larvae in response to parental exposure to CTC.
Interestingly, CTC was still detectable in F1 and F2 embryos
(Figure S3; Supporting Information Table S6), suggesting that
residual CTC in offspring may bind to NF-κB molecules and
activate NF-κB pathway, interfering with the immune system.

3.5. NF-κB Antagonist Alleviates Immunosuppression
by CTC. To confirm the activation of NF-κB by CTC, the
immunosuppression of CTC was investigated by introducing
an NF-κB antagonist, PDTC. PDTC could inhibit the
activation of NF-κB by suppressing both NF-κB DNA binding

Figure 3. Antibiotic CTC exposures inhibit the expression of immune-related indicators in zebrafish offspring (5 dpf). (A) Inhibited expression of
immune indicator genes in F1 larvae after F0 exposure to CTC. (B) Inhibited expression of cytokine genes in F1 larvae. (C) Inhibition of immune
indicator (C3, IgM, CRP) levels in F1 larvae by ELISA assay. ELISA analysis, the intraassay and interassay coefficients of variance (CVs) were <10
and <12%, respectively. (D) Inhibition of lysozyme gene expression and protein levels in F1 larvae. (E) Inhibited expression of immune indicator
genes in F2 larvae. (F) Inhibited expression of cytokine genes in F2 larvae. (G) Inhibition of immune indicator (C3, IgM, CRP) levels in F2 larvae
by ELISA assay. (H) Inhibition of lysozyme gene expression and protein levels in F2 larvae. *P < 0.05, by one-way ANOVA with LSD’s test (n = 3
or 4). Error bars indicate the s.e.m.
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and NF-κB-dependent transcriptional activity.41 If the inhibitor
blocked the immunosuppression of CTC, it would suggest that
the NF-κB pathway mediates the immunotoxicity of CTC. The
effects were monitored in F1 larvae after F0 coexposure to
PDTC alone, CTC alone, and CTC (10 or 100 μg/L) +
PDTC (Figure 5a). PDTC significantly inhibited the NF-κB

pathway in F1 larvae (Supporting Information Figure S4).
Moreover, in F1 larvae, PDTC significantly attenuated the
inhibitory effects of CTC on macrophage numbers, neutrophil
numbers, and LYSO levels at 100 μg/L, and IgM levels at 10
and 100 μg/L (Figure 5b−e). Also, developmental and
behavioral interferences of F1 larvae, including egg production,

Figure 4. CTC binds to NF-κB and actives the nuclear factor-κB (NFκB) pathway in 5 dpf zebrafish offspring. (A) Molecular modeling indicates
CTC binding to NFκB1, NFκB2, and NFκB3 by Molegro Virtual Docker software X7. The mRNA expression levels of nfκb1, nfκb 2, and nfκb3 (B)
and related genes (C). (D) Protein level of nfκb3 by western blot was significantly induced in F1 larvae in response to parental exposure to CTC.
(E) CTC levels (ng/g) in F0 female ovary, F0 male testis, F1 embryos, and F2 embryos after F0 exposure to CTC. *P < 0.05, by one-way ANOVA
with LSD’s test. Error bars indicate the s.e.m. B, n = 4; C, n = 4; D, n = 3; and E, n = 8.
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egg death, fertilization rate, body length, and swimming by
CTC treatment, were significantly attenuated after parental
coexposure to PDTC (Supporting Information Table S7).
These results provided strong evidence that the transgenera-
tional immunosuppression of CTC was mediated via NF-κB.

4. DISCUSSION
The prolonged use of antibiotics increases the susceptibility
and severity of secondary infections,42 which is closely related
to the development of antibiotic resistance.43,44 Antibiotics
may interfere with the host’s immune system,45,46 but the
drivers of such immune interference remain nebulous. Our
previous studies found that antibiotics can disrupt the normal
immune responses of the host: inflammation, cytokines, and
host-dependent disease tolerance in primary macrophages in
vitro and trigger immune and inflammatory response of the
healthy host in zebrafish larvae in vivo.23,47 Combined with our
findings on the intergenerational transmission effects of
antibiotics,29 we suggested and focused for the first time on
the transgenerational immunomodulatory effects of antibiotics.

In the present study, we uncover that antibiotic CTC
transgenerationally reduces macrophage and neutrophil
numbers, immune indicators, as well as the host’s antibacterial
ability, indicating the immunosuppressive effects of CTC over
two generations. Our findings suggest that immunosuppressive
effects of antibiotics increase the susceptibility to secondary
infections, highlighting the need to consider the hosts’
immunosuppression of antibiotics besides antibiotic-resistant
pathogens.
Newborns are particularly vulnerable to infections,48,49 and

the ontogeny of immunity during early life is of high
importance as it shapes the immune system for the entire
course of life.50,51 Embryonic and transgenerational toxicity
can affect the whole population of a species.52 Our results
provide the evidence in fish that antibiotic CTC can be
transmitted over two generations and weaken the anti-
bacterial activities of offspring after parental exposure to
CTC. This implies that F1 fish with impaired immunity by
CTC parental exposure in the environment may be more
suspectable to infections in the environment. Antibiotic

Figure 5. NF-κB antagonist PDTC rescues the immunosuppression of CTC in zebrafish offspring (5 dpf) mediated via NF-κB. (A) Experimental
scheme for the NF-κB pathway inhibition test. CTC10, 10 μg/L CTC; CTC100, 100 μg/L CTC; CTC10 + PDTC, coexposure to 10 μg/L CTC
with 1 μM PDTC; and CTC100 + PDTC, coexposure to 100 μg/L CTC with 1 μM PDTC. (B) Macrophage numbers in F1 larvae were decreased
in 10 and 100 μg/L CTC parental exposure but increased by parental coexposure to 100 μg/L CTC with PDTC. (C) Parental coexposure to 100
μg/L CTC with PDTC increased neutrophil numbers in F1 larvae. (D) Parental coexposure to 100 μg/L CTC with PDTC increased LYSO levels
in F1 larvae. (E) Parental coexposure to 10 or 100 μg/L CTC with PDTC increased IgM levels in F1 larvae. *P < 0.05, by one-way ANOVA with
LSD’s test. Error bars indicate the s.e.m. B, n = 12; C, n = 12; D, n = 4; and E, n = 4.
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exposures in parental mammals have also been reported to be
associated with both short-term (e.g., congenital abnormalities,
low birth weight) and long-term effects (e.g., atopic dermatitis,
changes in the gut microbiome, and asthma in the newborn53).
Abuse and widespread antibiotics expose more and more
species in the environment,54,55 which appeals for increasing
attention and a better understanding of the unknown long-
term impacts of antibiotics on environmental health.
We revealed that NF-κB is the molecular target of the

immunosuppressive activity of CTC, which resulted in the
activation of downstream genes and the downregulation of
cytokines and immune responses. NF-κB is considered a key
player in inflammatory processes and autoimmune dis-
eases.56−58 Some anti-inflammatory drugs and immunosup-
pressants have been confirmed in the disturbance of NF-κB
pathways.25,26,28,59 For example, fluoroquinolone antibiotics of
levofloxacin and ciprofloxacin can attenuate microglia inflam-
matory response via TLR4/NF-κB pathway.60 Betalactam
antibiotic amoxicillin inhibits the endocytosis and allostimula-
tory capacity, depending on hyperactivated MAPK/NF-κB
systems, in monocytes of allergic patients.61 Tetracycline
antibiotic doxycycline suppresses proinflammatory cytokines
via the modulation of MAPK/NF-κB pathways.62 In primary
microglia cells, minocycline was showed to induce neuro-
inflammation via inhibiting NF-κB signaling pathways.62,63

These findings suggest that some antibiotics can modulate the
NF-κB signaling pathways, but their molecular targets and the
detailed cellular and molecular mechanisms remain to be
elucidated. NF-κB activation involves IκB-α phosphorylation
and the subsequent nuclear translocation of NF-κB p65
component to promote the transcription of responsive genes.64

Here, we found significantly increased levels of nfκB1/nfκB2/
nfκB3, hyperactivated expression of c-rel, relb, ikkα, ikkβ, ikkγ,
and iκBα, as well as inhibition of cytokines in zebrafish larvae
after parental exposure to CTC. The molecular docking data
showed that CTC can bind to NF-κB1/NF-κB2/NF-κB3 via
stabilized conventional hydrogen bonds and Pi-Alkyl. More-
over, the NF-κB inhibitor, PDTC, was shown to significantly
attenuate the inhibition actions of CTC on macrophage
numbers, neutrophil numbers, and LYSO levels, further
confirming the central role of NF-κB. However, the
immunosuppressive effects of CTC cannot be completely
rescued. Thus, besides NF-κB, other pathways might also be
involved in the observed immunosuppression. For example,
moxifloxacin, doxycycline, and erythromycin were shown to
possess the strongest immunomodulatory effects through
modulation of toll-like receptors (TLR).65 Scott et al. showed
that antibiotics perturbed mucosal macrophages, key cells for
mounting immune responses via dysregulation of intestinal T-
cell immunity.66 Moreover, NF-κB signaling can crosstalk with
signaling pathways that involve toll-like receptors (TLR),
STAT3, MAPK, and T-cell receptor.67−69 Thus, our results
confirmed the activation of NF-κB-dependent signaling as an
important molecular mechanism contributing to the trans-
generational immune effects of CTC in zebrafish, but other
potential mechanisms or interactions with other pathways
should not be excluded,60 which requires future investigations.
Exposure to CTC directly led to significant immune

interferences of F1 and F2 fish. It should be noted that
parental exposure to an NF-κB inhibitor mitigated the
inhibitory effects of CTC in offspring that were not directly
exposed to CTC. This implies that the immune interferences
of offspring might be generated in F0 during the gravid period

and transmitted to offspring through reproduction, which may
combine with the chemical transmission of CTC to F1,
explaining the transgenerational toxicity and immunosuppres-
sion. Since CTC was also detected in offspring, the offspring
were at a dual risk of toxicity transmission and chemical
exposure, which may result in the inhibition of immune
defense function at the population level. Particularly, the
ubiquity and variety of antibiotics in the environment could
lead to synergistic or cross-acting effects on wild organisms;23

therefore, the ecological risk of antibiotics might be under-
estimated.
In summary, antibiotics are extensively administered but can

affect more than just the infection for which they are
prescribed. The present study provides the comprehensive
evidence that antibiotic CTC can strongly inhibit the
antibacterial activities of fish offspring by transgenerational
immunosuppression. Parental exposure to CTC transgenera-
tionally perturbs macrophages, neutrophils, expression of
immune-related genes, and NF-κB-dependent signaling,
resulting in immune dysfunction of multiple generations. We
highlight the depleted immune resistance of multiple
generations after CTC exposure in fish, at low environmental
concentrations. The potential environmental impacts of the
broad-spectrum antibiotic mixture on long-term adaptive
immunity and susceptibility to infections and inflammation
should be further understood.
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