
W&M ScholarWorks W&M ScholarWorks 

VIMS Articles Virginia Institute of Marine Science 

2018 

Antibiotic Effects on Microbial Communities Responsible for Antibiotic Effects on Microbial Communities Responsible for 

Denitrification and N2O Production in Grassland Soils Denitrification and N2O Production in Grassland Soils 

M Semedo 
Virginia Institute of Marine Science 

BK Song 
Virginia Institute of Marine Science 

T Sparrer 
Virginia Institute of Marine Science 

RL Phillips 

Follow this and additional works at: https://scholarworks.wm.edu/vimsarticles 

 Part of the Aquaculture and Fisheries Commons 

Recommended Citation Recommended Citation 

Semedo, M; Song, BK; Sparrer, T; and Phillips, RL, "Antibiotic Effects on Microbial Communities 

Responsible for Denitrification and N2O Production in Grassland Soils" (2018). VIMS Articles. 733. 

https://scholarworks.wm.edu/vimsarticles/733 

This Article is brought to you for free and open access by the Virginia Institute of Marine Science at W&M 
ScholarWorks. It has been accepted for inclusion in VIMS Articles by an authorized administrator of W&M 
ScholarWorks. For more information, please contact scholarworks@wm.edu. 

https://scholarworks.wm.edu/
https://scholarworks.wm.edu/vimsarticles
https://scholarworks.wm.edu/vims
https://scholarworks.wm.edu/vimsarticles?utm_source=scholarworks.wm.edu%2Fvimsarticles%2F733&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/78?utm_source=scholarworks.wm.edu%2Fvimsarticles%2F733&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.wm.edu/vimsarticles/733?utm_source=scholarworks.wm.edu%2Fvimsarticles%2F733&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarworks@wm.edu


ORIGINAL RESEARCH
published: 11 September 2018

doi: 10.3389/fmicb.2018.02121

Edited by:

Marcus A. Horn,

Leibniz Universität Hannover,

Germany

Reviewed by:

Henri M. P. Siljanen,

University of Eastern Finland, Finland

Cindy J. Smith,

University of Glasgow,

United Kingdom

Jaak Truu,

University of Tartu, Estonia

*Correspondence:

Miguel Semedo

masemedo@vims.edu

Specialty section:

This article was submitted to

Terrestrial Microbiology,

a section of the journal

Frontiers in Microbiology

Received: 02 May 2018

Accepted: 20 August 2018

Published: 11 September 2018

Citation:

Semedo M, Song B, Sparrer T and

Phillips RL (2018) Antibiotic Effects on

Microbial Communities Responsible

for Denitrification and N2O Production

in Grassland Soils.

Front. Microbiol. 9:2121.

doi: 10.3389/fmicb.2018.02121

Antibiotic Effects on Microbial
Communities Responsible for
Denitrification and N2O Production in
Grassland Soils
Miguel Semedo1* , Bongkeun Song1, Tavis Sparrer1 and Rebecca L. Phillips2

1 Department of Biological Sciences, Virginia Institute of Marine Science, College of William & Mary, Gloucester Point, VA,

United States, 2 Ecological Insights Corporation, Hazelton, ND, United States

Antibiotics in soils may affect the structure and function of microbial communities.

In this study, we investigated the acute effects of tetracycline on soil microbial

community composition and production of nitrous oxide (N2O) and dinitrogen (N2)

as the end-products of denitrification. Grassland soils were pre-incubated with and

without tetracycline for 1-week prior to measurements of N2O and N2 production

in soil slurries along with the analysis of prokaryotic and fungal communities by

quantitative polymerase chain reaction (qPCR) and next-generation sequencing.

Abundance and taxonomic composition of bacteria carrying two genotypes of N2O

reductase genes (nosZ-I and nosZ-II) were evaluated through qPCR and metabolic

inference. Soil samples treated with tetracycline generated 12 times more N2O, but

N2 production was reduced by 84% compared to the control. In parallel with greater

N2O production, we observed an increase in the fungi:bacteria ratio and a significant

decrease in the abundance of nosZ-II carrying bacteria; nosZ-I abundance was

not affected. NosZ-II-carrying Bacillus spp. (Firmicutes) and Anaeromyxobacter spp.

(Deltaproteobacteria) were particularly susceptible to tetracycline and may serve as a

crucial N2O sink in grassland soils. Our study indicates that the introduction of antibiotics

to agroecosystems may promote higher N2O production due to the inhibitory effects on

nosZ-II-carrying communities.

Keywords: denitrification, nitrous oxide, tetracycline, nosZ, bacteria, fungi

INTRODUCTION

Microbial denitrification is a dominant respiratory pathway for reactive N-removal in terrestrial
and aquatic ecosystems. Diverse microorganisms belonging to several genera of bacteria, archaea,
and fungi perform denitrification (Stein andKlotz, 2017). Dinitrogen gas (N2) is the end-product of
complete denitrification: the stepwise reduction of nitrate (NO−

3 ) and nitrite (NO
−

2 ) to nitric oxide
(NO), nitrous oxide (N2O), and dinitrogen (N2). However, many microorganisms do not carry
the necessary genes to perform complete denitrification and may instead release N2O as the end-
product of incomplete denitrification. Since N2 is radiatively inert and N2O is a potent greenhouse
gas and the dominant source of stratospheric ozone depletion, the atmospheric impacts of complete
and incomplete denitrification are dramatically different (Ravishankara et al., 2009; Neubauer and
Megonigal, 2015). Denitrifiers capable of complete denitrification to N2 rely on the presence and
expression of the nosZ gene, which encodes N2O reductase, the enzyme that converts N2O to N2
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(Thomson et al., 2012). NosZ-carrying prokaryotes, found in
both Archaea and Bacteria, consume N2O and therefore are an
important biological sink for N2O in soils (Ma et al., 2011; Jones
et al., 2014; Domeignoz-Horta et al., 2015; Samad et al., 2016).
Because the nosZ gene is missing in fungal genomes, fungal
denitrifiers have an incomplete denitrification pathway and are
a source of N2O (Shoun et al., 2012; Maeda et al., 2015; Mothapo
et al., 2015).

Recent studies of nosZ gene diversity have revealed the
presence of two nosZ genotypes, clade I (nosZ-I) and clade
II (nosZ-II), that have different phylogenetic, physiologic, and
ecological properties (Hallin et al., 2017). The taxonomic and
genetic diversity of nosZ-II carrying prokaryotes is greater
than nosZ-I and is positively correlated to soil N2O sink
capacity (Jones et al., 2013, 2014; Domeignoz-Horta et al., 2015).
Additionally, a larger percent of nosZ-II carrying bacteria do not
possess the genes that encode for nitrite reductase (Nir) and nitric
oxide reductase (Nor) enzymes, which are necessary to produce
N2O (Graf et al., 2014; Jones et al., 2014). This indicates that
nosZ-II carrying bacteria are mostly N2O consumers, rather than
N2O producers. The abundance and diversity of the two clades
also appear to respond differently to environmental parameters
including pH, moisture, and nutrient concentrations (Jones et al.,
2014; Domeignoz-Horta et al., 2015; Samad et al., 2016). When
considering responses to environmental contaminants, such as
antibiotics, the differential responses of the two nosZ genotypes
have not been studied yet.

Antibiotics are introduced into soils from multiple
anthropogenic sources, such as in applications of animal manure
and biosolids, inappropriate disposal of unused medicines, and
in wastewater treatment effluents (Boxall, 2004). Animals excrete
between 17 and 90% of antibiotics administered during livestock
production in their feces and urine (Massé et al., 2014), and soil
concentrations can range from a few microgram to gram per
kilogram of soil (Thiele-Bruhn, 2003). Animal manures with
antibiotics are frequently applied to agricultural soils as fertilizer
(Sengeløv et al., 2003; Zhu et al., 2013) where they can affect
denitrification activity of the microbial communities (Kotzerke
et al., 2008; DeVries et al., 2015; Sun et al., 2017). Various
studies have shown that antibiotics can decrease the abundance
and activity of bacterial denitrifiers in soils, coastal sediments,
and groundwater (Costanzo et al., 2005; Kotzerke et al., 2008;
Kleineidam et al., 2010; Underwood et al., 2011; Hou et al., 2015).
For example, chlortetracycline and oxytetracycline were shown
to inhibit denitrification activities in groundwater and estuarine
sediments, respectively (Ahmad et al., 2014; Yin et al., 2017).

Antibiotics may also alter soil microbial community
composition, with cascading effects on net N2O production.
For example, the fungi:bacteria ratio may be greater following
antibiotic exposure if bacteria are selectively inhibited by the
antibiotic (Thiele-Bruhn and Beck, 2005; Hammesfahr et al.,
2008; Demoling et al., 2009; Gutiérrez et al., 2010). Since fungal
denitrifiers produce N2O while some bacterial denitrifiers can
reduce N2O to N2, an increase in the fungi:bacteria ratio is
expected to increase N2O production from denitrification.
However, that will also depend on which bacterial denitrifiers are
inhibited. A selective inhibition of denitrifying bacteria carrying

the nosZ gene would lower the N2O sink capacity (DeVries et al.,
2015; Hou et al., 2015; Wu et al., 2017; Yin et al., 2017), leading
to increased N2O production and decreased N2 production.
Alternatively, all denitrifying bacteria (those with and without the
nosZ gene) could be inhibited by antibiotics, leading to an overall
decrease in both N2O and N2 production (Costanzo et al., 2005;
Kotzerke et al., 2008; Conkle and White, 2012; Sun et al., 2017).
Elucidating how antibiotics might alter microbial communities,
including the two clades of nosZ-carrying prokaryotes and fungi,
is therefore fundamental to understanding the effects on net N2O
production from denitrification.

The objective of this research was to investigate the microbial
community changes associated with the antibiotic impacts on
microbial denitrification and N2O production. To achieve this
goal, we conducted a laboratory experiment with grassland soil
samples treated with tetracycline, an inhibitor of bacterial protein
synthesis that belongs to one of the largest classes (tetracyclines)
of antimicrobials used in the United States livestock industry
(USEPA, 2013). Tetracycline compounds are ranked second in
production and usage of antibiotics worldwide (Daghrir and
Drogui, 2013). We hypothesized that tetracycline would cause
a shift in microbial community structure, leading to a greater
relative abundance of fungi to bacteria, lower abundance of
nosZ-carrying bacteria, lower N2 production, and greater net
production of N2O. This is the first report simultaneously
evaluating the impacts of antibiotic exposure on prokaryotic and
fungal communities as well as the two clades of nosZ-carrying
bacteria associated with soil N2O emission.

MATERIALS AND METHODS

Soil Collection
Soils were collected from a managed grassland farm (60 ha) in
Emmons County, ND, United States (46◦24′22′′; 100◦23′16′′),
where there had been no history of antibiotic or other agro-
chemical application (including fertilizer), based on 80 years of
farm records. Since 1990, the farm has been enrolled in the
Conservation Reserve Program (CRP) because the soils were
classified as highly erodible and not suitable for crop production
by the United States Department of Agriculture Farm Services
Agency (USDA-FSA). The CRP allows only limited grassland
harvest (every 3–5 years) and no grazing (Phillips et al., 2015).
A total of 16 plots (1 m2) were established within a 0.2 ha area
to collect soil core samples following spring thaw on March 19,
2014. Air temperature at the time of coring was 2◦C.

Two sets of surface soil samples (2.5 dia. × 10 cm depth) were
collected using a hand auger at random locations within each plot
and stored at 4◦C.One set was collected to determine background
bulk density, gravimetric soil moisture, total organic carbon
(TOC), total nitrogen (TN), pH, and soil texture (sand, silt, and
clay). Porosity and percent water-filled pore space (%WFPS) at
the time of soil collection were calculated based on bulk density
and moisture using a particle size density of 2.65 g cm−3. Soil
sampling and measurement protocols are detailed in Phillips
et al. (2012). The second set of soil samples were collected for
tetracycline exposure incubations (see below). Before coring each
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plot, the auger was carefully cleaned and rinsed with alcohol.
Three small diameter cores were collected per plot and mixed
together to form one composited sample per plot. These were
immediately shipped to the Virginia Institute of Marine Science
(VIMS) for the antibiotic exposure work.

Exposure of Soil to Tetracycline
Each of the 16 soil samples was split into two groups and 15 g
of soil were amended with either 7.5 ml of autoclaved DI water
(control group) or tetracycline (tetracycline group) delivered in
7.5 ml of autoclaved DI water (final tetracycline concentration of
1 mg g−1 soil). The tetracycline concentration used here is within
the range of antibiotic concentrations known to repress microbial
iron (III) reduction and denitrification (Thiele-Bruhn, 2005;
Long et al., 2013). Each paired sample, control and tetracycline,
was incubated in the dark at room temperature for 1 week. After
incubation, samples were split into two groups, one for N2O and
N2 production rate measurements, and one, which was stored
at −80◦C, for microbial community analysis and soil properties
measurements.

Soil Properties of Incubated Samples
Soil pH was determined using a glass electrode with a
soil:deionized water mixture of 1:1 (w/v). Percent organics was
determined by loss of ignition (500◦C, 4 h). TOC and TN were
quantified using the Exeter CHN model 440 CE analyzer. Soil
NO−

3 and NH+

4 were measured in a Lachat QC8000 FIA after
extraction with 2 M KCl (2:1 KCl to sediment ratio).

Activity Measurements: N2O and N2

Production Rates
All 16 pairs of samples were used for soil slurry incubation
experiments to measure potential rates of denitrification (moles
of added 15N-labeled NO−

3 transformed to 30N2) as well as
total N2O production, following the method described by Long
et al. (2013). One gram of each soil sample was pre-incubated
anaerobically, after flushing with He gas, in 12-ml Exetainer
tubes overnight. Two sets of tubes were prepared to measure N2

and N2O production from each sample. Pre-incubation served
to deplete the resident soil NO−

3 and NO−

2 pools (NOx) prior
to spiking with 200 nmol of potassium nitrate (K15NO3: 99%).
Before the addition of potassium nitrate, all tubes were reflushed
with He for 5 min to remove background N2, CO2, and other
atmospheric gases. Time course incubations (time points 0 and
1 h after 15NO−

3 spike) were carried out in duplicate at room
temperature. A 0.2 ml of potassium hydroxide (KOH) solution
(4M) was added at each time point to stopmicrobial activity. The
30N2 gas in the headspace was measured on a continuous-flow
isotope ratio mass spectrometer (Thermo Delta V Advantage,
Thermo Scientific) in line with an automated gas bench interface
(Thermo Finnigan GasBench II, Thermo Scientific). The N2O
gas in the headspace was measured using a gas chromatograph
fitted with an electron capture detector (Shimadzu). The gas
chromatograph was calibrated with commercial N2O standards
and the coefficient of variation for three to five replicate injections
of low and high concentration standards was consistently <3%.

Potential rates of denitrification and N2O production were
calculated based on the amounts of 30N2 and N2O, respectively,
measured at T0 and T1 (1 h) after 15NO3 addition following the
method described in Long et al. (2013). The samples with high
N2 and N2O measured at T0 (three for N2 and six for N2O)
were excluded in the rate calculation due to incomplete killing
of microbial activities, which may be resulted from insufficient
amount of KOH application.

Molecular Analysis: Bacterial and Fungal
Abundance
A subset of the soils stored at −80 ◦C (four pairs: 4 control and
4 tetracycline samples) was selected for microbial community
analysis according to the measured activity rates to include the
full range of N2 production inhibition (59 to 100% inhibition)
by the tetracycline treatment. Genomic DNA was extracted from
0.5 g of soil using the PowerSoil DNA Isolation kit (MoBio).
The DNA quality was assessed using a NanoDrop spectrometer
(Thermo Scientific) and quantified with a QubitTM fluorometer
(Invitrogen) and the dsDNA high-sensitivity kit. The abundance
of bacteria and fungi was quantified by quantitative polymerase
chain reaction (qPCR) of 16S rRNA and internal transcribed
spacer (ITS) genes, respectively, using the QuantStudio 6 Flex
(Thermo Scientific). Standards were prepared through a serial
dilution of plasmids carrying the target genes and quantified
using an Agilent 220 TapeStation System (Agilent Technologies).
The primers EU341F (5′-CCT ACG GGA GGC AGC AG-3′)
and 685R (5′-ATC TAC GGA TTT CAC TCC TAC A-3′) were
used to generate 344 bp amplicons of bacterial 16S rRNA genes.
The fungal ITS region was amplified using the primers ITS1F
and ITS2 (Buee et al., 2009), generating 300–400 bp fragments.
The 20 µL qPCR reactions for 16S rRNA and ITS quantification
consisted of 10 µL of SYBR green Go-Taq qPCR Master Mix
(Promega), 0.05 µL of CRX dye, 1 µL of each primer (10 µM),
2 ng of template DNA, and were adjusted to final volume with
nuclease-free H2O. The qPCR conditions for 16S quantification
were as follows: 10 min at 95◦C, followed by 40 cycles of 15 s
at 95◦C, 30 s at 55◦C, and 30 s at 72◦C. Efficiency and R2

values for the 16S qPCR reaction were 63% and 0.99, respectively.
The detection limit was 2400 gene copies per sample. For ITS
quantification, the qPCR conditions were as follows: 10 min at
95◦C, followed by 35 cycles of 15 s at 95◦C, 30 s at 50◦C, and 1min
at 72◦C. Efficiency and R2 values for the ITS qPCR reaction were
55% and 0.97, respectively. The detection limit was 1170 gene
copies per sample. All reactions were performed in 96 well plates
with two negative controls, which contained no template DNA,
to exclude any potential contamination. Reaction specificity
was confirmed using gel electrophoresis in comparison with
standards and monitored by analysis of dissociation curves. Gene
copy number per PCR well was calculated from the standard
curve according to the following equation:

copy numberwell = 10
Ct−a
b

Where Ct corresponds to the threshold cycle of the sample, and a
and b correspond to the y-intercept and slope of the logarithmic
standard curve, respectively. Copy numbers per well were then
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converted to copy number per gram of soil according to the
following equation, assuming 100% DNA extraction efficiency:

gene copies

g soil
=

(

copy number

ng DNA

)

well

×

(

ng DNA

µL

)

sample

×

(

µL DNA

g soil

)

extracted

Molecular Analysis: Microbial
Community Composition and Diversity
Next-generation sequencing of prokaryotic 16S rRNA and fungal
ITS genes was used to examine the composition and diversity of
prokaryotic and fungal communities in control and tetracycline
samples. The communities were analyzed through barcode
pyrosequencing using the Ion Torrent PGM sequencer. The
variable V4 region of the 16S rRNA gene was amplified through
PCR, using the forward primer 515F and a modified, barcoded
reverse primer 806R (Caporaso et al., 2011). The ITS1 variable
region of fungal ITS was amplified using a modified, barcoded
forward primer ITS1F and the reverse primer ITS2 (White et al.,
1990; Gardes and Bruns, 1993; Bellemain et al., 2010). The
PCR mixture for 16S rRNA amplification contained 10 µL of
Go-Taq mix, 1 µL of primers at 10 µM, 1 µL of template
DNA (10–30 ng/µL), and nuclease-free H2O up to 25 µL. The
PCR conditions for 16S rRNA amplification were as follows:
3 min at 95◦C, followed by 25 cycles of 30 s at 95◦C, 1 min
at 55◦C, and 1 min at 72◦C, followed by 5 min at 72◦C. The
PCR mixture for ITS amplification contained 0.2 µL of Taq
Polymerase (Invitrogen), 1 µL of primers at 10 M, 1 µL of
template DNA (10–30 ng/µL), 2.5 µL of buffer (Invitrogen),
0.75µL of dNTPsmix (1mM), 1.0µL ofMgCl2 (50mM), 0.25µL
of bovine serum albumin (BSA) at 10 mg/mL, and nuclease-free
H2O up to 25µL. The PCR conditions for ITS amplification were
as follows: 4 min at 94◦C, followed by 30 cycles of 30 s at 94◦C,
1 min at 50◦C, and 90 s at 72◦C, followed by 10 min at 72◦C.
The fragment size of the 16S rRNA (354 bp) and ITS (363 bp)
amplicons and negative control amplification were checked by
1% agarose gel electrophoresis. PCR products from each sample
were pooled into a homogeneous mixture and a 2% agarose gel
was run in duplicate to extract the amplicons, which were purified
using an UltraClean GelSpin DNA Purification Kit (Promega).
The concentration of purified amplicons was measured using
a 2200 TapeStation instrument, following the manufacturer’s
instruction. Pyrosequencing was conducted on the Ion Torrent
PGM sequencer with barcode samples pooled on Ion 316 chips,
following the Ion PGM Hi-Q Sequencing Kit protocol (Thermo
Scientific).

Bioinformatic Analysis: 16S rRNA and
ITS sequences
Bioinformatic analysis of the 16S rRNA sequences was performed
using the mothur program (Schloss et al., 2009). Primer
sequences were trimmed, and all sequences shorter than 200 bp
and with a quality score lower than 25 were removed. Acacia
was used to de-noise the trimmed sequences (Bragg et al., 2012).
The remaining sequences were then processed using mothur

(Schloss et al., 2009). Unique sequences were found after
alignment with the Silva SEED database (Quast et al., 2013). Badly
aligned sequences were removed, unique sequences were pre-
clustered, and chimeras were removed using UCHIME (Edgar
et al., 2011). Sequences were classified using the SILVA v119
taxonomy, and unknown taxa were removed (Quast et al., 2013).
Operational taxonomical units (OTUs) were clustered at 97%
identity using the opticlust algorithm. Bacterial and archaeal
OTUs were extracted for separate analysis of each community’s
richness and diversity; samples were subsampled to the lowest
number of sequences to normalize the diversity estimates. Chao
and Ace indexes were calculated to estimate species richness, and
Shannon was calculated to estimate α-diversity and community
evenness. β-Diversity among samples was estimated using the
Bray–Curtis dissimilarity calculator.

Fungal ITS sequence analysis was carried out using mothur
and UPARSE (Schloss et al., 2009; Edgar, 2013). After initial
processing of the FASTQ files using Acacia as described above,
sequences were clustered into OTUs at 97% identity, using
the UPARSE pipeline (Edgar, 2013). The samples were then
subsampled to the lowest number of sequences and analyzed for
species richness, diversity, and evenness, as described above for
the prokaryotic community. Parallel to the OTU analysis, unique
ITS sequences were classified using the UNITE v6_sh_97 ITS
database in mothur (Abarenkov et al., 2010).

Bioinformatic Analysis: Inference of
NosZ-Carrying Bacteria Community
Composition
Bacterial taxa carrying nosZ were identified based on a
denitrification gene inference analysis on the rarefied bacterial
16S rRNA sequences (22,388 sequences per sample) using
PAthway PRediction by phylogenetIC plAcement (PAPRICA)
(Bowman and Ducklow, 2015; Arfken et al., 2017). A customized
PAPRICA database was constructed with 8,513 complete and
785 draft bacterial genomes. The nosZ genes in the reference
genomes were identified based on the KEGG database and used
for gene prediction as described in Arfken et al. (2017). The
estimated abundances of nosZ-carrying taxa were normalized
to the number of 16S rRNA gene copies predicted for each
taxon. Based on the taxonomy, the taxa carrying nosZ-I or
nosZ-II were identified. Inferred abundances of nosZ clades
per gram of soil were also calculated by multiplying relative
abundances obtained through PAPRICA with the qPCR 16S copy
numbers.

Molecular Analysis: NosZ-I and NosZ-II
Abundance
Quantitative PCR of nosZ-I and nosZ-II genes was also
performed to measure the abundance of microorganisms
responsible for the reduction of N2O to N2, using the
QuantStudio 6 Flex (Thermo Scientific). Standards were prepared
through a serial dilution of plasmids carrying the target genes
and quantified using an Agilent 220 TapeStation System (Agilent
Technologies). The primers used for nosZ-I genes were nosZ1F
and nosZ1R and generated 300 bp amplicons (Henry et al., 2006).
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The nosZ-II genes were amplified using nosZIIF and nosZIIR
primers that generated 690–720 bp amplicons (Jones et al., 2013).
The 20 µL qPCR reactions for nosZ-I and nosZ-II quantification
consisted of 10 µL of SYBR green Go-Taq qPCR Master Mix
(Promega), 0.05 µL of CRX dye, 1 µL (nosZ-I) or 4 µL (nosZ-
II) of each primer (10 µM), 2 ng of template DNA, and were
adjusted to final volume with nuclease-free H2O. The thermal
cycling conditions were the following: 10 min at 95◦C, followed
by 50 (nosZ-I) or 55 (nosZ-II) cycles of 15 s at 95◦C, 45 s at 55◦C
(nosZ-I) or 30 s at 54◦C (nosZ-II), 30 s at 72◦C, and 35 s at 80◦C
for fluorescence detection. Amplification efficiencies were 46 and
40% for the nosZ-I and nosZ-II genes, respectively. The R2 value
of the standard curves was 0.99 for both genes. The detection
limit was 4,600 and 1,240 gene copies per sample for the nosZ-
I and nosZ-II genes, respectively. All reactions were performed
in 96 well plates with two negative controls, which contained no
template DNA, to exclude any potential contamination. Reaction
specificity was confirmed using gel electrophoresis in comparison
with standards and monitored by analysis of dissociation curves
during quantitative amplification. The gene copy numbers per
gram of soil were calculated as described above for 16S rRNA
gene and ITS.

Statistical Analysis
Normality of all variables was assessed with Q–Q plots. Variables
with large departures from normality were analyzed with
non-parametric tests. A paired two-sample Mann–Whitney–
Wilcoxon test (non-parametric) was used to identify significant
differences between activity rates of control and tetracycline
samples. Paired two-sample t-tests (parametric) were used to
test for significant differences in 16S rRNA gene and ITS
abundances, taxa relative abundances in prokaryotic and fungal
communities, diversity estimators, and nosZ-I and nosZ-II gene
abundances between control and tetracycline samples. Simple
linear regressions were used to assess the relationship between
nosZ abundances inferred by PAPRICA and determined by
qPCR. Significant relationships for all tests were considered
at α < 0.05. These statistical analyses were conducted in
R (version 3.2.2. Copyright 2015 The R Foundation for
Statistical Computing). Significant differences between control
and tetracycline treatments in the abundance of nosZ-carrying
taxa from PAPRICA analysis were tested by fitting the data into a
generalized linear model (GLM) based on the negative binomial

distribution using the DESeq function of the DESeq2 package
in R (Love et al., 2014). A principal coordinate analysis (PCoA)
was also performed to evaluate the β-diversity of bacterial,
archaeal, and fungal communities using the phyloseq package
in R (McMurdie and Holmes, 2013). Significant effects of the
treatment in OTU dissimilarity among samples were tested by
permutational multivariate ANOVA (PERMANOVA) using the
adonis function of the vegan package in R (Oksanen et al.,
2017).

RESULTS AND DISCUSSION

Soil Properties
Average (standard deviation) bulk density, sand, silt, and clay
contents for the 0–10 cm soil depth increment were 1.19
(0.04) g cm−3, and 730 (13), 230 (38) and 40 (30) g kg−1,
respectively. At the time of soil collection, soil porosity was 55
(1.7) % and %WFPS was 38 (4). TOC and TN were 1.7 (0.2)
and 0.2 (0.02)% dry weight (dw), respectively, and soil pH was
6.2 (0.1). Physicochemical factors potentially affecting microbial
communities and denitrification activities were examined after
the 1-week incubation period (Table 1). The only factor that was
significantly different between the two groups was pH (paired
t-test, p < 0.05). The tetracycline group (average pH = 6.9) had a
significantly lower pH than the control group (average pH = 7.4).
Despite this difference, the pH for both groups remained within
the neutral region, where the 0.5 difference is not likely to
significantly affect the denitrification end-products (Rochester,
2003; McMillan et al., 2016).

Effects of Tetracycline on Denitrification:
N2O and N2 Production
Rates of potential N2O and N2 production were significantly
affected by tetracycline treatment, as shown in Figure 1 (paired
Mann–Whitney-Wilcoxon test, p < 0.05). N2O production in
the tetracycline group ranged from 2.07 to 13.97 nmol N2O-
N g−1 h−1, as compared to 0.32–1.37 nmol N2O-N g−1 h−1

in the control group. N2 production in the treated soil ranged
from 0 to 24.2 nmol 30N2-N g−1 h−1, as compared to 1.52–
108 nmol 30N2-N g−1 h−1 measured in the controls. Average
N2O production was 12 times higher in the tetracycline group,

TABLE 1 | Soil properties in samples incubated with and without tetracycline.

Treatment Plot pH % organics TOC (% dw) TN (% dw) NO−

3
(mg kg−1) NH+

4 (mg Kg−1)

Control 1 7.32 6.31 2.34 0.21 21.27 21.10

2 7.16 5.00 1.56 0.15 4.94 15.98

3 7.69 4.44 1.65 0.18 6.40 15.02

4 7.25 5.59 1.69 0.16 6.17 16.08

Tetracycline 1 7.05 5.65 2.42 0.25 150.83 15.02

2 6.71 4.64 1.41 0.14 48.19 18.02

3 7.04 4.64 1.49 0.14 15.60 11.46

4 6.77 5.87 2.18 0.19 32.56 13.99

Paired t-test p-value 0.010 0.589 0.699 0.841 0.146 0.249
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FIGURE 1 | N2O and N2 production rates of control (blue) and tetracycline (red) samples. Significant difference between control and tetracycline treatment is marked

with ∗ (paired Mann–Whitney-Wilcoxon test, p < 0.05). Each sample is represented by one point. The boxes represent the first and third quartiles, with median value

bisecting each box. The whiskers extend to the largest/smallest value, excluding outliers (data beyond 1.5×inter-quartile range).

FIGURE 2 | Comparison of bacterial 16S rRNA gene and fungal ITS abundance in control (blue) and tetracycline (red) samples. Significant difference between

control and tetracycline treatment is marked with ∗ (paired t-test, p < 0.05). Each sample is represented by one point. The boxes represent the first and third

quartiles, with median value bisecting each box. The whiskers extend to the largest/smallest value, excluding outliers (data beyond 1.5× inter-quartile range).

while N2 production was inhibited by up to 84%. TheN2O-N/N2-
N ratio was 42 times higher in the tetracycline group than the
controls. These results suggest that microbial reduction of N2O
to N2 is strongly inhibited and N2O production is enhanced in
soils exposed to tetracycline.

The stimulatory effect of antibiotics on N2O production
has recently been observed in agricultural soils and estuarine
sediments exposed to other antibiotics, such as sulfamethazine

and narasin, for similar time periods and in lower concentrations
than this study (DeVries et al., 2015; Hou et al., 2015; Yin
et al., 2017). Observed increases in N2O production have been
attributed to a shift in the end-products of denitrification
from N2 to N2O driven by the stronger inhibition of N2O-
reducing bacteria than N2O-producing bacteria (DeVries et al.,
2015; Hou et al., 2015; Yin et al., 2017). However, different
antibiotics, such as norfloxacin or a mixture of sulfadiazine,
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FIGURE 3 | Prokaryotic community composition at the phylum level for control and tetracycline samples. Only phyla with relative abundance higher than 1% are

shown. Phyla with significant difference between control and tetracycline samples are marked with ∗ in the legend (paired t-test, p < 0.05).

sulfamethoxazole, florfenicol, and chloramphenicol, were shown
to reduce N2O production across various time periods and low
exposure concentrations (Sun et al., 2017; Yin et al., 2017). The
antibiotic’ effect on net N2O production seems to be dependent
on the antibiotic type, dosage, and time of exposure, but no
clear pattern has emerged in the literature. When considering
tetracycline, we found only one study that measured how chronic
exposure to tetracycline affected the production of different
intermediates of denitrification in riverine sediments (Roose-
Amsaleg et al., 2013). Roose-Amsaleg et al. (2013) reported no
significant effect of tetracycline on NO−

3 reduction, or NO−

2
and N2O production at variable tetracycline concentrations up
to 10 mg L−1. In our study, acute exposure to tetracycline in
soil increased N2O and inhibited N2 production, indicating that
the final denitrification step from N2O to N2 was susceptible to
antibiotic exposure.

Effects of Tetracycline on Bacterial and
Fungal Abundance
The abundance of bacterial 16S rRNA genes and fungal ITS is
shown in Figure 2. The abundance levels observed in the control

group ranged from 5.11 × 1010 to 5.79 × 1010 16S rRNA gene
copies per gram soil and from 1.27× 108 to 3.25× 108 ITS copies
per gram soil. The tetracycline treatment had no significant effect
(paired t-test, p > 0.05) on the abundance of either bacteria
or fungi. However, the lowest levels of bacterial abundance and
the highest levels of fungal abundance were observed in samples
exposed to tetracycline, which resulted in a significant increase
(paired t-test, p < 0.05) in the fungi:bacteria ratio in samples
exposed to tetracycline compared to control (Figure 2).

The small subset of samples used for the molecular analysis
(see section “Materials and Methods”) may have limited our
capacity to detect smaller changes in bacterial or fungal
absolute abundances. However, the subset used was enough
to detect significant changes in the fungi:bacteria ratio, as
hypothesized. Previous studies showed significant increases in
the fungi:bacteria ratio in soils exposed to antibiotics, including
tetracyclines (Thiele-Bruhn and Beck, 2005; Hammesfahr et al.,
2008; Demoling et al., 2009; Ding and He, 2010; Gutiérrez
et al., 2010). This is expected since tetracycline inhibits bacterial
growth and may leave nutrients and habitat for fungal growth.
The increase in the fungi:bacteria ratio suggests that the
higher N2O production observed could be associated with
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FIGURE 4 | Fungal community composition at the phylum level for control and tetracycline samples. Only phyla with relative abundance higher than 1% are shown.

Taxa with significant difference between control and tetracycline samples are marked with ∗ in the legend (paired t-test, p < 0.05).

fungal denitrification (Shoun et al., 2012; Maeda et al., 2015;
Mothapo et al., 2015). Various studies have shown that fungal
denitrification is a major contributor to N2O production in
different soils (Laughlin and Stevens, 2002; Long et al., 2013; Wei
et al., 2014; Chen et al., 2015; Huang et al., 2017).

Effects of Tetracycline on Prokaryotic
Community Composition
A total of 201,980 16S rRNA gene sequences were obtained
for taxonomic analysis following screening and filtering of the
prokaryotic sequences. Bacteria was clearly the most abundant
domain with relative abundances ranging from 89 to 96%,
while archaeal sequences represented less than 12% of the
communities. The tetracycline treatment shifted the relative
abundance away from Bacteria (paired t-test, p = 0.00426) and
toward Archaea (paired t-test, p = 0.00440) by 4%. This was
expected since tetracycline is an antibacterial compound that
would mostly inhibit bacterial growth. The relative abundances
of the most represented prokaryotic phyla (16S rRNA > 1%
of total reads) in control and tetracycline groups are shown in
Figure 3. Eleven abundant phyla were identified. All samples
except one were dominated by Acidobacteria, representing

19–30% of the sequences, followed by Proteobacteria (17–
26%), Firmicutes (0.5–17%), Actinobacteria (8.3–16%), and
Thaumarchaeota (3.7–11%). The prokaryotic phyla that were
significantly different between control and tetracycline groups
were Actinobacteria (paired t-test, p = 0.00203), Chloroflexi
(paired t-test, p = 0. 00287), Firmicutes (paired t-test,
p = 0.00210), and Thaumarchaeota (paired t-test, p = 0.00430).
The most drastic effect was the decline in the relative abundance
of Firmicutes, from an average of 14% in controls to 0.9% in
the tetracycline samples. The Firmicutes classes most affected
by the tetracycline treatment were Bacilli and Clostridia
(Supplementary Figure S1). These results show that specific
bacterial taxa are more susceptible to tetracycline exposure
despite its broad-spectrum antibacterial properties.

Firmicutes is likely to be less resistant to tetracycline according
to previous studies, which report a decrease in the ratio of Gram-
positive:Gram-negative bacteria when exposed to tetracycline
and other antimicrobials (Hund-Rinke et al., 2004; Ding and
He, 2010; Gutiérrez et al., 2010). Indeed, the vast majority of
tetracycline-resistant bacteria are Gram-negative (Schnabel and
Jones, 1999). The observed decrease in the relative abundance of
Firmicutes may have important consequences for N2O reduction
since bacteria harboring nosZ genes without possessing any nir
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or nor gene are mainly found amongst the Bacteroidetes and
Firmicutes phyla (Graf et al., 2014).

Effects of Tetracycline on Fungal
Community Composition
A total of 369,805 (ITS) sequences were obtained for taxonomic
analysis following screening and filtering of the fungal sequences.
The relative abundances of the most represented fungal phyla
(ITS > 1% of total reads) in control and tetracycline groups
are shown in Figure 4. Five abundant phyla were identified.
All samples were dominated by Zygomycota, representing
47–80% of the sequences, followed by Ascomycota (18–49%).
The tetracycline treatment did not have significant effects (paired
t-test, p > 0.05) on the relative abundance of any fungal phyla,
including the N2O producing Ascomycota, Basidiomycota,
and Zygomycota (Maeda et al., 2015; Mothapo et al., 2015).
Most fungal denitrifiers belong to the Sordariomycetes,
Eurotiomycetes, and Saccharomycetes classes (Mothapo et al.,
2015). No significant differences between treatments were
detected in the relative abundance of any of these classes
(Supplementary Figure S2). Although the present study shows
a tetracycline impact on N2O production and the fungi:bacteria
abundance ratio, no individual impacts appear to occur in fungal
denitrifier taxa.

Effects of Tetracycline in the Community
Richness and Diversity
Principle coordinate analysis represents β-diversity of microbial
communities based on the calculated dissimilarities among
samples (Figure 5). The first two principal coordinates
represented 58.6% and 80.3% of the variation in bacterial and
archaeal communities (Figures 5A,B), respectively. The archaeal
β-diversity was not significantly affected by the tetracycline
treatment (PERMANOVA, p > 0.05), while the bacterial
communities had a distinct clustering of control samples
separated from the tetracycline samples. This result shows
a significant difference (PERMANOVA, p < 0.05) between
the compositions of bacterial communities in control and
tetracycline groups. Previous studies also reported significant
effects of different antibiotics (sulfadiazine, tylosin, amoxicillin,
and ciprofloxacin) on bacterial community structure in soils
and marine sediments (Westergaard et al., 2001; Zielezny et al.,
2006; Binh et al., 2007; Hammesfahr et al., 2008; Näslund
et al., 2008). When considering tetracyclines, Zielezny et al.
(2006) did not find significant effects in the bacterial community
structure after exposure to 1–50 mg kg−1 of chlortetracycline for
48 h. This result contrasts with our study, where the effects of
tetracycline on bacterial community structure were significant,
probably due to the higher dosage and longer duration of
exposure tested (1 week). Since tetracyclines are protein synthesis
inhibitors with bacteriostatic action (i.e., limits bacterial growth)
rather than bactericidal it is possible that an incubation period
longer than 48 h is necessary to detect changes in community
structure.

Contrasting to the bacterial communities, no clear patterns
were observed in fungal β-diversity (Figure 5C). The first

FIGURE 5 | Principal Coordinate Analysis (PCoA) plot representing the

β-diversity of the bacterial (A), archaeal (B), and fungal (C) communities from

control (blue) and tetracycline (red) samples. Both bacterial and archaeal

communities were examined based on 16S rRNA gene sequences while ITS

sequences were used for fungal communities. Sample dissimilarity and

distance analysis was calculated using the Bray–Curtis dissimilarity index.

Significant effects (p < 0.05) of the treatment in OTU dissimilarity were tested

by multivariate permutational ANOVA (PERMANOVA) and the p-values are

shown in each plot.
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TABLE 2 | Species richness and α-diversity of microbial communities from control and tetracycline samples.

Microbial Group Treatment Plot Sequences OTUs Coverage Richness Diversity Evenness

Chao Ace Shannon Shannon

Bacteria (16S) Control 1 22388 2986 0.931 5820.3 7617.0 6.05 0.76

2 22388 2734 0.937 5159.3 7209.6 5.82 0.74

3 22388 2636 0.939 5047.7 7195.1 5.98 0.76

4 22388 2767 0.937 5236.3 7032.6 6.09 0.77

Tetracycline 1 22388 3052 0.931 5749.6 7511.0 6.44 0.80

2 22388 2874 0.933 5462.4 7641.0 6.27 0.79

3 22388 3005 0.928 6126.8 8868.8 6.35 0.79

4 22388 2944 0.933 5446.9 7486.5 6.39 0.80

Paired t-test p-value 0.220 0.202 0.001 0.003

Archaea (16S) Control 1 946 16 0.994 23.5 29.3 1.88 0.68

2 946 19 0.989 41.5 74.0 2.02 0.69

3 946 19 0.990 31.0 43.8 1.95 0.66

4 946 17 0.993 38.0 73.9 2.05 0.72

Tetracycline 1 946 12 0.998 13.0 13.9 1.85 0.74

2 946 15 0.996 16.5 19.7 2.00 0.74

3 946 14 0.995 19.0 29.0 1.96 0.74

4 946 15 0.996 17.0 20.1 2.04 0.75

Paired t-test p-value 0.016 0.054 0.200 0.016

Fungi (ITS) Control 1 25863 261 0.999 276.3 271.5 3.28 0.59

2 25863 224 0.999 232.0 231.3 2.42 0.45

3 25863 174 0.999 180.5 181.1 3.18 0.62

4 25863 238 0.999 249.8 247.7 3.56 0.65

Tetracycline 1 25863 220 0.999 239.9 235.5 2.64 0.49

2 25863 192 0.999 200.3 199.6 3.65 0.69

3 25863 196 0.999 207.1 212.7 2.79 0.53

4 25863 269 0.999 277.1 279.5 3.44 0.62

Paired t-test p-value 0.853 0.958 0.960 0.942

two principal coordinates represented 66.9% of the variation
in fungal communities and no significant effect of treatment
was observed (PERMANOVA, p > 0.05). This result is
consistent with the observed lack of significant changes in the
relative abundance of the most abundant fungal phyla and
classes.

The effects of tetracycline on species richness and microbial
α-diversity are displayed in Table 2. Interestingly, bacterial
α-diversity, estimated through calculation of the Shannon Index
(H′), was significantly higher (paired t-test, p < 0.05) in the
tetracycline group (averageH′ = 6.36) when compared to controls
(average H′ = 5.98). An increase in bacterial diversity after
antibiotic exposure was not expected since previous studies have
shown that antibiotic exposure decreases bacterial diversity in
the soil ecosystem (Westergaard et al., 2001; Zielezny et al.,
2006; Cycoñ et al., 2016; Ding and He, 2010). However,
temporary increases (after 4 days of exposure) in bacterial
diversity of agricultural soils exposed to antibiotics have also been
reported (Hammesfahr et al., 2008). The increase in bacterial
diversity was probably caused by the inhibition of the most
dominant taxa and a slight increase in the numbers of rare
taxa. This explanation is supported by the significant increase
in community evenness (paired t-test, p < 0.05), estimated
through calculation of the Shannon index-based evenness (EH),

and the non-significant difference observed in both indexes
of species richness (Chao and Ace; paired t-test, p > 0.05).
We found that higher community diversity in the tetracycline
group was associated with higher N2O emission, while previous
studies showed that these two variables are negatively correlated
(Wagg et al., 2014; Samad et al., 2016). These studies, however,
tested a broader range of bacterial diversity and statistically
tested the direct relationships between microbial diversity and
N2O emissions. In our study, the observed higher bacterial
diversity in the tetracycline group with higher N2O production
could be sporadic and the relationship between microbial
diversity and N2O emissions is outside of the scope of this
work.

Similarly to the β-diversity patterns, no significant changes
(paired t-test, p > 0.05) were detected in fungal species richness,
α-diversity, or evenness with tetracycline exposure (Table 2). As
expected, tetracycline had no impact on the composition of the
fungal communities at any taxonomical level.

Effects of Tetracycline on NosZ-Carrying
Community Composition
By employing metabolic inference using PAPRICA (Bowman
and Ducklow, 2015), we were able to identify the 16S rRNA
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FIGURE 6 | Difference in the nosZ-carrying microbial community composition between tetracycline and control samples for nosZ-I (A) and nosZ-II (B) bacteria. Each

dot denotes a taxon that is either higher (log2 fold change > 0) or lower (log2 fold change < 0) in the tetracycline treated samples when compared to the control

samples. Taxa are organized by family in decreasing order and colored by genus. Normalized abundances were obtained by metabolic inference of 16S rRNA gene

sequences using PAPRICA and tested for significant effects (p < 0.05) of treatment by fitting the data into a generalized linear model (GLM) based on the negative

binomial distribution. Taxa with significant difference between tetracycline and control samples are marked with ∗ in the legend.
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FIGURE 7 | NosZ-I and nosZ-II abundance measured by quantitative PCR (qPCR) in control (blue) and tetracycline (red) samples. Significant difference between

control and tetracycline treatment is marked with ∗ (paired t-test, p < 0.05). Each sample is represented by one point. The boxes represent the first and third

quartiles, with median value bisecting each box. The whiskers extend to the largest/smallest value, excluding outliers (data beyond 1.5× inter-quartile range).

FIGURE 8 | Linear regressions comparing inferred and quantified nosZ gene abundances for control (blue) and tetracycline (red) samples. The inferred nosZ

abundances were calculated by multiplying the relative abundances obtained through metabolic inference (PAPRICA) with the 16S rRNA gene abundances. The

shaded area represents the 95% confidence interval of the linear regression predictions.

sequences belonging to the bacterial taxa carrying either
nosZ-I or nosZ-II genes. Within the nosZ-I community,
Gammaproteobacteria was the most abundant class, followed
by Alphaproteobacteria (Proteobacteria) (Supplementary

Figure S3). A few sequences belonging to the Caldilineae class
(Chloroflexi) and Betaproteobacteria (Proteobacteria) were
also observed in this study. The nosZ-II communities were

more taxonomically diverse at the phylum and class levels
(Supplementary Figure S4). Sixteen classes of nosZ-II-carrying
taxa were identified and virtually all samples were dominated
by Betaproteobacteria (Bacteroidetes), Deltaproteobacteria
(Proteobacteria), and Opitutae (Verrucomicrobia).

The effects of tetracycline on nosZ-carrying taxa were
evaluated based on the changes in families and genera of bacteria
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carrying nosZ-I or nosZ-II genes (Figure 6). The tetracycline
group had a significantly higher abundance of the nosZ-I carrying
Rhodanobacter spp. (Gammaproteobacteria) than the control
group (negative binomial GLM, p = 0.0038) (Figure 6A). On the
other hand, the tetracycline treatment significantly decreased the
abundance of two nosZ-II carrying taxa, Bacillus spp. (Firmicutes;
negative binomial GLM, p = 0.0008) and Anaeromyxobacter
spp. (Deltaproteobacteria; negative binomial GLM, p = 0.0375)
(Figure 6B). Abundances of both taxa were approximately eight
times lower in the tetracycline group.

The observed decrease in nosZ-II-carrying Bacillus spp.
is consistent with the decrease in relative abundance of
Firmicutes and provides evidence that some of the affected
Firmicutes bacteria were potential nosZ-II carriers. The microbes
harboring nosZ genes without possessing any nir or nor gene
are frequently found amongst the Firmicutes phylum (Graf
et al., 2014). This underscores the importance of some nosZ-
carrying Firmicutes as N2O consumers, rather than N2O
producers, in the soil ecosystem. The other genus that had
lower abundances in the tetracycline group, Anaeromyxobacter
spp. is also known as a non-denitrifying N2O reducer, i.e.,
these bacteria do not possess all other denitrification genes
besides nosZ (Sanford et al., 2012; Hallin et al., 2017).
This finding suggests that non-denitrifying N2O reducers are
more susceptible to antibiotic disturbance than denitrifying
N2O reducers. Both nosZ-II taxa significantly affected by the
tetracycline exposure are likely important N2O consumers
rather than N2O producers. The observed decreases in
abundances of Bacillus (Firmicutes) and Anaeromyxobacter
(Deltaproteobacteria) may thus explain the observed increase
in N2O/N2 ratio in the same treatment. These decreases
also indicate that, despite tetracycline being a broad-spectrum
antibiotic, there are functional bacterial taxa more susceptible
than others.

Effects of Tetracycline on Bacterial nosZ

Abundance
The abundances of nosZ-I and nosZ-II genes measured by qPCR
are shown in Figure 7. Abundances of nosZ-I and nosZ-II genes
in the control group ranged from 1.04 to 2.13 × 109 copies
per gram soil and from 0.45 to 1.03 × 109 copies per gram
soil, respectively. The nosZ-I abundance was not significantly
affected by tetracycline (paired t-test, p > 0.05), while the nosZ-II
abundance was significantly lower (paired t-test, p < 0.05) in the
tetracycline group (Figure 7).

Together, nosZ-I and nosZ-II comprised 2.9–5.5 % of the
total number of 16S rRNA gene copies, which are in accordance
with reports in the literature for nosZ relative abundances
(Jones et al., 2013, 2014; Domeignoz-Horta et al., 2015). Taking
the effect of tetracycline into account, the nosZ-II community
appears to be more sensitive to the antibiotic than the nosZ-
I community. This result supports the observed taxonomical
changes described above for the nosZ-carrying taxa. The nosZ-
II community was previously reported to be more sensitive than
nosZ-I to other environmental factors, such as pH, calcium
concentration, soil moisture, total N, and crop rotation systems

(Jones et al., 2014; Domeignoz-Horta et al., 2015; Samad et al.,
2016). The significant decrease of nosZ-II abundance reported
here for samples exposed to tetracycline corresponds to the
observed increase in N2O/N2 ratio in the same treatment,
which underscores the importance of this clade as N2O
consumers.

Abundance of nosZ-I and nosZ-II genes measured by qPCR
were compared with the inferred abundance of both genes by
PAPRICA (Figure 8). A significant, positive linear correlation
was observed between the two estimates of the nosZ clades. The
inferred abundances of nosZ-I were on average 17% lower than
those determined by qPCR, while inferred nosZ-II abundances
were on average two times higher than qPCR results.

A similar significant relationship between inferred and qPCR
abundances was previously reported for the nosZ-I gene in
the oyster microbiome (Arfken et al., 2017). These findings
suggest that 16S rRNA gene-based metabolic inference is a
promising approach to evaluate functional gene abundances and
community composition in environmental samples. Despite the
small sampling size of our study and the intrinsic limitations of
a reference database, this approach could be of great relevance to
the microbial ecology field as 16S rRNA gene high throughput
sequencing becomes increasingly available.

CONCLUSION

We present several lines of evidence that unveil the microbial
community changes associated with the antibiotic impacts on soil
denitrification. The increase in N2O/N2 ratio from denitrification
is paralleled by a greater fungi:bacteria ratio and lower abundance
of nosZ-II carrying bacteria. Non-denitrifying N2O reducers
belonging to the Firmicutes and Deltaproteobacteria phyla
appear to be particularly susceptible to an acute exposure to
tetracycline and may be crucial for soil N2O sink capacity. Future
research aiming to predict N2O emissions based on microbial
community structure under antibiotic-disturbed environments
would potentially benefit from targeted approaches to these taxa.
Overall, the findings of this study emphasize the importance
of microbial community dynamics to fundamental ecosystem
processes that can have major impacts on the emissions of a
potent greenhouse gas such as N2O.
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