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Abstract The early-life intestinal microbiota plays a key role in shaping host immune system

development. We found that a single early-life antibiotic course (1PAT) accelerated type 1 diabetes

(T1D) development in male NOD mice. The single course had deep and persistent effects on the

intestinal microbiome, leading to altered cecal, hepatic, and serum metabolites. The exposure

elicited sex-specific effects on chromatin states in the ileum and liver and perturbed ileal gene

expression, altering normal maturational patterns. The global signature changes included specific

genes controlling both innate and adaptive immunity. Microbiome analysis revealed four taxa each

that potentially protect against or accelerate T1D onset, that were linked in a network model to

specific differences in ileal gene expression. This simplified animal model reveals multiple potential

pathways to understand pathogenesis by which early-life gut microbiome perturbations alter a

global suite of intestinal responses, contributing to the accelerated and enhanced T1D

development.

DOI: https://doi.org/10.7554/eLife.37816.001

Zhang et al. eLife 2018;7:e37816. DOI: https://doi.org/10.7554/eLife.37816 1 of 37

RESEARCH ARTICLE

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.7554/eLife.37816.001
https://doi.org/10.7554/eLife.37816
https://creativecommons.org/
https://creativecommons.org/
http://elifesciences.org/
http://elifesciences.org/
http://en.wikipedia.org/wiki/Open_access
http://en.wikipedia.org/wiki/Open_access


Introduction
The human gastrointestinal (GI) tract contains a microbiome of enormous cell number (Sender et al.,

2016) and complexity (Lozupone et al., 2012), which plays important roles in shaping development

of host immunity (Honda and Littman, 2016; Hooper et al., 2012; Kinnebrew and Pamer, 2012).

Altered composition of the GI microbiota modifies risk of inflammatory conditions—including type 1

diabetes (T1D), asthma, and inflammatory bowel disease—by perturbing immune system develop-

ment (Eberl et al., 2015; Flak et al., 2013; Fujimura and Lynch, 2015; Gensollen et al., 2016;

Kostic et al., 2015; Kriegel et al., 2011; Livanos et al., 2016; Rooks and Garrett, 2016;

Schulfer et al., 2018).

T1D is characterized by T-cell-mediated destruction of pancreatic b-cell-containing islets

(Wilson et al., 1998), but the triggers and intermediary molecular mechanisms remain unclear. Since

numbers of intestinal Treg cells are significantly reduced in T1D, altered gut microbiota might play

an initiating role (Badami et al., 2011). The worldwide increasing incidence of T1D, with decreasing

age of onset (Patterson et al., 2012; Paun et al., 2017; Wändell and Carlsson, 2013), coincides

with the widespread use of antibiotics in children (Hersh et al., 2011; Lee et al., 2014). Since antibi-

otic exposure affects the intestinal microbiota, potentially changing interplay with immune systems,

it could contribute to the rise in T1D; recent studies in the NOD (non-obese diabetic) mouse model

support this hypothesis (Brown et al., 2016; Candon et al., 2015; Hu et al., 2017; Livanos et al.,

2016). In male NOD mice, three courses of a pulsed (macrolide) antibiotic treatment (3PAT) altered

the intestinal microbiota and reduced intestinal lamina propria Th17- and Treg-populations, acceler-

ating T1D development (Livanos et al., 2016). That isolated cecal contents from the antibiotic-

exposed NOD mice transferred to germ-free recipient mice produced parallel immunological

effects, further supports a causal role of the antibiotic-perturbed microbiota in T1D pathogenesis

(Livanos et al., 2016). Enhanced T1D induction depended on the antibiotics used (Brown et al.,

eLife digest The human body contains many microbes that play important roles in our health.

These microbes begin to live in the intestines, skin, and mouth shortly after birth. They form

complex communities called the microbiome, which changes as babies develop. The microbiome

works with organs to maintain human health. For example, the lower intestinal tract is home to the

most numerous and active microbes in the body. The intestines provide microbes with food and a

welcoming environment, and the microbes make products the body needs, influence immune

system development, and help maintain a balance of beneficial microbes.

Use of antibiotics to treat infections, particularly early in life, disrupts intestinal microbe

communities. Recent studies show that such microbiome disturbances may affect how the immune

system develops and the rate at which type 1 diabetes develops. Type 1 diabetes is an autoimmune

disease in which the immune system destroys cells in the pancreas that produce insulin. Scientists

would like to learn more about how use of antibiotics in early life may contribute to the

development of this disease.

Now, Zhang et al. show that a single course of antibiotics administered early in life accelerates

the development of type 1 diabetes in mice prone to develop the disease. In the experiments, a

strain of laboratory mice that spontaneously develops type 1 diabetes were either given a single

course of antibiotics, three courses of antibiotics, or no antibiotics in their first weeks of life. After

one single course, the gut microbiome was different in mice treated with antibiotics compared with

mice who were never exposed. The antibiotics also changed the molecules produced by these

microbes. These alterations in the microbiome turned on or off certain genes in the intestine,

affecting the development of the immune system.

Zhang et al. identified some microbes that appear to protect against type 1 diabetes and others

that seem to speed it up and how they do so. Antibiotic use in children is very common, so finding

ways to reduce its potentially harmful effects on development are critical. The experiments provide

one way to study how antibiotics may contribute to autoimmune disease. It also may allow scientists

to test ways to reverse harmful change.
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2016; Candon et al., 2015; Hu et al., 2017), suggesting that differences in their activities influenced

overall effects. Although the roles of antibiotics perturbing the microbiome and promoting T1D are

becoming defined, the underlying molecular mechanisms require better resolution.

A single early-life PAT course altered the intestinal microbiota and specific intestinal T-cell popu-

lations and effectors in C57BL/6 mice; experiments involving germ-free mice showed that the per-

turbed microbiota was both necessary and sufficient for the effects (Ruiz et al., 2017). Here we

asked whether the same single early-life (pup day of life P5-P10) antibiotic pulse was sufficient to

enhance T1D in NOD mice. This work now shows that the extensive early-life effects of the brief anti-

biotic course on the microbiota initiate a global cascade of effects flowing from the gut lumen via

metabolites and specific interactions with host cells that change the developmental program of

innate and adaptive immunity, leading to accelerated and enhanced T1D.

Results

A single early-life antibiotic exposure accelerated T1D development
To evaluate the effects of antibiotic exposure on T1D incidence, NOD mice were given a single

(1PAT) or three courses (3PAT) of a macrolide antibiotic, or not (controls) (Figure 1A). In both con-

trol groups, females had higher T1D incidence than males, as expected (Bao et al., 2002;

Livanos et al., 2016; Markle et al., 2013). In males, T1D development in the two control groups

was similar, but both antibiotic-exposed groups had significantly accelerated and enhanced T1D

rates (Figure 1B); their similarity indicates the sufficiency of the first exposure for the full effect. In

the female controls, the spontaneous T1D rates approached 80%, and neither antibiotic exposure

significantly increased the rates. As such, we focused on male mice especially the 1PAT group in

whom the exposure ended by P10. That the median T1D development was at P147 provided a pro-

longed window to understand the intermediary mechanisms. Examining the pancreatic islets, at P42,

there were no significant differences between the PAT and control groups, but by P70, significantly

more islets showed inflammation in both PAT groups than controls (Figure 1C), confirming that the

enhanced pathological process was well-advanced by P70.

1PAT exposures significantly reduced body weight for both male and female mice continuing to

P70 (Figure 1—figure supplement 1), and similar to 3PAT exposure (data not shown), but not at

later time points. There was no relationship between early-life body weight and risk or timing of T1D

development.

Single early-life PAT persistently altered the intestinal microbiome
We then examined the antibiotic effects on the intestinal microbiome at points prior to the observed

insulitis. On P12, two days after 1PAT ended, there were significant changes in the cecal and fecal

microbiota persisting until at least P49 (Figure 2 and Figure 2—figure supplement 1). Community

structure (b-diversity) markedly differed between controls and both PAT groups (Figure 2A and Fig-

ure 2—figure supplement 1B); further studies focused on the simpler 1PAT experiment. In all cecal

and fecal samples tested, 1PAT suppressed a-diversity weeks after the exposure ended (Figure 2B

and Figure 2—figure supplement 1A,C). Thus, the single early life pulse led to a persistent change

in the microbial community.

1PAT also increased the inter-subject microbial heterogeneity. Although the composition of the

gut microbiomes of control males and females were nearly identical, there were significant differen-

ces in microbiome heterogeneity amongst the 1PAT-exposed mice (Figure 2—figure supplements

2 and 3). In the ileum, PAT and control differed less from each other than in the cecum (Figure 2—

figure supplement 4), and there were no significant differences between males and females for

each treatment (data not shown).

3PAT changes fecal microbiome community structure and richness
The 3PAT exposure accelerated T1D development, which is consistent with our previous observa-

tions (Livanos et al., 2016). Also consistent with the prior observations, we saw significant changes

in fecal microbiota after course 1 (at P21), course 2 (at P35), and course 3 (at P49). b-diversity was

markedly different between control and 3PAT, and a-diversity was significantly decreased at all three

early timepoints (Figure 2—figure supplement 5). Whereas the control males and females were
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Figure 1. Effect of 1PAT/3PAT on T1D development. (A) Design of NOD 1PAT and 3PAT experiments. Pregnant NOD/ShiLtJ mice were randomized

into four groups: 3PAT, 1PAT, and their controls (3PAT control, 1PAT control) as described in the Materials and methods section. From 11–30 weeks of

age, mice were tested weekly for T1D by blood glucose measurement. *Weeks at which fecal samples microbiome were analyzed by16S rRNA

sequencing; and + metagenomic sequencing. #Timepoint at which a subset of mice were sacrificed for collection of ileal and cecal tissues and content.

Microbiome was analyzed by 16S rRNA sequencing and metagenomics, and tissues for gene expression, metabolomics, and flow cytometric analysis.

(B) Kaplan-Meier analysis of T1D incidence in male and female NOD mice. Statistical significance was determined by the log-rank test. *p=0.019;

**p=0.002. (C) Insulitis in male NOD mice at P70. Upon necropsy, the pancreas was preserved and stained, as described in Materials and methods, and

insulitis determined with scores 0–4 indicating progressive infiltration (Livanos et al., 2016). The extent of pancreatic islet inflammation (scores 1–4) in

PAT is higher than in controls at P70 in both the 1PAT and 3PAT experiments, but differences by mouse (n = 6/group) were not significant. Score

differences were significant across the 235 individual 1PAT, and 229 control islets, (p=0.0016, Chi square), and across 201 individual 3PAT and 210

control islets (p=0.0034). [See also Figure 1—figure supplement 1].

DOI: https://doi.org/10.7554/eLife.37816.003
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nearly identical in inter-subject heterogeneity, there were significant differences in the 3PAT-

exposed mice at all three timepoints. There were no significant differences in a-diversity between

males and females for either the control or 3PAT mice (Figure 2—figure supplement 6).

Comparing across the 1PAT and 3PAT experiments based on Shannon index analysis, a-diversi-

ties were similar in the two control groups, but were significantly lower in the 1PAT than the 3PAT

group in both males (Figure 2—figure supplement 7), and in females (data not shown).

Effects of PAT on specific taxa
With the observed inter-subject heterogeneity (Figure 2A and Figure 2—figure supplement 5A),

we next asked which specific taxa were associated with accelerated T1D. In total, across the 518

fecal samples at the three early time points studied, we identified 76 individual taxa. Using the strin-

gent ANCOM algorithm (Mandal et al., 2015), findings in males and females were similar, as were

comparisons of the 1PAT and 3PAT mice with their controls (Figure 2C); thus the major effects on

taxa were conserved across the treatments and both sexes were affected similarly (Figure 2—figure

supplements 3 and 6). These results pointed to a differential transduction of the effects of the

altered microbiome in the male and female hosts (see below). In essentially all of the 12 individual

timepoint/group comparisons, the relative abundances of four taxonomic groups (Enterococcus,

Blautia, Enterobacteriaceae, and Akkermansia) were significantly over-represented in PAT. In con-

trast, the relative abundances of four taxa (S24-7, Clostridiales, Oscillospira, and Ruminococcus)

were significantly under-represented in � 7 time-point/treatment comparisons between PAT and

control. No other representational differences were reproducible across treatment and time, nor

were significant differences identified between males and females (Figure 2—figure supplements 3

and 6). Analysis of the mixed effect of time in different groups further confirmed the over-repre-

sented taxa (Enterococcus, Blautia, Enterobacteriaceae, and Akkermansia) and the under-repre-

sented taxa (S24-7 and Ruminococcus) in PAT, and revealed another under-represented taxon

Anaeroplasma. This analysis revealed representational differences prior to the phenotypic events in

a small group of taxa strongly linked with accelerated T1D or with protection in the male mice.

PAT directionally alters the metagenome and its metabolic products
To determine whether the PAT-altered microbiota differed in metabolic functions or whether the

taxonomic differences merely led to functional substitutions, we examined the fecal metagenome in

24 1PAT and control mice at both P21 and P49. Based on Bray-Curtis analysis of 300 metabolic path-

ways identified in the shotgun sequencing results, 1PAT significantly affected metagenomic compo-

sition (Figure 2D). Notably, of the 131 pathways differentiating 1PAT and control mice, 97% were

overrepresented in the 1PAT samples, significantly deviated from chance at both times in both males

and females (p<0.001 for each subanalysis) (Figure 2—figure supplements 8 and 9).

In unsupervised hierarchical clustering of the pathways with the highest inter-individual variance,

we identified a cluster strongly enriched for 1PAT (20/25 samples), that contains 34 specific path-

ways (Figure 2—figure supplement 8), encoding genes involved in long chain carbohydrate degra-

dation, specific amino acid biosynthesis, and bacterial cell structural components (e.g.

peptidoglycan synthesis and maturation) (Figure 2—figure supplement 8). In males, of 50 pathways

that differed significantly between 1PAT and control, 22 (44%) were significant at both P21 and P49.

For females, of 51 significant pathways, only 9 (18%) were shared (Figure 2—figure supplement 9

and Supplementary file 1). Of 49 pathways significant at P21, 10 (20%) were shared between males

and females, but at P49, 19 (35%) of 54 were shared. At P21, of 39 pathways that were significantly

differential in males, 100% were greater in PAT than controls. In females, 20 were differential, but

95% were greater in PAT than controls. Thus, there was a marked asymmetry in the pathways in

Figure 1 continued

The following source data and figure supplement are available for figure 1:

Source data 1. Time points of T1D development and scores of pancreatic islets.

DOI: https://doi.org/10.7554/eLife.37816.005

Figure supplement 1. Effect of 1PAT on NOD mouse body weight.

DOI: https://doi.org/10.7554/eLife.37816.004
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Figure 2. Early-life fecal microbiota in PAT and control NOD mice. (A) b-diversity, as determined by unweighted UniFrac analysis of control and1PAT

fecal microbiota over time, analyzed by QIIME2. Inter- and intra-group UniFrac distances were all significant (p<0.0001), determined by one-way-

ANOVA with Tukey correction for multiple comparisons. (B) a-diversity (Phylogenic diversity (PD)) of fecal microbiota in control and 1PAT males.

Statistical significance determined by one-way-ANOVA test. ****p<0.0001. (C) Early-life taxa significantly under- or over-represented in 1PAT and 3PAT

Figure 2 continued on next page
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both males and females, with overrepresentation in PAT; 10 (53%) of the 19 over-represented path-

ways in females also were over-represented in males. Those 10 pathways were related to bacterial

biosynthesis of the amino acids lysine, methionine, and homoserine and related to the bacterial deg-

radation of rhamnose, aspartate, and inositol. Lysine provides one basis for arginine metabolism,

which plays important roles in immune regulation (Peranzoni et al., 2007); plasma lysine is substan-

tially produced by intestinal microbes (Metges et al., 1999). Homoserine is an essential part of the

Gram-negative enteric bacterial quorum-sensing auto-inducer, homoserine lactone, which mediates

communication between bacteria and could have immunodulatory roles (Gaida et al., 2016). As

such, up-regulation of these intestinal bacterial amino acid pathways by 1PAT could affect intestinal

and systemic homeostasis in the pups, and may affect subsequent T1D onset.

An alternative way to consider these pathways is to assess how closely the representation for one

matches the others. Pairwise correlations between 14 fecal metagenomics pathways were signifi-

cantly different at P21 (Figure 2—figure supplement 10), identifying a close and significant correla-

tion between superpathways of sulfate assimilation and cysteine biosynthesis, phospholipid

biosynthesis, purine nucleotide salvage, oleate biosynthesis, (saturated) fatty acid elongation, and

hexitol fermentation in all male samples at P21 (Figure 2—figure supplement 10A). The remaining

eight metagenomic pathways showed no significant associations. The majority of these relationships

Figure 2 continued

mice compared to controls, by ANCOM in QIIME2. Fecal specimens were obtained at P21, P35, and P49 from male and female mice, exposed or not to

1PAT or 3PAT (n = 20–25 mice per group). (D) Metagenomic (MetaCyc) pathway distribution in male and female mice at P21, visualized by principal

component analysis (PCA; blue, control; red, 1PAT, n = 6 samples per group). (E) Comparison of BGC content in male 1PAT and control metagenomic

P21 samples. Presence (blue) or absence (gold) heat map of the 228 detected BGCs in male 1PAT (green) vs. control (purple) mice, generated by using

an accelerated optimal gapped alignment algorithm against a BGC database (Al-Ghalith and Knights, 2017; Blin et al., 2017; Needleman and

Wunsch, 1970). For visualization and dendrograms, axes are clustered by average linkage. For each of the 228 BGCs shown, a Fisher’s exact test was

performed on a contingency table of 1PAT/control vs. BGC presence/absence. Filtering to an FDR q < 0.15 yielded 22 uncharacterized BGCs enriched

in 1PAT vs. control mice, and an Enterococcus polysaccharide pathway, indicated by ‘*’. Similarity-based clustering using custom Python and C code

collapses the 22 uncharacterized BGCs to three functional groups (indicated in table by color) annotated to the family Enterobacteriaceae, encoding

putative aryl polyene, NRPS (nonribosomal peptide synthetase), and siderophore pathways. [See also Figure 2—figure supplements 1–11, and

Supplementary file 1].

DOI: https://doi.org/10.7554/eLife.37816.006

The following source data and figure supplements are available for figure 2:

Source data 1. Values of alpha diversities and beta diversities.

DOI: https://doi.org/10.7554/eLife.37816.018

Figure supplement 1. Fecal and cecal microbiota characteristics of 1PAT and control male and female NOD mice.

DOI: https://doi.org/10.7554/eLife.37816.007

Figure supplement 2. Cecal microbiota characteristics of male and female control and PAT NOD mice.

DOI: https://doi.org/10.7554/eLife.37816.008

Figure supplement 3. Fecal microbiota characteristics of male and female NOD mice in 1PAT and control groups in early life.

DOI: https://doi.org/10.7554/eLife.37816.009

Figure supplement 4. Ileal microbiota characteristics of male and female control and PAT NOD mice.

DOI: https://doi.org/10.7554/eLife.37816.010

Figure supplement 5. Microbiota characteristics of 3PAT and control NOD mice in early life.

DOI: https://doi.org/10.7554/eLife.37816.011

Figure supplement 6. Microbiota characteristics of male and female NOD mice in 3PAT and control groups in early life.

DOI: https://doi.org/10.7554/eLife.37816.012

Figure supplement 7. a-diversity in males across the 1PAT and 3PAT experiments at P21-P49.

DOI: https://doi.org/10.7554/eLife.37816.013

Figure supplement 8. Metagenomic analysis of microbiota characteristics of 1PAT and control NOD mice in early life.

DOI: https://doi.org/10.7554/eLife.37816.014

Figure supplement 9. Metagenomic analysis of microbial pathways in fecal samples differing by treatment and by sex.

DOI: https://doi.org/10.7554/eLife.37816.015

Figure supplement 10. Heat maps of the correlation of the representation of fecal metagenomic pathways at P21.

DOI: https://doi.org/10.7554/eLife.37816.016

Figure supplement 11. Biosynthetic gene cluster (BGC) frequencies in 1PAT and control samples at P21 and P49.

DOI: https://doi.org/10.7554/eLife.37816.017
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remained when considering 1PAT males at P21 independent of controls, but did not reach signifi-

cance, likely due to the reduced sample size (Figure 2—figure supplement 10B,C). These relation-

ships were not seen in the control-only analysis.

Since secondary metabolites are bioactive small molecules affecting microbial community struc-

ture and/or host physiology (Dorrestein et al., 2014; Sharon et al., 2014), we then asked whether

the metagenomic analysis could also identify biosynthetic gene clusters (BGCs) encoding signifi-

cantly differential secondary metabolites. Using an accelerated optimal gapped alignment algorithm,

we mapped the metagenomic reads against a BGC database and identified 228 BGCs with high

rates of within-sample metagenomic coverage. The number of BGCs per sample varied widely (Fig-

ure 2—figure supplement 11), and alone did not significantly distinguish 1PAT in male or female

mice (p>0.05, Mann Whitney U test). Then asking whether the presence of particular BGCs were dis-

tinguishing at the earliest time point, P21, we found 23 BGCs significantly enriched in 1PAT male

mice (Figure 2E). One enriched BGC mapped to a polysaccharide product in the MIBiG database,

and is produced by Enterococcus species (Medema et al., 2015; Xu et al., 1998). Clustering the

other 22 uncharacterized BGCs by sequence homology (Rashidi et al., 2018; Shields-Cutler et al.,

2018b), collapsed them to three functional units predicted to produce a triscatecholate siderophore

biosynthesis pathway member, a siderophore secondary metabolite, and an arylpolyene, all anno-

tated to the family Enterobacteriaceae. In total, these studies indicate a directional (not substitu-

tional) effect of PAT on the metabolite profiles as detected by metagenomic analyses, and are

consistent with changes in taxa that were independently identified in the analysis of 16S relative

abundances.

To determine whether the altered metagenome affects important microbial products, we exam-

ined production of seven short chain fatty acids (SCFA) in cecal samples at P23 and P42. At P23, the

1PAT mice had significantly reduced levels of butyric and propionic acid (p<0.05 for both) compared

to controls (Figure 3A); none of the other SCFAs were significantly different. By P42, there no longer

were significant differences in any of the tested SCFA (data not shown). Thus, antibiotic exposure,

by altering the taxonomic and metagenomic composition, reduced two important host-signaling

microbial metabolites in early life.

PAT affects host metabolism
We next asked whether the 1PAT-altered microbiome affected host metabolic phenotypes. Using

samples obtained from P15 to P42, we identified 30 metabolites that were significantly different

between 1PAT and control in serum, and 12 in liver (Figure 3B and Supplementary file 2). These

included three metabolites (uracil, citric acid, and isoleucine) at significantly higher levels in both

serum and liver, and a fourth (valine) that was less abundant in hepatic samples from both the P23

and P42 PAT-exposed mice. The altered amino acid levels, consistent with the metagenomic repre-

sentation of amino acid biosynthetic pathways (Supplementary file 1), provide direct evidence that

the PAT-altered microbiome produces a metabolic signal that is transduced into the host.

Developmental differences in intestinal gene expression by sex
Given that 1PAT altered microbial populations and taxa, microbial genes, and metabolites, we next

asked how 1PAT affects the microbial interaction with host tissues that led to accelerated T1D. We

focused on the immunologically active ileum since our prior 3PAT studies showed altered gene

expression in the NOD mouse ileum, and that immunological effects could be transferred to recipi-

ent mice only using the perturbed microbiome (Livanos et al., 2016). Further, experiments in

C57BL/6 mice confirmed that a 1PAT-altered microbiome is both necessary and sufficient for such

immunological changes (Ruiz et al., 2017).

We began by characterizing ileal gene expression in P2 pups, asking how males and females dif-

fer in earliest life, prior to antibiotic exposure. Bray-Curtis analysis of RNA-Seq data indicated that

ileal gene expression profiles are distinct at a global level between male and female P2 mice, and

significantly differed from P12 (Figure 4A and Figure 4—figure supplement 1). At P2, we identified

the ~1500 genes that comprised the significant sex-specific differences (Figure 4B), including KEGG

pathways involved in the mTOR, MAPK, B cell receptor, and T cell receptor signaling. These sex-spe-

cific differences at post-natal day 2, preceding any antibiotic exposure, may provide an important
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opportunity in future studies to better understand the basis of the T1D sex dimorphism in NOD

mice before puberty.

Figure 3. Effect of 1PAT on early-life metabolism. (A) Quantitation of six short chain fatty acids (SCFA) in P23 cecal

samples. Samples were examined by targeted GC/MS; formic acid was not detectable (not shown). Groups:

Control (n = 7), 1PAT(n = 6), compared by Welch’s T Test for unpaired samples (*p<0.05). (B) Hepatic and serum

metabolites differentially induced by 1PAT. Analysis based on significance at � 2 time points or in both serum and

liver in the same direction (n = 7–17 samples per group) [See also Supplementary file 2].

DOI: https://doi.org/10.7554/eLife.37816.019

The following source data is available for figure 3:

Source data 1. Values of concentrations of six short chain fatty acids.

DOI: https://doi.org/10.7554/eLife.37816.020
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Figure 4. 1PAT effects on ileal gene expression from P2 to P23, based on RNA-Seq analysis. (A) Bray-Curtis analysis of ileal gene expression of pups at

P2 and P12 (2 days after PAT), represented by PCA. All differences between expression at P2 and P12 (in both 1PAT and control mice) were significant

in both males and females (p<0.05). (B) Differential ileal gene expression between P2 males and females; volcano plot indicates 1514 genes with

significantly different expression. DESeq2 difference visualization maximizes at 15 (-log10 (adjusted p values)). (C) Ileal KEGG pathways altered by 1PAT

Figure 4 continued on next page
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Microbial perturbations affect the maturation of early-life gene
expression in the ileum
Next, we examined mice at P12 to assess the maturation of gene expression (defined as the signifi-

cant differences compared with P2), and the effects of PAT on that maturation. At a global level, the

expression profiles were significantly different between PAT and control in both males and females

(Figure 4A); thus by P12, the antibiotic effects on the microbiome were already being transduced

into the tissues. As expected with normal development, expression of several thousand genes signif-

icantly changed in the control mice from P2 to P12, however, in the mice receiving PAT between

P5–10, ~17% of the differences were lost in males and ~21% in females (Figure 4—figure supple-

ment 1). KEGG analysis of the male mice highlighted significant changes between PAT and control

in cell adhesion molecules, cytokine–cytokine receptor interaction, T cell receptor signaling, B cell

receptor signaling, intestinal immune network for IgA production, and leukocyte transendothelial

migration. (Figure 4C).

By P23, we found striking differences between males and females; in males, 1511 ileal genes

showed significant differential expression between PAT and control vs. only 124 in females, a 12.2-

fold difference (p<0.001) (Figure 4D, Figure 4—figure supplement 2 and Supplementary file 3).

Thus, in a functional sense, the female ileum had greater resilience against the same microbiological

perturbation (Figure 2—figure supplement 9). In the males, the genes that had significantly

reduced expression included Nos2, Saa1, Runx1, and Muc4, all involving host defenses (see below).

By P42, nearly half of the significant differences in males between 1PAT and controls were lost; nev-

ertheless, 32 days after the antibiotic exposure had ended, there remained abnormal expression of

hundreds of ileal genes (Figure 4—figure supplements 2 and 3). Thus, RNA-Seq studies indicated a

broad effect of the microbiome changes on the maturation of early-life intestinal gene expression,

with asymmetric effects in males and females, consistent with their differential development of accel-

erated T1D later in life.

Maturation of ileal genes and pathways related to immunity and
inflammation
Since RNA-Seq provided a global assessment of ileal gene expression, we next sought to focus on a

specific subset of 547 genes related to inflammation and immunity as captured on the NanoString

nCounter mouse immunological assay (Figure 5). First, Bray-Curtis distance matrix analysis indicated

strong and directional age-related effects from P12 to P42 (Figure 5A), independently confirming

and extending the RNA-Seq findings indicating maturation of gene expression. Using the time-series

of samples, we compared the age-associated normal (control) immune/inflammatory gene expres-

sion with that after the brief PAT exposure. The period from P12 to P23 was more developmentally

dynamic than that from P23 to P42, consistent with the broader RNA-Seq findings (Figure 5—figure

supplement 1 top panel). However, although the number of genes with changed expression status

in the 1PAT mice was similar to control (Figure 5—figure supplement 1 bottom panel), many of the

maturing genes differed. As such, we defined five classes of ileal immune expression maturation

Figure 4 continued

in P12 males; 23 significant pathways (adjusted p<0.05, after Benjamini-Hochberg correction), bars indicate numbers of differentially affected genes/

pathway. (D) Differential ileal gene expression in 1PAT and control P23 females (left) and males (right) shown by volcano plot. In females, 124 genes (55

up-, 69 down-), and in males, 1511 genes (518 up-, 993 down-) were significantly differentially expressed, a 12.2-fold difference between the sexes.

n = 4, 3, and 6–7 mice per group, at P2, P12, and P23, respectively. [See also Figure 4—figure supplements 1–3, and Supplementary files 3 and 4].

DOI: https://doi.org/10.7554/eLife.37816.021

The following figure supplements are available for figure 4:

Figure supplement 1. Differential ileal gene expression maturation between P2 and P12 in control and PAT mice, as shown in volcano plots.

DOI: https://doi.org/10.7554/eLife.37816.022

Figure supplement 2. Unsupervised hierarchical clustering of significantly differential genes in P23 1PAT and control mice as assessed by RNA-Seq,

and shown on heat maps.

DOI: https://doi.org/10.7554/eLife.37816.023

Figure supplement 3. Effect of 1PAT on ileal gene expression profiles in 1PAT and control male mice at P42, showing an unsupervised hierarchical

clustering of all significantly differential genes.

DOI: https://doi.org/10.7554/eLife.37816.024
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Figure 5. 1PAT effects on ileal immune gene expression in NOD mice, as evaluated by NanoString. (A) Bray-Curtis analysis of ileal gene expression of

pups, over time (P12, P17, P23 and P42). (B) Comparison of ileal gene expression in1PAT and Control NOD males, defining five classes of genes

maturing between P12 and P42. I. Maturing in Control mice; II. Maturing in 1PAT mice; III. Maturation that is resistant to 1PAT; IV. Maturation that is

altered by 1PAT; and V. Maturing exclusively in1PAT mice (dysmaturation). Arrows indicate direction of maturation of expression from P12 to P42, and

Figure 5 continued on next page
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(Figure 5B), including genes that significantly matured in: (I). Controls; (II). after 1PAT; (III). matura-

tion was resistant to 1PAT; (IV). maturation was altered by 1PAT; or (V). represented a new pattern

of 1PAT-induced maturation (dysmaturation). Such a classification strategy may have general utility

in interpreting data from global genetic approaches in other models involving developmental

perturbations.

Using these individual gene-level expression differences to understand which KEGG pathways

were differentially affected by 1PAT permitted identification of important innate pathways,

for example, Toll-Like Receptor (TLR) signaling (Figure 5C). Although the changes induced by PAT

were widespread, analyses also indicated effects, for example, on pathways involved in NOD-like

receptor signaling and Th17 cell differentiation (Figure 5—figure supplements 2 and 3).

Microbial perturbations affect specific genes related to host responses
Next, to confirm and extend these broad RNA-Seq and NanoString observations, we explored indi-

vidual genes of particular interest at the host-microbial interface. Using qPCR studies to validate

the global findings, we found that in the PAT mice, expression was reduced for genes encoding

four of the five transcription factors regulating the inducible nitric oxide synthase (Nos2), for Nos2

itself, and the related Calm3 (Figure 6A). Runx1, an early life transcription factor showed reduced

expression with PAT, as did two of its downstream genes (Foxp3 and Cd3g) that are involved in

the development of adaptive immunity (Figure 6B), but effects on the innate Saa genes were

bimodal over time (Figure 6—figure supplement 1A). There was marked reduction of expression

of the two major genes involved in intestinal mucin synthesis (Muc2 and Muc4) (Figure 6—figure

supplement 1B). Ido1, encoding indoleamine 2,3-dioxygenase, the key enzyme catalyzing trypto-

phan catabolism along the kynurenine pathway and having a major role in immune modulation by

mediating T-cell inhibition depending on bone marrow stromal cell activation (Meisel et al., 2004;

Munn and Mellor, 2013), showed reduced expression with PAT (Figure 6—figure supplement

1C). The RT-qPCR studies confirmed the gradual normalization of most but not all of the candidate

genes (Figure 6A,B and Figure 6—figure supplement 1). In total, these studies provide evidence

that the 1PAT-altered microbiota interferes with immune pathways during a critical developmental

window.

PAT regulation of histone post-translational modification states
Based on the strong 1PAT-induced differences in early life intestinal gene expression, including tran-

scription factors, we next considered an epigenetic basis for the changes. We examined global his-

tone post-translational modification (PTM) states to assess whether differential chromatin regulation

contributes to the enhanced T1D phenotypes in the 1PAT-exposed male mice. We focused on ileum

and liver, based on the 3PAT-induced sex-specific differences in ileal gene expression

(Livanos et al., 2016), on the effect of the early-life antibiotic exposure on gene expression and

metabolism we report here, and on prior identification of robust gut microbiota-driven global

changes in intestinal and hepatic histone PTM states (Krautkramer et al., 2016). Measuring 65

Figure 5 continued

number of genes affected. (C) Differences in Toll-like receptor signaling pathway genes between 1PAT and control males maturing from P12 to P23,

based on KEGG pathway analysis. Boxes filled with blue indicate that gene expression significantly decreased in controls during maturation from P12 to

P23; filled with red indicate significant increases; Blue and red circles indicate significant decreases or increases, respectively, in the 1PAT mice. Black

circles indicate that the significant change in controls was lost in 1PAT mice. All significance testing performed by Fisher’s exact test with the

Benjamini–Hochberg correction. [See also Figure 5—figure supplements 1–3].

DOI: https://doi.org/10.7554/eLife.37816.025

The following figure supplements are available for figure 5:

Figure supplement 1. PAT effect on the maturation of ileal immune gene profiles in male NOD mice, as assessed by NanoString nCounter assays and

shown on heat maps.

DOI: https://doi.org/10.7554/eLife.37816.026

Figure supplement 2. Differences in NOD-like receptor signaling pathway between PAT and control males maturing from P12-P23.

DOI: https://doi.org/10.7554/eLife.37816.027

Figure supplement 3. Differences in Th17 cell differentiation pathway between PAT and control males maturing from P12 to P42.

DOI: https://doi.org/10.7554/eLife.37816.028
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Figure 6. Differential effects of 1PAT on transcription of specific ileal genes in P12 to P42 mice, as determined by RT-qPCR, and microbe-host gene

expression interactions. (A) Transcription of the inducible nitric oxide synthase gene Nos2 and its upstream transcription factor genes Stat1, Nfkb1,

Figure 6 continued on next page
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acetylated and methylated histone PTM states at P23, we found differential effects between PAT

and control (Supplementary file 5), but notably greater effects in males than females (Figure 7),

consistent with both the differences in gene expression and the T1D phenotypic enhancement. The

PAT effects on hepatic chromatin were more robust than for the ileum (Figure 7A), with greater

responses again in males than in females (Figure 7B). Further, the RNA-Seq studies from the P23

male mice showed dysregulated expression of histone modifying genes including anti-silencing his-

tone chaperone Asf1b, and HADC-binding transcription factors Mier1 and Mier3. These results, in

conjunction with the altered SCFA production (affecting transcription of multiple histone-modifying

genes (Krautkramer et al., 2016; Terova et al., 2016), provide a further connection between the

PAT-altered microbiota and the altered intestinal gene expression.

PAT-induced changes in adaptive immunity
Given that T1D involves immune-mediated destruction of pancreatic islets, we next asked whether

the 1PAT-altered microbiome and its downstream effects on metabolism and innate immunity had

differential effects on adaptive immune mediators. First, we examined whether there might be differ-

ential B-cell effects between PAT and control Assessing fecal IgA levels, we found consistent

decreases at least to P70 in both the PAT-exposed males and females (Figure 8A), with findings par-

alleling those observed in C57BL/6 mice (Ruiz et al., 2017). To assess changes in other immunologi-

cal loci, lymphocytes of the pancreas, and spleen were immunophenotyped in P42 PAT and control

mice, after many innate differences had normalized, but still prior to the insulitis observed at P70. In

the spleen, there were increased frequencies of CD62L+ CD4+ and CD62L+ CD8+ T cells

(Figure 8B), indicating that the PAT-induced changes systematically increase the pool of naı̈ve T cells

in early life and decrease T cell differentiation. The 1PAT mice had greater numbers of B cells in the

spleen and pancreas compared with controls (Figure 8B). These results indicate that following PAT,

there are altered frequencies of adaptive immune cells downstream of the intestine in the spleen

and in the target organ (pancreas), preceding T1D development. Differences in absolute count of

lymphocytes were not observed in T cells or B cells, indicating there were no changes in lymphocyte

quantity (data not shown). However, the change in frequency of naive and activated T cells suggests

that the observed differences in the systemic differentiation of these cells does not impact total

cellularity.

PAT exposure creates an alternative network of microbial-host gene
expression interactions
To more directly examine the relationship of microbiota changes with differential gene expression,

we studied 43 ileal immune genes significantly differing in expression at P23 between 1PAT and con-

trol (Supplementary file 6) in relation to the 15 differentially represented taxa (Figure 2C).

Figure 6 continued

Hif1a, Crebbp, and Irf1, as well as Nos2 partner Calm3. (B) Transcription factor Runx1 and its downstream immune genes Foxp3 and Cd3g. n = 10 ~22

samples per group, and mean values with STDEV were shown. Statistical significance determined by the Mann Whitney test. *p<0.05; **p<0.01;

***p<0.001; and ****p<0.0001. (C) CompPLS framework selecting significant associations identified differential taxa and ileal gene expression in P23

male mice. The 43 immune genes profiled by NanoString were selected as the targeted significantly differential genes, and the model found 31 (72%).

Red and gray edges indicate negative and positive model-selected associations, respectively. Edge width in the network indicates statistical

significance as derived from empirical p values after bootstrapping. Node sizes are scaled to the mean relative abundance for each taxon, and color-

coded by OTU family. [See also Figure 6—figure supplements 1–3 and Supplementary files 3 and 4].

DOI: https://doi.org/10.7554/eLife.37816.029

The following source data and figure supplements are available for figure 6:

Source data 1. Relative expression values for 10 ileal genes.

DOI: https://doi.org/10.7554/eLife.37816.033

Figure supplement 1. Differential effects of PAT on Saa, mucin genes, and Ido1 expression, as determined by RT-qPCR.

DOI: https://doi.org/10.7554/eLife.37816.030

Figure supplement 2. Significant associations of intestinal taxa with 31 strongly differentially expressed ileal genes in P23 PAT mice.

DOI: https://doi.org/10.7554/eLife.37816.031

Figure supplement 3. Changes in ileal Egf expression with age, either alone or as a ratio to Egfr.

DOI: https://doi.org/10.7554/eLife.37816.032
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Figure 7. Effect of 1PAT on tissue-specific histone PTM state in P23 mice. (A) Fold-change (log2) of 65 unique

histone PTM states in male (M) and female (F) ileal and hepatic tissues. Statistical significance determined by

Welch’s t test (n = 4–5 mice per group). *p<0.05, **p<0.01, and ***p<0.001. (B) Summation of significantly altered

Figure 7 continued on next page
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CompPLS modeling (Ramanan et al., 2016) indicated that 31 (72%) genes differentially expressed

after 1PAT exposure were significantly correlated with the differential taxa (Figure 6C), creating a

model of the interactions between the dominant differentiating microbial taxa and the affected

intestinal genes. The patterns of connections between taxa and ileal gene expression in males and

females markedly differed (Figure 6—figure supplement 2), consistent with the phenotypic differ-

ences. Particular taxa had relationships across a conserved group of specific families of host genes

(Figure 6—figure supplement 2). This analysis linked the effects of 1PAT on the microbiota with the

downstream ileal gene expression, and separating the males and females.

Discussion
Our prior studies in C57/Bl6 mice that show that PAT has no effect on gene expression in the

ileum in the absence of a microbiota (Ruiz et al., 2017) indicate that the ileal gene expression

effects we observed in the PAT-exposed mice were due to the microbiota/metagenemic shifts and

were not direct antibiotic effects. We now show in NOD mice that the gut microbiome was sub-

stantially remodeled by a single early-life PAT exposure, losing diversity without recovery over the

entire window relevant to the development of auto-immunity, and with selection for taxa that may

be highly metabolically active. One hypothesis to explain the heightened auto-immunity is that

reduced diversity of the gut microbiome compromises the ability to control metabolically active

opportunistic bacteria. Such organisms, as represented by the short list we identified (Figures 2C

and 7), might dysregulate early-life immune responses. Alternatively, the loss of particular benefi-

cial organisms that participate in normal host metabolic and immune maturation, for example,

through stimulating mucus production, might trigger the pathogenic pathway. These hypotheses

are not exclusive, and rather may be ecologically linked, as suggested by our network model

(Figure 9).

This study revealed a small consortium of pathobionts (Enterococcus, Blautia, and Enterobacteria-

ceae species) with consistently increased relative abundances in the PAT-exposed male mice that

developed accelerated T1D. Akkermansia, a taxon that has been inversely correlated with obesity,

inflammation, and metabolic syndrome (Cani and de Vos, 2017), also is present in increased relative

abundance in PAT-exposed male mice. The significant overrepresentation of these four taxa in both

1PAT and 3PAT mice confirms their prior disease-association using the same model in a different

mouse facility (Livanos et al., 2016), and they also have been linked to pathological processes in

other intestinal microbiome studies (Hänninen et al., 2018; Kim et al., 2017; Minter et al., 2017):

(i), Enterococcus species, common in both the human and murine gut, secrete products that alter

host immune responses through NFkB/TLR pathways (Tien et al., 2017), perturb other commensals

(Fisher and Phillips, 2009), translocate to the liver, inducing autoimmunity, including autoantibodies

(Manfredo Vieira et al., 2018), and also induce infiltration of CD42+ MPO+ cells into the rat pan-

creas (Korsgren et al., 2012); (ii), Children who later developed T1D have had altered gut micro-

biota representation of Blautia (Murri et al., 2013; Qi et al., 2016); (iii), Akkermansia mucinophila,

intestinal mucin-degrading bacteria, may modulate host innate immunity (Derrien et al., 2011,

2004), including endocannabinoids, affecting inflammation, gut barrier permeability and peptide

secretion (Everard et al., 2013). Long-term exposure of older female NOD mice to vancomycin

identified Akkermansia as a T1D-protective taxon (Hansen et al., 2012), but that experiment dif-

fered substantially from ours; (iv), in our model, an Enterobacteriaceae taxon other than E. coli was

induced by 1PAT across P21 to P49, consistent with identification of an unclassified Enterobacteria-

ceae member as the most significantly increased taxon in T1D children compared to healthy controls

(Soyucen et al., 2014). Enterobacteriaceae induce innate immune responses via Toll-like receptor 4

(TLR4) (Tapping et al., 2000; Vasselon and Detmers, 2002), which was dysregulated by PAT pertur-

bation (Figure 5C). Enhanced TLR responses to the Enterobacteriaceae could propagate immunopa-

thology, consistent with microbiota regulating T1D development through MyD88-dependent TLRs

Figure 7 continued

histone peptides in male and female ileum and liver; significance determined by Chi square analysis. *p<0.05. [See

also Supplementary file 5].

DOI: https://doi.org/10.7554/eLife.37816.034
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Figure 8. Effect of 1PAT on host immune responses. (A) Fecal IgA levels in male and female NOD mice in 1PAT or control groups from P28 to P70, as

determined by ELISA. Statistical significance, comparing 1PAT and control (n = 20–25 samples per group) was determined by the Mann Whitney test.

*p<0.05; **p<0.01; ***p<0.001. (B) Flow cytometric analysis of immune cells of P42 NOD mice. 1PAT treatment significantly increased proportions of

splenic memory T cells (both CD4+ CD62L+ and CD8+ CD62L+ cells) and B cells, especially in females (data not shown), and increased the proportion of

Figure 8 continued on next page
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(Burrows et al., 2015). Biosynthetic gene cluster (BGC) analysis from the metagenomic sequencing

revealed several enriched secondary metabolite pathways in 1PAT mice which map to an Enterococ-

cus polysaccharide pathway, which could affect host immune responses (Teng et al., 2002;

Xu et al., 1998), and also the Enterobacteriaceae siderophores, aryl polyenes, and NRPS family

products (Figure 2E). Bacterial siderophore and related transition-metal scavenging responses are

often associated with pathobiont organisms and activity, and have been shown to be important

mediators of bacterial community structure and of bacterial persistence within human hosts during

infection. Furthermore, certain bacterial siderophores interact with the immune defense and

Figure 8 continued

B cells in the pancreas (in both males and females). Statistical significance, comparing 1PAT and control (n = 10–12 samples per group) was determined

by the unpaired T test. *p<0.05; **p<0.01; ***p<0.001.

DOI: https://doi.org/10.7554/eLife.37816.035

The following source data is available for figure 8:

Source data 1. IgA ELISA and flow cytometry data.

DOI: https://doi.org/10.7554/eLife.37816.036

Figure 9. Proposed model of how a single early-life antibiotic course can perturb the microbiota/metagenome/metabolome leading to dysregulated

intestinal innate and adaptive immunity to accelerate T1D in NOD mice. For differences in maturation of gene expression, see Figure 5C legend.

DOI: https://doi.org/10.7554/eLife.37816.037
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immunomodulatory protein Lipocalin 2 in mice and humans, and could be relevant for normal

immune development and tolerance (Berard et al., 2012; Raffatellu et al., 2009). Enterobacteria-

ceae (e.g. E. coli) aryl polyenes protect bacteria from oxidative stress from immune cells during colo-

nization (Cimermancic et al., 2014), which could interfere with bacteria-host interaction and immune

development. NRPS family products are broad in structure but include metabolites with demon-

strated anti-inflammatory and immunosuppressant activity such as cyclosporin A (Felnagle et al.,

2008). The small pathobiont consortium found to bloom in this study has many requisite features for

T1D immunopathogenesis.

We also identified S24-7, Clostridiales, Oscillospira, Ruminococcus, and Anaeroplasma as taxa

that were potentially protective against enhanced T1D. Unclassified Bacteroidales of the S24-7 family

were associated with T1D protection in this study, in our prior 3PAT model in male NOD/ShiLtJ mice

(Livanos et al., 2016), and in studies in female NOD/BomTac mice (Krych et al., 2015). The under-

represented Anaeroplasma in PAT is consistent with the recent report that in NOD mice, this genus

also was under-represented in the gut of those with low-diabetes-frequency compared with those at

high-diabetes-frequency (De Riva et al., 2017). Prior findings related to Clostridia, Oscillospira, and

Ruminococcus were less consistent (Krych et al., 2015). In total, our findings support the hypothesis

that by selectively diminishing particular (beneficial) taxa, PAT exposure permits emergence of a less

diverse microbiota (Figure 2B), dominated most likely by highly metabolically active host-interactive

taxa.

Male and female NOD mice, even from the same litter, have substantially different T1D rates

(Markle et al., 2013), and differing immune response profiles (Bao et al., 2002). Sex-specific differ-

ences in intestinal gene expression profiles present at P2, prior to any antibiotic exposure, provide

one explanation for the differential disease rates. We found that the signals from the 1PAT-altered

microbiome are differentially transduced in the intestinal tissues of sibling male and female mice,

despite their same mothers, diet, mouse facility, and microbiome composition. The very high rate of

T1D development in the control females may have fully saturated the major pathogenetic pathway.

The histone, RNA-Seq, and NanoString-based analyses clearly indicate that young male and female

NOD mice differ in their responses to the same PAT-induced gut microbiome perturbations. Our

studies of early life sex-specific ileal gene expression differences provide opportunities to better

understand the sex-based differences in autoimmune disease pathogenesis, extending other recent

work (Thion et al., 2018).

Exposure to 1PAT decreased the total numbers of genes maturing in both early life males and

females, disproportionately affecting those involved in innate and adaptive immune pathways,

including those in Toll-like receptor (TLR) signaling, NOD-like receptor signaling, and Th17 cell dif-

ferentiation; each of these pathways have been implicated in prior T1D studies (Burrows et al.,

2015; Lien and Zipris, 2009; Livanos et al., 2016; Wen et al., 2008). Th17 roles in NOD mice are

not clear-cut; blocking Th17 generation successfully inhibited T1D development (Lee et al., 2013),

while inducing Th17 cells with particular gut microbiota protected from T1D development in the

same animal model (Bedoya et al., 2013). Our study revealed that multiple components of the Th17

pathway are dysregulated in opposing directions, indicating the complexity of this immunological

pathway in the disease phenotype.

The pro-inflammatory serum amyloid protein A (SAA) is significantly induced in T1D patients

(Zhi et al., 2011). The biphasic response of Saa1 to the microbiota changes that we observed may

reflect the dominance of highly host-interactive organisms early, and the altered innate signaling

pathways later. Perturbation of the mucin layer, a major barrier to the interaction of the microbiota

with intestinal cells has been associated with intestinal diseases (Crost et al., 2016;

Rokhsefat et al., 2016; Tailford et al., 2015). Nos2 is critical for cellular signaling and immune

defense responses (Bogdan, 2015), since NO activates Th1 phenotypic responses, regulates anti-

inflammatory pathways, and mediates tissue restoration (Wink et al., 2011). Nos2 expression,

down-regulated early in 1PAT recipients, may be a good sensor of intra-luminal events, transducing

the microbial signals to downstream host functions (Atarashi et al., 2015).

Given that binding of Epidermal Growth Factor (EGF) to the EGF receptor (EGFR) subsequently

activates multiple signaling pathways—including PAR2, TLR, Ras/MARK, PI3K/AKT and STAT—

which regulate the intestinal barrier and permeability (Good et al., 2012; Tang et al., 2016;

Wang et al., 2015), we examined their maturation with age, and the effects of sex and PAT expo-

sure on expression. Egfr expression was tightly conserved across the 47 specimens examined from
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P2 to P23 (relative Mean expression 4.37 ± 0.62 � 10–5). Very young (P2) males had significantly

higher levels of Egfr expression than young females. Subsequently, all rates normalized by P12 and

thereafter (Figure 6—figure supplement 3A). For Egf, levels did not significantly differ according

to treatment or sex (Mean 1.95 ± 0.58 � 10–6), but diminished between P12 and P23 (Figure 6—

figure supplement 3B). Findings were similar if Egf was examined as a ratio in relation to EgfR

(Figure 6—figure supplement 3C). Thus, we observed that there is a very early in life (P2)

increased level of Egf in males, with rapid normalization, but that Egf levels significantly fell with

weaning. Egfr is an example of a gene with sex-specific early life expression differences. In con-

trast, Egf is a gene whose expression in the ileum undergoes age-related changes, but which are

independent of both sex and treatment effects [Class III (PAT-resistant) in Figure 5B]. Given that

Egfr affects tight junctions and adherence in the colon (Basuroy et al., 2005), the fall at weaning

could explain later bacterial translocation and downstream immunological effects. In total, the

altered expression of the identified/validated 1PAT-dysregulated genes may participate in the sub-

sequent intestinal immune system dysmaturation.

The histone modification data are consistent with the dysregulation of ileal gene expression in

this and our prior study (Livanos et al., 2016). The histone data also are in line with sexual dimor-

phism in how the gut microbiota communicate early-life environmental exposures to host chroma-

tin (Figure 7B), consistent with both the disease risk dimorphism (Yurkovetskiy et al., 2013), and

the early-life transcriptional phenotypes we observed. To link 1PAT-induced changes in global his-

tone PTMs to genomic loci and ultimately to downstream effects on gene expression, both the

GEO (Gene Expression Omnibus) (Barrett et al., 2013; Edgar et al., 2002) and ENCODE (ENCy-

clopedia Of DNA Elements) (ENCODE Project Consortium, 2012) repositories were mined for

publicly available ChIP-seq data sets targeting either histone H3 K36me2 or acetylated histone H4,

and most specifically histone H4 K16ac. These modifications were selected for further analysis due

to the relatively high magnitude of differences and sex-specificity of responses at these sites (Fig-

ure 7, Supplementary file 5). For histone H3, the variant histone H3.3, and histone H4 provide an

unsupervised and global assessment of common PTMs. In the male 1PAT ileum, there was a mod-

est but statistically significant decrease in acetylation of histone H4 and a concomitant increase in

abundance of unmodified histone H4 compared to controls, suggesting that 1PAT leads to a net

loss of acetylated H4. These results are consistent with our previous observations in the C57BL/6

proximal colon that the gut microbiota induces histone acetylation (Krautkramer et al., 2016),

suggesting that 1PAT exposure decreases key microbial populations important for this chromatin

response. There also were significant decreases in H3 K27me1 K36me1, H3 K27un K36me1, and

H3 K27un K36me2 peptides in 1PAT ileum relative to controls (Figure 7A). Importantly, and in con-

trast, the effects of 1PAT in the female ileum were minimal (Figure 7B). Coupled with the differen-

tial gene expression asymmetry between male and female mice, both a priori (P2) and PAT-

induced, these studies link epigenetic changes with the differential disease phenotypes. Similar to

the chromatin signatures in male ileum, the 1PAT exposure resulted in hepatic hypoacetylation of

histone H4 and hypomethylation of histone H3 K36-containing peptides in males and females and

a concomitant increase in the abundance of peptides containing highly methylated H3K27

(Figure 7A). Acetylation of histone H4 and methylation of H3K36 are both associated with active

transcription, whereas methylation of H3K27 is associated with transcriptional repression

(Pasini et al., 2010; Robinson et al., 2008; Zhao and Garcia, 2015). Other search parameters

explored include limiting data to those samples from either mouse or human origin and either

intestine or liver tissues or cell lines (including primary cultures or transformed cell lines). However,

this search returned no publicly available data sets that met these criteria, precluding further

analyses.

Since SAA can induce expression of Jmjd3 (Kdm6b), a histone H3 lysine 27 (H3K27) demethylase,

reducing H3K27 trimethylation (Yan et al., 2014), Saa dysregulation by PAT-induced microbiome

perturbation may alter epigenetic status in early life (Figure 7 and Figure 6—figure supplement 1).

H3K27 methylation is associated with repression of both Runx1 through enhancer of zeste homolog

2 EZH2 (Takayama et al., 2015), and iNOS (Dreger et al., 2016). Thus, our observation that histone

H3K27me3K36me2 (K27 trimethylation) was > 2 fold up-regulated by 1PAT while histone H3K27un

(unmodified) was significantly down-regulated (Figure 7A) is consistent with the RNA-Seq and RT-

qPCR analyses showing early up-regulation of Saa and down-regulation of Nos2 and Runx1 in the

1PAT male mice (Figure 6A,B, Figure 6—figure supplement 1A, and Supplement file 3).
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Finding 1PAT-reduction of cecal butyric acid confirmed our prior result with 3PAT

(Livanos et al., 2016). By inhibiting histone-modifying genes in intestinal cells, SCFAs including

butyrate, affect epigenetic status and thus gene expression (Fellows et al., 2018;

Schilderink et al., 2013); the transcriptional analyses we performed provide direct evidence of

such dysregulation. Diminished butyrate levels are consistent with the decreased ileal Runx1 and

Foxp3 expression that we observed, which could differentially shift T-helper cell maturation away

from Treg-cells (Furusawa et al., 2013; Geuking et al., 2013; Smith et al., 2013). Our analyses

show that antibiotic-induced gut microbiome remodeling reduced intestinal SCFA levels, dysregu-

lated histone PTM status, and repressed mucin genes- all of which contribute to perturbing innate

intestinal immunity development. Since butyrate and propionate both increase histone H3 and H4

acetylation and H3 methylation, affecting the Muc2 promoter and increasing Muc2 mRNA levels

(Burger-van Paassen et al., 2009), the low levels we observed are consistent with the decreased

Muc2 expression.

In total, our investigation suggests the following model to explain the 1PAT effects on T1D in the

male NOD mice (Figure 9). Antibiotic administration in early life selected for particular intestinal

microbial populations, continuing weeks after the antibiotic stopped, including small groups of sig-

nificantly over- and under-represented taxa. Changes in the representation of these taxa, especially

those predicted to have highly active metabolism and thus host-interaction, can initiate the primary

events in the disease enhancement. The altered microbial populations and their products, including

SCFAs, differentially interact with ileal epithelial cells, affecting histone modification, and changing

gene expression and its normal maturation. The downstream effects on specific innate genes and

pathways and the metabolic changes would then influence how adaptive immunity develops.

Together, the broad cascade of events altering the expression of specific host genes and pathways

appears sufficient to trigger and accelerate T1D in males.

These studies contribute to a growing body of evidence on the effects of early life antibiotic

exposures in mouse models of disease (Cox et al., 2014; Nobel et al., 2015; Ruiz et al., 2017;

Schulfer et al., 2018), and particularly of T1D (Candon et al., 2015; Livanos et al., 2016;

Pearson et al., 2016), and are consistent with some (Pflüger et al., 2010; Yallapragada et al.,

2015), but not all (Hviid and Svanström, 2009; Kemppainen et al., 2017) epidemiologic studies in

humans identifying early life antibiotic exposure as a risk factor for T1D development. This simplified

animal model, the taxonomic, metagenomic, and metabolic leads we have identified, and the

approach and classification system for gene expression maturation advance understanding of the

mechanisms by which gut microbiome perturbations contribute to the pathogenesis of T1D and to

other immune-associated diseases.

Materials and methods

Key resources table

Reagent type (species)
or resource Designation Source or reference Identifiers Additional information

Strain (Mus musculus)

background

NOD/ShiLtJ mice Jackson Laboratory
(Bar Harbor ME)

Chemical compound,
drug

Tylosin tartrate Sigma-Aldrich, Billerica MA Cat#T6134-25G

Biological sample Mouse tissues: liver, pancreas,
serum; ileum; colon

This paper

Biological sample Mouse microbiota samples: fecal
cecal contents, ileal contents

This paper

Antibody CD45 BV650 BioLegend 30-F11

Antibody CD3 AF700 BioLegend 17A2

Antibody CD8a PacificBlue BioLegend 53–6.7

Antibody CD4 AF488 BD BioSciences RM4-5

Continued on next page
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Continued

Reagent type (species)
or resource Designation Source or reference Identifiers Additional information

Antibody CD19 PE-Cy7 BioLegend 6D5

Antibody B220 PerCPCy5.5 BioLegend RA3-6B2

Antibody CD44 PE-Dazzle 594 BioLegend IM7

Antibody CD62L BV570 BioLegend MEL-14

Sequence-based
reagent

PCR primer pairs See Supplementary file 7

Commercial assay
or kit

FreeStyle Lite meter/blood
lgucose test strips

Abbott Diabetes Care Inc.,
Abbott Park IL

Cat#99073070822

Commercial assay
or kit

PowerLyzer PowerSoil
DNA Isolation Kit

MoBio, Carlsbad CA Cat#12855–100

Commercial assay
or kit

PowerSoil-htp 96 Well
Soil DNA Isolation Kit

MoBio, Carlsbad CA Cat#12955–4

Commercial assay
or kit

PureLink RNA Mini Kit Invitrogen, Carlsbad CA Cat#12183020

Commercial assay
or kit

nCounter GX mouse
immunology kit

NanoString Technologies,
Seattle WA

Cat#XT-CSO-MIM1-12

Commercial assay
or kit

Verso cDNA Synthesis kit Thermo Scientific,
Waltham MA

Cat#AB1453A

Commercial assay
or kit

SYBR Green PCR Master mix Roche, Branchburg NJ Cat#12183020

Commercial assay
or kit

mouse IgA ELISA kit Bethyl, Montgomery TX Cat#E90-103

Commercial assay
or kit

BCA Protein Assay Kit Thermo Scientific,
Waltham MA

Cat#23225

Commercial assay
or kit

Counting Beads ThermoFisher CountBright Absolute
Counting Beads; C36950

Software, algorithm compPLS DOI: 10.1186/s13073-
016-0297-9

https://github.com/zdk123/compPLS

Software, algorithm SHI7 PMID: 29719872 https://github.com/knights-lab/shi7

Software, algorithm ‘custom Python and C code’ DOI: 10.5281/zenodo.
1208675

https://github.com/RRShieldsCutler/
clusterpluck

Software, algorithm QIIME2 doi:10.1186/s40168-
018-0470-z

https://github.com/qiime2/q2-
feature-classifier

Software, algorithm HUMAnN2 v0.9.5 doi: 10.1371/journal.
pcbi.1002358

RRID:SCR_014620 http://huttenhower.sph.harvard.
edu/humann

Software, algorithm STAR v2.5.2b doi: 10.1093/bioinformatics/
bts635

Software, algorithm Ingenuity Pathway Analysis IPA, QIAGEN Redwood City RRID:SCR_008653 http://www.ingenuity.com

Software, algorithm lmer4 Bates et al. https://cran.r-project.org/web/
packages/lme4/index.html

Software, algorithm FlowJo v10.2 Tree Star Inc., Ashland OR RRID:SCR_008520

Other

Mice and antibiotic exposure
NOD/ShiLtJ mice (6 weeks old) were purchased from Jackson Laboratory (Bar Harbor ME), and bred

in an SPF vivarium at the New York University Langone Medical Center (NYUMC) Skirball animal

facility. All animal procedures were approved by the NYUMC Institutional Animal Care and Use

Committee (IACUC protocol no. 160623). The dams and their litters were randomly assigned to con-

trol or PAT groups. At postnatal (P) day 23, the pups were weaned and housed to separate males

and females. All mice received acidified drinking water supplied by the facility routinely except for

the periods when some litters were receiving antibiotic treatment. A therapeutic dose of the macro-

lide tylosin tartrate (Sigma-Aldrich, Billerica MA) was given to mice in their non-acidified drinking
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water with 333 mg/L (about 50 mg/kg body weight/day) (Livanos et al., 2016) on P5-10 for 1PAT

mice or in three courses (P10-15, P28-31, and P37-40) (3PAT), exactly as described (Livanos et al.,

2016).

Diabetes monitoring
All mice were monitored for diabetes by weekly measurement of tail blood glucose using the Free-

Style Lite meter and blood glucose test strips (Abbott Diabetes Care Inc., Abbott Park IL). The mea-

surement was started at week 11 of age and continued to week 30; diabetes onset was defined as

two consecutive values > 250 mg/dl (Livanos et al., 2016; Wen et al., 2008). Kaplan-Meier analysis

was applied for evaluating diabetes progression of treatments (Kaplan and Meier, 1958), and the

Log-rank (Mantel-Cox) test was applied to detect the difference significance between treatment

(Harrington and Fleming, 1982).

Collection of fecal and tissue samples
Individual mice were placed in an empty clean beaker for 2–5 min to allow them to defecate nor-

mally to obtain 3–4 pellets, which were frozen at –80˚C for further analysis. At mouse sacrifice, the

distal ileum (1 cm long) was collected, ileal contents removed, and tissue and contents separately

introduced into RNAlater (Qiagen, Valencia CA). The next most distal 1 cm ileal segment with con-

tents was frozen at –80˚C for 16S rRNA analysis, and the subsequent segment without contents was

frozen at –80˚C for histone modification analysis. Cecum samples with contents were frozen at –80˚C
for 16S rRNA and metabolic analyses. After removal of the colonic contents, colonic tissues were col-

lected into RNAlater, and the more proximal tissues and contents frozen at –80˚C for microbiome

16S rRNA analysis. The liver of each mouse was collected and frozen at –80˚C for metabolic analysis

and histone modification analysis. From mice sacrificed at P42 and P70, the pancreas was removed

and fixed in freshly prepared modified Bouin’s fixative (Leiter, 2001), paraffin-embedded, sectioned,

stained, and scored, as described (Livanos et al., 2016) with modification by using methyl green as

counterstain (Forestier et al., 2007).

Microbiome assessment with 16S rRNA
Fecal and intestinal microbiota DNA was extracted using the PowerLyzer PowerSoil DNA Isolation

Kit (MoBio, Carlsbad CA) and the PowerSoil-htp 96 Well Soil DNA Isolation Kit (MoBio). The ampli-

con library of V4 regions of the bacterial 16S rRNA genes were obtained by triplicate PCR with bar-

coded fusion primers, quantification with the Qubbit 2.0 Fluorometer (Life Technologies, Carlsbad,

CA), and combination of each DNA sample at equal concentrations as previously described

(Livanos et al., 2016). The library was sequenced with the Ilumina MiSeq 2 � 150 bp paired end

platform (Ilumina, San Diego CA) at the NYUMC Genome Technology Center.

Microbiome community analysis
QIIME 2.0 was used as the amplicon read processing pipeline as described (https://qiime2.org/)

(Caporaso et al., 2010). Reads with more than three consecutive low-quality bases (Phred score < 20)

were filtered, and only reads with > 75% of the original length were retained. OTUs were picked

using the open reference picking strategy based on the Greengenes database (DeSantis et al.,

2006). Reads were first clustered into 97% identity OTUs using UCLUST program (Edgar, 2010),

and taxonomy assignment was performed using the RDP Classifier with a confidence interval of

50%, and chimeras were removed using ChimeraSlayer (Haas et al., 2011). Microbial diversities

within samples (a-diversity) and between samples (b-diversity), and taxa relative abundance were

analyzed using QIIME2.0. a-diversity was evaluated with phylogenetic diversity (Faith, 1992), and

mean values and statistical significance tests were calculated using Prism (GraphPad Software, La

Jolla CA). b-diversity was evaluated with unweighted UniFrac (Lozupone and Knight, 2005). Statisti-

cal significance of the inter- and intra-group b-diversity was determined by permutation testing using

R. Assessment of significantly different taxa between different treatment groups was performed

using the ANCOM program in QIIME2.0 (Mandal et al., 2015). Mixed effects models (Laird and

Ware, 1982) were fitted to test the disparity in relative abundance for each taxon (from phylum to

genus) between two groups of mice (1PAT vs. 1PAT control and 3PAT vs. 3PAT control, respectively)

for both males and females. The mixed effects models included relative abundances for each taxon
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as outcomes, and group indicator and time as fixed effects, and the intercept and slope of the linear

time trend for each mouse as random effects. Unclassified taxa and taxa which were monotonic or

singletons in any of the groups (1PAT, 1PAT control, 3PAT and 3PAT control, for males and females,

separately), were excluded in the analysis. For multiple testing correction, the Benjamini-Hochberg

(BH) procedure (Benjamini and Hochberg, 1995) was applied for each taxonomic level.

Microbiome assessment with whole genome shotgun sequencing
A total of 48 fecal samples from 24 mice (6 males and 6 females each from wither the 1PAT and

1PAT control groups at P12 and P49 were chosen for metagenomic study, along with each inoculum.

Extracted genomic DNA (5 ng) from each sample was used for library preparation and subsequent

whole genome sequencing (WGS) using the Illumina HiSeq 2500 platform. Samples were sequenced

over 6 flow cell lanes as 100 bp paired-end reads. The metagenomes were pre-processed for quality

metrics using Trimmomatic (Bolger et al., 2014) and aligned to the mouse genome (mm10) to

reduce host-contaminated sequences using KneadData as previously described (Schulfer et al.,

2018). After filtering low-quality and contaminated sequences, we performed functional profiling to

detect microbial genes and pathways using HUMAnN2 v0.9.5 (Abubucker et al., 2012) with default

settings and screened against the EC-filtered UniRef90 database.

Raw shotgun reads were quality controlled using SHI7 (Al-Ghalith et al., 2018) and aligned using

exhaustive gapped alignment at 95% identity (Al-Ghalith and Knights, 2017; Needleman and

Wunsch, 1970) against a reference database of 21,186 putative BGCs predicted by antiSMASH or

deposited in the MIBiG database (Blin et al., 2017; Medema et al., 2015; Weber et al., 2015). The

per-sample metagenomic coverage of each BGC was calculated using in-house Python and R code

and filtered to pathways with a ratio of actual coverage to expected coverage (expected coverage

probability is defined as 1� exp NLread=LBGCð Þ, where N = number of reads, Lread = median read

length, and LBGC = BGC sequence length) of at least 0.75. Differentiating BGCs were identified by

comparing BGC presence/absence frequency between the treatment groups using Fisher’s exact

test with FDR correction at q < 0.15. To collapse homologous BGCs we used custom Python and C

code to hierarchically cluster the pathways based on amino acid identity and open reading frame

composition (Rashidi et al., 2018; Shields-Cutler et al., 2018a, Shields-Cutler et al., 2018b). Clus-

ter annotations and taxonomic assignments were derived from their antiSMASH references. The

metabolite pathways were discovered directly from the metagenomic data presented in the study,

by analyzing coverage of the DNA pathways. The metagenomic data were annotated to particular

pathways and taxa by DNA sequence homology �95% to BGC pathways present in the antiSMASH

database (Blin et al., 2017), including Enterobacteriaceae reference strains.

High resolution GC-MS analysis of cecal short chain fatty acids (SCFA)
Cecal contents (~10 mg) were subjected to a targeted GC-MS analysis to quantify short chain fatty

acid levels, as described (Lucas et al., 2018; Tangerman and Nagengast, 1996), with modifications.

Metabolite extraction was carried out by addition of 50:1 extraction solvent [80% methanol in water

(LCMS Grade) with 0.5 mm zirconium/silica beads (Research Products International)] to the measured

sample mass (±0.01 mg) in a tared bead blaster tube. Each vial underwent two homogenization

cycles at 30 s on/30 s off at 6.0 m/s (4˚C) and insoluble matter was pelleted by centrifugation at

21,000 g for 3 min at 4˚C. The supernatant was transferred to a gas-tight 1.5 mL glass GC vial (Agi-

lent Technologies) for analysis. Using aThermoTM TRACE 1310 gas chromatograph, a split injection

method used a split ratio of 25, 1 mL injection volume, and split flow of 25.0 mL/min, with constant

250˚C temperature for the injector with a Topaz low pressure drop precision liner with wool (Rest-

ekTM). Helium carrier gas was used at a constant flow of 1.0 mL/min with a ThermoTM TG-WAXMS

A column (30m � 0.25 mm). The 15 min thermal gradient profile included equilibration of 2 min fol-

lowed by a 1 min hold at 100˚C, a ramp from 100 to 145˚C at 20˚C /min, a 4 min hold at 145˚C, a
ramp from 145 to 165˚C at 15˚C /min, finishing with a 3 min hold at 165˚C. The GC system was cou-

pled to a Thermo Q ExactiveTM mass spectrometer operating in electron ionization positive mode

at 70KeV. MS1 scan range from 32 to 350 m/z was used at resolution 120,000 with AGC target 1e6

and maximum IT 100 ms. SCFA intensities were quantified at 5 ppm tolerance within a 0.1 min reten-

tion time window, using a 5-point standard curve (from 10 to 1000 pg/mL), with a randomized
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acquisition order of samples and standards, run in duplicate. Standard curve analyte intensities were

fit to a linear regression and sample values reported as picogram analyte/mg cecal material (ppm).

GC-TOF-MS metabolomics of liver and serum
Aliquots of approximately 100 mg of liver tissue were placed in a 2 mL Magna Lyser tube (Roche)

and mixed with 500 mL of ice-cold 50% acetonitrile, pulse sample 2 � 30 s @ 2000 in Magna Lyser

(Roche). The homogenized mixture was centrifuged at 18,600 g for 5 min at 4˚C to yield superna-

tant. The quality control samples for liver and serum were made by pooling individual liver superna-

tant into one tube and pooling individual serum sample into another tube. Aliquots of 100 mL liver

supernatant or 30 mL serum sample were mixed with 1000 mL of a cold degassed acetonitrile-isopro-

panol-water solution (3:3:2), and centrifuged for 4 min at 18,600 g, and then dried by vacuum in new

tubes. Study samples and quality control samples were processed identically. Study samples were

randomized, and quality control pool samples (prepared under identical conditions) were inter-

spersed. Samples were derivatized using a two-step method with acquisition parameters similar to

Fiehn et al. (Fiehn et al., 2008; Kind et al., 2009). To summarize, a 0.5 ml volume was injected into

an Agilent 6890 gas chromatograph (Agilent Technologies) with a 30 m long, 0.25 mm i.d. Rxi5Sil-

MS column with 0.25 mm film thickness (Restek, Bellefonte PA), using a 250˚C injector temperature

in splitless mode with 25 s splitless time, at a constant flow of 1 ml/min. The oven temperature was

ramped (20˚C/min ramp) from 50˚C to 330˚C (Chou et al., 2017). Data were acquired using a Leco

Pegasus 4D TOF-MS (Leco, Saint Joseph MI) with a 280˚C transfer line temperature, electron ioniza-

tion at –70 V, and an ion source temperature of 250˚C. Spectra were acquired from m/z 50–750 at

20 spectra s-1 and 1850 V detector voltage.

GC-TOF-MS data were deconvoluted by ChromatTOF (Leco, St. Joseph MI) and then further

processed by BinBase (Skogerson et al., 2011) for peak retention index calculations, spectral identi-

fication, and generation of a table of peak identifications and intensities. Multivariate data analysis

was conducted using SIMCA 13.0 (Umetrics, Sweden) for data normalized to the sum of intensities.

Mean-centered and pareto-scaled data were analyzed by Principal Component Analysis (PCA) and

Orthogonal Projections to Latent Structures Discriminant Analysis (OPLS-DA). Peaks with Variable

Influence on Projections (VIP) � 1.0 were deemed important for differentiating the study groups.

Significant changes in pairwise comparison were evaluated by Wilcoxon Rank-Sum test by SAS 9.4

(SAS Institute Inc., Cary NC) with p value � 0.05 denoting statistical significance.

RNA extraction and RNA-Seq
Total RNA was extracted from mouse tissues using the PureLink RNA Mini Kit (Invitrogen, Carlsbad

CA), and contaminating genomic DNA was removed by treatment with DNase I (Qiagen). Total RNA

quality and quantity were determined using the NanoDrop ND-1000 UV-Vis Spectrophotometer

(NanoDrop Technologies, Inc., Wilmington DE), and Agilent 2100 Bioanalyzer (Agilent Technologies,

Santa Clara CA). For RNA-Seq, we used methods, as described (Ruiz et al., 2017). Reads were

aligned to the mouse GENCODE GRCm38.p5 (M14 release) genome using STAR v2.5.2b

(Dobin et al., 2013), and the read summarization program FeatureCounts (Liao et al., 2014) was

used to count mapped reads against annotated genes. Differential expression analysis between dif-

ferent treatments and KEGG pathways visualization was performed using DESeq2 in the R-package

(Love et al., 2014) and Pathview, respectively (Luo and Brouwer, 2013). p values were corrected

for multiple comparisons, based on the false discovery rate (FDR) (Benjamini and Hochberg, 1995)

with significance considered by the adjusted p value<0.05. Differentially expressed pathways and

functions were interpreted using with Ingenuity Pathway Analysis (IPA, QIAGEN Redwood City,

http://www.ingenuity.com).

Immune gene NanoString analysis
Immune gene expression profile of each of the above RNA samples was evaluated by using the

nCounter GX mouse immunology kit (NanoString Technologies, Seattle WA). Counts were normal-

ized using DESeq2 (Love et al., 2014). P values were corrected for multiple comparisons, based on

the false discovery rate (FDR) (Benjamini and Hochberg, 1995), with significance considered by the

adjusted p value<0.05. Heat maps were generated using the pheatmap package in R (Kolde and

Vilo, 2015).
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RT-qPCR for host target gene expression
To evaluate specific gene expression, cDNA was synthesized through reverse transcription from 1

mg of each total RNA sample above with the Verso cDNA Synthesis kit (Thermo Scientific, Waltham

MA) using random hexamer primers provided. qPCR was run in a LightCycler 480 system (Roche,

Branchburg NJ) using 10 ng cDNA, target gene-specific primer pairs (Supplementary file 7) and

Power SYBR Green PCR Master mix (Roche). Target mRNA was normalized to 18S rRNA or house-

keeping gene HPRT as an internal control in each sample (Saha and Blumwald, 2014). For group

mean comparisons, the Mann Whitney test was performed with p value < 0.05 as significant

difference.

Measurement of fecal IgA
Fecal samples were resuspended in PBS at a concentration of 50 mg/mL by extensive vortexing,

allowed to stand for 20 min, and centrifuged at 16,000 g for 10 min to collect supernatant as

described (Haneberg et al., 1994). Each supernatant was assessed for IgA using the mouse IgA

ELISA kit with suitable dilutions, according to the manufacturer’s instructions (Bethyl, Montgomery

TX), and the absorbance was measured at a wavelength of 450 nm using the Dynex MRX TC Revela-

tion microplate reader (Dynex Technologies, Chantilly VA) (Ruiz et al., 2017).

Isolation of pancreatic and splenic leukocytes
The pancreas or splenic tissue of each mouse was placed into 5 mL of PBS supplemented with 2%

fetal calf serum (Corning, Tewksbury MA), 1 mg/mL trypsin inhibitor (Sigma, St. Louis MO), 1 mg/mL

of Collagenase IV (Worthington Biochemical, Lakewood, NJ), and 0.5 mg/mL DNaseI (Sigma) and

the spleen in DMEM (Corning) supplemented with 10% fetal calf serum (FCS). The pancreas or

spleen was physically disrupted for 5 min and dissociated using a GentleMACS Dissociator (Miltenyi

Biotec Inc., Auburn CA). Following dissociation, the tissues were enzymatically digested for 20 min

at 37˚C. Following enzymatic digestion, the cell suspension was filtered, washed, and resuspended

in cold PBS with 2% FCS. Spleens were physically disrupted over 70-micron nylon mesh (Corning) on

ice. Cells were pelleted at 300 g for 5 min, supernatants were removed, followed by red blood cell

lysis with ACK (ammonium-chloride-potassium) lysis buffer (Lonza, Basel, Switzerland). Single cell

suspensions were washed and resuspended 1 mL of cold PBS with 1% FCS. Cells were stained using

anti- CD45, CD4, CD8, CD3, CD44, CD62L, CD19 and B220 (BioLegend, San Diego CA). Data were

acquired on a BD LSRII (BD Bioscience, San Jose CA) and analyzed using FlowJo v10.2 (Tree Star

Inc., Ashland OR).

Global histone modification analysis
Histones were isolated from flash-frozen whole post-mortem ileum and liver from P23 mice (n = 4 or

5 per sex and treatment group) and prepared for analysis by liquid chromatography coupled to tan-

dem mass spectrometry (LC-MS/MS). Histone extraction, label-free chemical derivatization, and data

acquisition using a Dionex Ultimate3000 nanoflow HPLC with a Waters nanoAcquity UPLC C18 col-

umn (100 mm � 150 mm, 3 mm) online with aThermo Q-Exactive mass spectrometer using a data-

independent acquisition method, as previously described (Krautkramer et al., 2016). Following

data acquisition, normalization and quantification of histone PTM abundance was performed as pre-

viously described (Krautkramer et al., 2015). Isobaric and co-eluting peptides were not deconvo-

luted, and are denoted as such (e.g. K18ac+K23un and K18un+K23ac are isobaric and co-eluting

and are denoted as a single value for K18ac/K23ac since their MS1 ions are identical and thus repre-

sentative of both peptide species). Normalized percent of total values were then used to calculate

fold-changes and statistics. All p values were generated using Welch’s t test, with statistical signifi-

cance set at p<0.05.

Statistical associations between microbiota and host gene expression
Using the compPLS framework (Ramanan et al., 2016), we aimed to detect associations between

taxa in the gut microbiome and host immune genes. To prevent detection of spurious associations,

we: (i) performed a centered log-ratio (clr) transformation on the OTU relative abundance data; (ii)

applied a variance decomposition to extract within-subject variation; and (iii) estimated a sparse lin-

ear model via sparse Partial Least Squares (sPLS) regression to detect associations between a sparse
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set of multi-collinear features (OTUs) and responses (host covariates) (Bastien et al., 2005;

Chun, 2010). As our host covariates or response variables, we used expression levels representing

significantly differentially expressed genes. We first filtered OTUs at the genus level with relative

abundance > 0.01%. Taxa were then selected if present in at least one of the intestinal samples. This

filtering resulted in a species-level OTU table. We decomposed the clr-transformed OTUs and host

response data using a two-factor variance decomposition to account for differences in sex (M or F)

and treatment group (1PAT and 1PAT control). For each sPLS run, we set the number of latent com-

ponents to the number of non-zero singular values in the cross-covariance matrix. To find a sparse

set of significant associations between OTUs and genes, we (i) applied sPLS and used a stability

approach to regularization selection (StARS) (Liu et al., 2010) to select the sparsity level; and (ii)

used bootstrap-based empirical p value calculation to assess the significance of associations of the

StARS-selected support (Lê Cao et al., 2009). We calculated empirical p values over 5000 boot-

straps and set a p value threshold of 0.05 after FDR multiple testing correction. We visualized signifi-

cant associations as a network using the igraph package in R (Csárdi and Nepusz, 2006).

Data deposition
RNA-Seq data that support the findings of this study have been deposited in ArrayExpress database

(www.ebi.ac.uk/arrayexpress) with the accession code E-MTAB-6826 (https://www.ebi.ac.uk/arrayex-

press/experiments/E-MTAB-6826). 16S rRNA data have been deposited in QIITA (https://qiita.ucsd.

edu/) with the identifier 11242 (https://qiita.ucsd.edu/study/description/11242). Ileal NanoString

data have been deposited in NCBI’s Gene Expression Omnibus (https://www.ncbi.nlm.nih.gov/geo/)

and are accessible through GEO Series accession number, GSE101721 (https://www.ncbi.nlm.nih.

gov/geo/query/acc.cgi?acc=GSE101721). Shotgun metagenomics data have been deposited in the

European Nucleotide Archive (ENA) (https://www.ebi.ac.uk/metagenomics/) under the accession

number, PRJEB26585 (http://www.ebi.ac.uk/ena/data/view/PRJEB26585). Metabolomics data have

been deposited at the NIH Common Fund Metabolomics Workbench (www.metabolomicswork-

bench.org; doi: 10.21228/M8C39R).

Abbreviations
Type 1 diabetes (T1D), pulsed therapeutic antibiotic treatment (PAT), non-obese diabetic mouse

(NOD mouse), histone post translational modification (histone PTM).
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