
RESEARCH Open Access

Antibiotic perturbation of the murine gut
microbiome enhances the adiposity, insulin
resistance, and liver disease associated with
high-fat diet
Douglas Mahana1, Chad M. Trent2*, Zachary D. Kurtz1, Nicholas A. Bokulich2, Thomas Battaglia2, Jennifer Chung2,

Christian L. Müller4,5,6, Huilin Li3, Richard A. Bonneau1,4,5,6 and Martin J. Blaser1,2,7

Abstract

Background: Obesity, type 2 diabetes, and non-alcoholic fatty liver disease (NAFLD) are serious health concerns,

especially in Western populations. Antibiotic exposure and high-fat diet (HFD) are important and modifiable factors

that may contribute to these diseases.

Methods: To investigate the relationship of antibiotic exposure with microbiome perturbations in a murine model

of growth promotion, C57BL/6 mice received lifelong sub-therapeutic antibiotic treatment (STAT), or not (control),

and were fed HFD starting at 13 weeks. To characterize microbiota changes caused by STAT, the V4 region of the

16S rRNA gene was examined from collected fecal samples and analyzed.

Results: In this model, which included HFD, STAT mice developed increased weight and fat mass compared

to controls. Although results in males and females were not identical, insulin resistance and NAFLD were

more severe in the STAT mice. Fecal microbiota from STAT mice were distinct from controls. Compared with

controls, STAT exposure led to early conserved diet-independent microbiota changes indicative of an immature microbial

community. Key taxa were identified as STAT-specific and several were found to be predictive of disease. Inferred network

models showed topological shifts concurrent with growth promotion and suggest the presence of keystone species.

Conclusions: These studies form the basis for new models of type 2 diabetes and NAFLD that involve microbiome

perturbation.

Background

Obesity is currently a world-wide epidemic [1] and is

linked to metabolic diseases including type 2 diabetes

and non-alcoholic fatty liver disease [2]. Obesity heightens

the risk for the development of these disorders, yet the

relevant mechanisms are not fully understood [2]. How-

ever, the microbiota of the gut may be involved in the

pathogenesis of obesity, possibly through effects on energy

balance, nutrient absorption, inflammatory pathways, and

the gut-brain axis [3]; causal interactions among these

factors are generally undescribed.

For nearly 70 years, farmers have been giving low

doses of antibiotics to livestock to promote their growth

[4, 5]. Human and rodent studies have established a

strong association between a perturbed microbiome and

the development of obesity and related metabolic dys-

function [6–10]. Our prior studies have established

models of antibiotic exposures in mice that have led to

accelerated growth and to perturbation of host meta-

bolic and inflammatory responses [11–13]. In each of

these studies, antibiotic exposure substantially altered

the gut microbiota. In a pivotal experiment, colonizing

germ-free recipient mice with antibiotic-altered commu-

nities of intestinal microbes was sufficient to transfer the

adiposity [12]. This established a causal role for what

we have termed “microbe-induced obesity” [3]. Adding
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a high calorie, high-fat diet (HFD) exacerbated the

effects of the altered microbiota on both adiposity and

hepatic gene expression [11, 12].

In this study, we exposed mice to long-term low dose

penicillin (STAT) or not (control), and then changed

their diet to HFD to enhance the adiposity phenotype.

By studying metabolic and hepatic functions in mature

mice (aged >30 weeks), we found that this regimen pro-

moted insulin resistance and hepatic steatosis. Here, we

sought to understand the relationship of those pheno-

types with metrics related to the gut microbiome. Defin-

ing statistical associations between members of the gut

microbial community and host phenotypic development

in response to perturbation is an essential challenge for

inferring mechanism from systems-level data. We describe

a novel computational pipeline for estimating the sig-

nificance of community change upon treatment and for

estimating the significance of individual taxa differences

between STAT and control.

Methods

Animals and exposures

C57BL/6 mice (Jackson Laboratories, Bar Harbor, ME,

USA), were allowed to acclimate to our animal facility

for 1 week prior to breeding. After 2 weeks, breeding

pairs were separated and pregnant dams randomized into

control or sub-therapeutic antibiotic treatment (STAT)

groups. Penicillin G (6.8 mg/L; STAT) or not (control)

was added to drinking water dams at ~ day 14 of gestation,

as described [12 13]. Pups were weaned at day of life

(dol) 28 and continued receiving the same treatment

(STAT or control) throughout the 32-week study. All

mice had ad libitum access to water and chow (Purina

Mills International Diet #5001, 4.07 kcal/g, with 13.5 % kcal

from fat). At week 13, all mice were switched onto HFD

(4.73 kcal/g, with 45 % kcal from fat; Rodent Diet D12451,

Research Diets, New Brunswick NJ, USA). Mice were

weighed and fecal pellets were collected regularly through-

out the experiment (Additional file 1: Figure S1).

Body composition

Body composition was measured using dual energy X-ray

absorptiometry (DEXA) with a Lunar PIXImus II mouse

densitometer (GE Medical Systems, Waukesha, WI, usa)

at weeks 4, 8, 12, 20, 24, and 28 with anesthesia by isoflur-

ane inhalation, as described [13].

Food intake and caloric excretion

At week 21 while receiving HFD, 12 mice (control and

STAT males and females; n = 3/group) were individually

housed in metabolic cages (Tecniplast, Buguggiate, Italy).

The mice were allowed 2 days to acclimate, and then were

observed and studied for the next 3 days, with daily

weighing of the mice, their food, water, feces, and urine.

Caloric intake was calculated as food consumed (g) multi-

plied by 4.73 kcal/g (Research Diets). Bomb calorimetry

was used to quantify calories present in feces. For each

mouse, the entire fecal output/24-h period during the

3-day observation period was homogenized, and di-

vided into duplicate (10–20 mg) aliquots, dried over-

night at 55 °C with silica gel as a desiccant, and caloric

content of the dried aliquots measured in a bomb cal-

orimeter (Semimicro Calorimeter, Thermometer, and

Oxygen Bomb; Parr Instrument Company, Moline, IL,

USA), using benzoic acid as a standard; mean caloric

output was calculated, as described [13].

Glucose and insulin homeostasis

Intraperitoneal (IP) glucose tolerance tests (IPGTT) and

IP insulin tolerance tests (IPITT) were performed during

afternoons following 4 h of fasting. For the GTT, mice

were injected IP with 1 mg glucose/g body weight in

sterile water. Before (time 0), and after (15, 30, 60, and

120 min) the IP injection, blood glucose was measured

with an Abbott (Abbott Park, IL, USA) Freestyle Lite

glucometer. During the GTT, in seven of the 27 mice

tested (3/13 in STAT and 4/14 in control), blood glucose

levels between 15 and 60 min were >500 mg/dL. Since

this was above the detection limit, such mice were defined

as having levels of 500 mg/dL. For the ITT, 0.5 U/g body

weight of insulin (Humulin R, Eli Lilly, Indianapolis, IN,

USA) was injected IP, and glucose measured as above. In

the last hour of the test, 11 of the 27 mice became severely

hypoglycemic, unresponsive to noise and physical stimula-

tion. These mice were rescued with an IP glucose solution,

removed from further ITT measurements, and returned

to their cages with food for observation; rescued mice

were defined as having blood glucose levels of 20 mg/dL

for the next time point. Homeostatic model assessment of

insulin resistance (HOMA-IR) score was calculated by

((glucose mg/dL x insulin mU/L)/405), as described [14].

To determine a normal range for HOMA-IR values in

mice, strain/age/diet-matched paired glucose and insulin

data were obtained from the literature [15]; since a value

of 13.2 separated normal and elevated HOMA-IR scores,

we used this to define the upper limit for normal in our

study. For grouping purposes, mice were considered to be

insulin-resistant when they had ≥2 of the following cri-

teria: HOMA-IR >13.2, impaired glucose tolerance by

IPGTT, impaired insulin sensing by IPITT.

Statistical analysis

We fit a piecewise linear mixed regression model [16] to

the weight, fat, lean, GTT, and ITT data to compare the

group patterns of change over time during early, middle,

post-HFD, and later stages of the experiment. For the

weight data, we consider the model with common knots

at weeks 5, 13 (when HFD was started), and 22. With
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this model, we performed the group comparisons of

changing group trends over the periods: weeks 3–5,

weeks 5–13, weeks 13–22, and week 22–31. Cage infor-

mation was fitted as a random effect in the model to

take account for possible correlations among the mice in

the same cage. The MIXED procedures of SAS software

(version 9.2; SAS Institute Inc., Cary, NC, USA) were

used to perform the tests and calculate the estimates.

For fat, lean, GTT and ITT, the models are similar

except for using different knots. Both the STAT and

Control groups were each composed of five or more

cages, across two asynchronous cohorts, in two different

mouse facilities. The cage effects- as well as sex- are

implicitly accounted for in the multi-level PLS model

(see below) since we first subtract the variance between

the repeated measures made on the same subject. There-

fore, first order effects from factors related to within-

subject repeated measures (i.e. cage, sex, aging) are

removed. Mathematically, this is equivalent to a linear

mixed-effect model but the PLS approach extends to

multivariate responses and designs, which accounts for

colinearity within the dataset.

Hormone and cytokine measurements

Serum concentrations of insulin, C-peptide, leptin, ghrelin,

IL-6, and TNFα were measured using Multiplex Biomarker

Immunoassays for Luminex xMAP technology (Millipore,

Billerica, MA, USA; panel MMHMAG-44 k), with reading

by Luminex 200 analyzer, as described [13]. These mea-

surements were made using cardiac blood from sacrifice.

All mice were fasted for 4 h prior to sacrifice.

Lipid extraction and measurement

For lipid extraction, based on a modified Folch method

[17], ~100 mg of tissue in 500 μL of PBS was homoge-

nized using stainless steel beads for 1 min in a Powerlyzer

homogenizer. From each sample, 50 μL was removed for

protein analysis (BCA reagent, Thermo Scientific) and

1.5 mL of 2:1 chloroform:methanol added, the solution

vortex-mixed, then samples centrifuged for 10 min at

3000 rpm at 4 °C. The organic phase was collected and

dried under nitrogen gas. The dried lipid was dissolved in

500 μL of 2 % Triton-X 100 in chloroform, further dried,

and then dissolved in 100 μL of phosphate buffered saline

(PBS), pH 7.4. Triglyceride and total cholesterol were

measured using the Thermo Scientific (Waltham, MA,

USA) Infinity assays. Free fatty acids were measured using

the Wako NEFA kit (Wako Life Sciences, Richmond, VA,

USA). Lipid mass was normalized to protein mass.

Hepatic gene expression

Tissue was preserved in RNeasy at –80 °C post-sacrifice

and RNA was extracted using miRNeasy Mini Kit

(Qiagen), essentially as described [18]. In brief, samples

were converted into cDNA using SuperScript II Reverse

Transcriptase (Invitrogen), and expression determined by

real-time quantitative PCR (RT-qPCR), using SYBR Green

(Life Technologies) in combination on a 480 LightCycler

(Roche). Each well contained 18 uL MasterMix solution

(0.0 5uL of 10 uM forward/reverse primers, 10 uL SYBR

Green, and 7 uL molecular grade H2O). For absolute

quantitation, the plasmid standard curve was diluted by

tenfold in EB buffer. Primer sequences and annealing

temperatures were described [18, 19]. qPCR cycling was

optimized to each primer-set to ensure Efficiency >1.90

and Error Rate <0.02. Relative concentrations were calcu-

lated using the ΔΔCt method, as described [20], and

p values calculated using the non-parametric Mann–

Whitney U test.

Non-alcoholic fatty liver disease assessment

Liver sections were dissected and fixed in 10 % neutral

buffered formalin, then paraffin-embedded. Slides were

cut, stained with hematoxylin and eosin (H&E), and

Masson’s Trichrome, then scanned at 40× and 200×, and

scored for non-alcoholic fatty liver disease (NAFLD), as

described [21].

Microbial community analysis

Total genomic DNA was extracted from frozen fecal sam-

ples using the Powersoil DNA Extraction Kit (MoBio,

Carlsbad, CA, USA) in 96-well format and the 16S rRNA

gene was amplified with barcoded fusion primers, target-

ing the V4 region, as described [22]. Amplicon pools were

sequenced on the 2 × 150 bp Illumina MiSeq platform.

The QIIME pipeline [23] was used for quality filtering,

demultiplexing, taxonomic assignment, and calculating

diversity metrics, as described [12]. Sequencing depth,

paired-end joining efficiency, and other quality metrics

can be found in Additional file 2: Figure S2. We found no

significant differences between males and females in either

treatment group by clustering or UniFrac distances (data

not shown) or between cages (Additional file 3: Table S1,

Adonis test). Since there were no differences and stratifi-

cation reduces analytical power, the sexes were combined

for microbiome analyses. To make the data more inter-

pretable, we edited the OTUs according to their repre-

sentation amongst the samples. We arrived at 723

OTUs by discarding OTUs that were present in fewer

than 10 % of all fecal samples. This was an arbitrary

cutoff, used both to reduce the noise of amplicon

datasets and to avoid spurious associations when there

is a preponderance of zero counts. Linear discriminant

analysis effect size (LEfSe) [24] was used to detect sig-

nificant differences in relative abundance of microbial

taxa and predicted KEGG pathways between control

and STAT mice. Microbiota-by-age z-scores (MAZ)

were calculated as described [25], using the following
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formulae: Microbial maturity (MM) = predicted microbiota

age −median microbiota age of control mice of similar age.

MAZ=MM/S.D. of predicted microbiota age of control

mice of similar age.

Supervised classification of disease state

Random forests classification models were built for pre-

diction of disease outcomes (NAFLD/elevated HOMA-

IR development) as a function of microbial composition

and to predict age as a function of microbial compos-

ition, as described [11]. Each model was built by growing

1000 trees per forest and d/3 variables (operational

taxonomic units, OTUs) randomly sampled at each split,

where d is the total number of OTUs in each model.

Model error was calculated using a leave-one-out ap-

proach. To avoid bias from uneven sampling efforts, all

samples were randomly subsampled at 1000 OTU/sample

prior to analysis. Subsampling and analysis was performed

in ten independent trials, with results used to calculate

mean model error and OTU importance.

Sparse and compositionally-robust multilevel PLS

regression

We developed a novel framework to detect associations

between specific taxa in fecal microbiota communities

and longitudinally-measured host phenotypes. To over-

come the detection of statistically spurious associations,

we incorporated: (1) the compositionally robust centered

log-ratio (clr) transformation of OTU relative abundance

data; (2) variance decomposition for multi-level experi-

mental design; and (3) estimation of a sparse linear

model via sparse Partial Least Squares (sPLS) regression

for connecting high-dimensional and multi-collinear

features (OTUs, taxa) and responses (phenotype mea-

surements). We selected seven host phenotype measure-

ments of interest: Body Fat (Fat), Bone Mineral Content

(BMC), Lean Mass (Lean) and Dry Mass Index (DMI)

(all measured by DEXA), scale weight (Weight), next

closest time point of Weight (Weight + 1), and end-of-

life NAFLD scores. OTUs that appeared in fewer than

10 % of samples across the entire dataset were removed,

leaving a remaining 723 OTUs of interest across 308

samples. A single pseudo-count was added to the fecal

microbiota data, to correct for zero-counts, and then

center log-ratio transformed [26]. We then decomposed

the resulting OTU features and host response data into

the relevant “within-subject” components using the

two-factor (antibiotic group and diet switch) variance

decomposition, as described [27]. The within-subject

component captures experimental perturbation effects

by subtracting between-subject variances.

We then applied L1-penalized PLS regression to the

within-subject data [28–30] and fit a bi-linear model.

The number of latent components in the sPLS model is

fixed to seven (or to the number of non-zero singular

values in the cross-covariance matrix). Model sparsity is

controlled via the scalar parameter η that weights the in-

fluence of the L1 penalty. We used a two-stage approach

to find a sparse set of significant OTU-phenotype associ-

ations. In the first stage, we used stability approach to

regularization selection (StARS [31]); the StARS method

has been previously shown to be competitive for graph-

ical model problems of similar complexity and scale

[31]. We rebuilt the sPLS model over 50 random subsets

of the data over a range of values for η, calculating the

fraction of data subsets that included a given OTU in

the support (i.e. non-zero model coefficients) at each η.

We then computed a summary statistic of overall model

stability to select the most stable model that exceeds the

variability threshold (0.1 %) [31]. In the second stage, we

assessed the statistical significance of individual OTUs

in the model by computing empirical p values over 2000

bootstrapped PLS models (using the StARS-selected

support) p values computed for an empirical null model,

generated by randomly permuting the data. We used rou-

tines from the sPLS and caret libraries in R to developed a

custom package (which includes methods for the full pipe-

line and a similar approach for discriminant analysis [32])

called compPLS (software and supplemental methods are

available at http://github.com/zdk123/compPLS).

Clustering of sPLS scores

We clustered the 308 individual samples based on their

seven-dimensional sPLS scores using a finite Gaussian

mixture model. An EM algorithm was used to find the

optimal number of components, initialized with ag-

glomerative clustering. We used the maximal Bayesian

Information Criterion (BIC) to find optimal model type

(ellipsoidal, equal orientation mode) and number of

clusters (six clusters) (Additional file 4: Figure S3). All

clustering computation was done with the mclust pack-

age in R [33].

Estimation of microbial association networks

Each of the six clusters of individuals/experiments corre-

sponds to phenotypically similar samples. For each sample

set we learned microbial association networks using the

Sparse InversE Covariance estimation for Ecological ASso-

ciation Inference (SPIEC-EASI) framework [34]. Nodes in

each network correspond to OTUs and edges correspond

to direct signed interactions between OTUs given each

environment. We ran SPIEC-EASI in neighborhood selec-

tion mode and performed model selection via StARS

using a variability threshold of 0.05 %.

Analysis of microbial association networks

To assess the overall similarity of the six different associ-

ation networks we enumerated all induced subgraphs
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(graphlets) composed of up to four nodes in each

network and recorded, for each node, the frequency of

participation in each subgraph. Following [35] we can

use the Spearman correlation matrix among 11 non-

redundant subgraph frequencies (orbits) across all nodes

as a robust and size independent network summary

statistics. Pairwise distances between entire networks are

computed by using the Frobenius norm between the

correlation matrices (graphlet correlation distance [35]).

To achieve a low-dimensional description of network

similarities we embedded these distances in Euclidean

space using classical MDS.

We also assessed the robustness of the different mi-

crobial association networks to random and targeted

node removals (“attacks”) [36, 37] using natural con-

nectivity [38] as a general measure of graph stability.

Natural connectivity (a variant of the Estrada index of a

complex network [39]) is a graph-theoretic measure of

global network connectivity that has been shown to be

more reliable and sensitive than other stability metrics

(such as algebraic connectivity or size of largest compo-

nent) when evaluating attack robustness of complex

networks [38]. We measured how natural connectivity

of the microbial network changed when nodes and their

associated edges are sequentially removed from the

network. We considered three network attack scenar-

ios: (1) uniformly at random node removal; (2) node

removal based on betweenness centrality; and (3) node

removal based on node degree. Betweenness centrality

[40] measures a node’s centrality in a network by calcu-

lating the number of shortest paths from all nodes to

all others that pass through that particular node. Nodes

with high betweenness centrality generally correspond

to “bottlenecks” in the network, which play a crucial

role in the organization of biological networks [41].

Nodes with high node degree (i.e. number of neighbors)

represent “hubs” or keystone species in the network.

Sequential removal of nodes based on the ranking of

these scores thus represents targeted (worst-case) at-

tacks on network stability. For comparison, the random

node removal scenario (averaged over n = 50 repeti-

tions) assesses the baseline robustness of the network.

Results

Combining STAT with high-fat diet increases body weight

We first sought to confirm and extend our prior studies

of the effect of STAT on murine development [12, 13],

in both males and females (Fig. 1). Analysis of the

whole-life growth curves shows that STAT mice were

heavier than controls from the very first weights obtained

after weaning at week 4 (males only), with differences

continuing to the end of the experiment (Fig. 2a–c). Both

male and female STAT-exposed mice had increased body

weight over time compared to controls, with the major

differences occurring after HFD initiation at week 13

(Fig. 2a). After introduction of HFD at week 13, weight

gain of STAT mice was greater than in controls (males,

20.0 ± 2.5 g vs. 13.1 ± 3.7 g; p <0.001; females, 13.7 ± 5.8 g

vs. 5.1 ± 2.4 g; p <0.001), showing that the antibiotic

exposure potentiated the effects of the HFD. At 32 weeks,

both STAT males and females remained significantly

larger than controls (Fig. 2c). These studies confirm our

prior findings of enhanced growth of mice in the STAT

model [12, 13], with acceleration of the growth differences

in the presence of HFD.

STAT with a high-fat diet increases body fat

Beginning at weaning, body composition of all mice was

measured by DEXA. Although STAT mice tended to

have slightly higher lean mass (Fig. 2d, e), the significant

Control

Antibiotics

Males (n=9)

Females (n=10) 

Males (n=7)

Females (n=11)

0 238242022184keeW

High-fat dietTreatment

begins

Mothers

Mothers

GTT

ITT

Sacrifice

Fig. 1 Study design. C57Bl/6 dams were bred, and then randomized to STAT and control groups. Resultant pups continued treatment and were

weighed and had fecal samples collected 2–3 times per week until sacrifice at 32 weeks. All mice were switched to a high-fat diet at week 13. A

second iteration of this design was performed to increase the number of pups in each group
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weight differences observed largely reflected fat mass

(Fig. 2f, g), which were enhanced by HFD in both sexes.

Measurements of bone composition (mineral density,

mineral content, and area) were not significantly differ-

ent in relation to sex, treatment, or diet throughout the

experiment (Additional file 1: Figure S1, Panels E, F, and

G respectively). Taken together, these data indicate that

STAT led to weight gain predominantly in fat mass,

beginning early in life, exacerbated by HFD, with little or

no effect on lean mass or on bone development, under

the conditions studied.

STAT does not markedly perturb host energy balance

To determine whether STAT was altering food intake or

energy harvest, 21-week-old mice were studied in meta-

bolic cages. For individually housed control and STAT

male and female mice, we measured food and water

intake and waste production for 5 days. Food intake in

STAT males was not different compared to controls, but

STAT females consumed fewer total calories daily than

control females (Additional file 1: Figure S1A). Fecal

calorie content (per gram) measured using bomb calorim-

etry did not vary by sex or exposure group (Additional file

1: Figure S1B). Neither net calories (Additional file 1:

Figure S1C; calories IN minus OUT), nor the proportion

of calories retained (Additional file 1: Figure S1D; IN

minus OUT/IN) was altered by STAT exposure. These

data provide evidence that STAT-related adiposity did not

result from either increased appetite or enhanced energy

harvest.

STAT affects glucose and insulin homeostasis

Based on the increased weight and adiposity phenotypes,

we hypothesized that STAT would increase the incidence

and severity of metabolic diseases, including type 2 dia-

betes (T2DM) and NAFLD. To address this hypothesis,

we conducted several studies in STAT and control mice in

the weeks prior to sacrifice, including tests of glucose and

insulin tolerance. While there was no significant difference

in recovery of glucose levels in the STAT and control

mice, both groups had markedly impaired glucose toler-

ance and incomplete recovery (Fig. 3a, b); the obese mice

in this study were highly glucose intolerant, regardless of

STAT exposure.

In insulin tolerance tests, there was significant insulin

resistance in both STAT males and females compared to

controls (Fig. 3c, d), in the earliest time period after the

insulin provocation. Because many of the control ani-

mals experienced severe hypoglycemic shock and had to

be withdrawn from the test prior to 120 min, we lacked

sufficient power for assessment across the usual course

of the ITT. At the relatively high level of insulin used,

the STAT mice were less sensitive to hypoglycemia than

were the controls, due to their relative insulin insensitiv-

ity (resistance).

To further quantify the metabolic impact of STAT,

we calculated the HOMA-IR index [14]. By this index,

based on fasting glucose and insulin values, STAT was

found to significantly increase insulin resistance (Fig. 3e)

in both males and females. Alternatively, using a pre-

defined threshold for elevated HOMA-IR scores, STAT

males had a significantly higher incidence of elevated

HOMA-IR (Fig. 3f; p <0.05) compared to controls. Al-

though not statistically significant, only STAT females,

and not control females, had elevated HOMA-IR scores

(Fig. 3f ). These results, consistent with the ITT results,

point to substantial alterations in glucose regulation in

the STAT/HFD model.

STAT affects metabolic hormones and inflammatory

markers

Based on the altered glucose homeostasis observed in

STAT mice, we measured six other hormones and in-

flammatory markers involved in metabolism, which we

hypothesized would be differentially affected by the STAT

exposure. As expected from the IPGTT and IPITT, fasting

serum insulin (p <0.05; Fig. 3g) and C-peptide (p <0.001;

Fig. 3h) were significantly elevated in STAT males, al-

though not significantly affected in females. Concordant

with the increased adiposity, serum leptin was increased

in both STAT males and females (p <0.001 in both; Fig. 3i).

In contrast, serum ghrelin levels were significantly

lower in STAT males and females compared to con-

trol mice (p <0.05 in both; Fig. 3j). Since metabolic

and sex differences may be related to levels of the

pro-inflammatory cytokines-TNFα and IL-6, respect-

ively [42], we examined these in the context of the

experiment. Circulating IL-6 was significantly elevated

in females (p <0.05; Additional file 5: Figure S4A) but

not in males, and circulating TNFα (Additional file 5:

Figure S4B) was not significantly elevated in either

sex. These data reflect the enhanced obesity in mice

(See figure on previous page.)

Fig. 2 STAT enhances weight gain and adiposity. a Scale weight was measured 3–5 times each week beginning at week 4 (day 28) of life. Group

data were smoothed to the second order (3-neighbor method). p values were calculated using piecewise linear regression to assess rate of

growth. b, c Weight at week 4 (b) and sacrifice (week 32; c). p values reflect ANOVA with Bonferroni’s correction for multiple comparisons. A

high-fat diet (45 % kcal from fat) was introduced to all groups at week 13. DEXA was used at 4, 8, 12, 20, 24, and 28 weeks of life and values

are shown as Mean ± SD. d, e Lean mass in male and female mice. f, g Fat mass in male and female mice. Data in a, d, e, f, and g are reported

as mean ± SEM. p values calculated from individual mouse data (Mann–Whitney U test). In all panels: *p <0.05; ***p <0.001
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exposed to both STAT and HFD, and provide further

definition of the sex differences observed.

STAT affects hepatic steatosis

Upon sacrifice, fatty infiltrates in the liver were visible in

13 of 37 mice (Fig. 4a; 10/18 in STAT, 3/19 in control;

p = 0.017). Based on these observations, we performed

microscopic examination of the liver, grading histology

using the NAFLD Activity Score (NAS) [21] (Fig. 4b).

Scores for all STAT males were above the diagnostic

level for NAFLD with values significantly higher than

for controls (p <0.001) (Fig. 4c). Although hepatic in-

jury was not as advanced in STAT females, values were

significantly higher than in controls (p <0.01) (Fig. 4c).

Fibrosis (Fig. 4d), evaluated using the same scoring sys-

tem, was more severe and extensive in STAT than con-

trols (p <0.05) in both males and females. Significantly

more STAT mice had scores diagnostic for NAFLD

(score >5, with fibrosis) compared to controls (Fig. 4e;

p <0.001 males; p <0.01 females). These findings indi-

cate that the combination of STAT and HFD increased

the incidence and severity of NAFLD-like histologic

lesions compared to HFD alone.

STAT alters hepatic lipid storage and metabolism

Based on the hepatic histology at week 32, we quanti-

fied the hepatic lipid content. Total cholesterol was

increased in STAT mice to a greater extent than in

controls (p <0.05) (Fig. 4f ) in females, but not males.

In both sexes, STAT livers had nearly twice the triglycer-

ide concentration of controls (p <0.001 for each compari-

son) (Fig. 4g). Free fatty acids were elevated in STAT

compared to controls (p <0.05) (Fig. 4h) in males, but not

females, representing another instance of sex differences

in responses to STAT.

Next, we assessed expression of several genes relevant

to steatosis. Cd36 and Vldlr expression were increased

in STAT to a greater extent than in control (Additional

file 5: Figure S4C; p <0.05 in both), consistent with the

increased lipid infiltration of the liver. However, genes

involved in fatty acid metabolism, lipid droplet formation,

fatty acid oxidation, and related transcription factors did

not differ. When the data were analyzed by outcome

rather than treatment group, expression of the cholesterol

efflux regulator Abca1 was lower in mice that had more

insulin resistance (Additional file 5: Figure S4D; p <0.05).

Conversely, Cd36 was borderline elevated in mice that

had increased insulin resistance (Additional file 5: Figure

S4E; p = 0.055) and in those that had met criteria for

NAFLD (Additional file 5: Figure S4F; p = 0.055).

STAT effects on phylogenetic diversity of the intestinal

microbiota

To assess the relationship of the phenotypic changes to

gut microbial composition, we first addressed parameters

of community ecology, beginning with markers of com-

munity richness. Although α-diversity values were gener-

ally higher for the STAT mice compared to controls early

in the experiment, the only significant difference (p <0.05,

Mann–Whitney U test) was at week 8 (Fig. 5a).

Microbiota community structures are distinct between

groups

To assess the microbial community structure determined

by unweighted UniFrac analysis of the studied samples, we

visualized selected time points in relation to dietary transi-

tions by principal coordinates analysis (PCoA) (Fig. 5c).

The weeks shown represent the last sample before weaning

onto normal chow (week 4), prior to the transition from

normal chow to HFD (week 11), shortly after the transition

(week 16), and study end (week 30), respectively.

Three female mice received STAT but did not show

changes in any phenotypic changes specific to the STAT

exposure (see Fig. 2c; these mice were termed female

non-responders (FnR)). Based on UniFrac distances, at

week 4, community structure of two of the FnR mice

were STAT-like, while the third was control-like (p >0.05),

but by week 11, all three FnR communities were indistin-

guishable from those in other STAT-exposed female mice,

continuing through week 30 (p <0.05, compared with

controls at each week; data not shown). These findings

suggest that microbiota differences linked to differential

outcomes in the FnR mice may have occurred prior to

week 11.

When samples were grouped by treatment, the UniFrac

distances were significantly different between intra- and

inter-group measurements at each week (Additional file 6:

Figure S5; p <0.005 for all weeks), indicating that the

(See figure on previous page.)

Fig. 3 STAT disrupts glucose homeostasis, promoting insulin resistance. For glucose and insulin tolerance testing of 30-week-old male and female

mice, six mice from each group were challenged with 5 g/kg dextrose (IPGTT), or with 0.5 U/kg human insulin (IPITT) by intraperitoneal injection.

Blood glucose was measured by glucometer at 0, 15, 30, 60, and 120 min post-injection. p values reflect differences in rates of change comparing

STAT and control. a, b Glucose tolerance. c, d Insulin resistance. e HOMA-IR was computed as ((Glucose mg/dL) × (Insulin mU/L)/405), as described

[1] with values measured at fasting (time 0). p values determined by Kruskal–Wallis test (*p <0.05). f Observed mice with elevated HOMA-IR (>13.2).

p values calculated by Fisher’s exact test (*p <0.05). Serum was collected at 32 weeks for analysis by MILLIPLEX® MAP Magnetic Bead Panel. g Insulin,

h C-peptide, i leptin, and j ghrelin. Each point is the mean of duplicate tests. Data in a, b, c, and d are reported as mean ± SEM. p values determined

by Kruskal–Wallis test (in all panels: *p <0.05; **p <0.01; ***p <0.001)
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Fig. 4 STAT promotes NAFLD through hepatic lipid accumulation. a, b Ex vivo images and H&E stained slides (magnification × 40), showing the

scope of liver pathology. NAS score and fibrosis were determined by standardized histological scoring methods [2] with blinded readers averaging

the results of ten fields per mouse for each criterion tested. c NAS score by group. The dashed line denotes the diagnostic threshold (>5) for NAFLD.

d Fibrosis extent and severity scored from trichrome-stained sections. e Observed percent of mice with diagnostic NAFLD scores (>5; p value by

Fisher’s exact test). p values were calculated by Kruskal–Wallis test, unless noted. Lipids were extracted from frozen livers, quantified, and normalized

to protein. f Cholesterol, g triglycerides, and h free fatty acids. Data in c, d, f, g, and h are reported as mean ± SEM. p values were calculated by paired

t-test. In all panels: *p <0.05; **p <0.01; ***p <0.001

Mahana et al. Genome Medicine  (2016) 8:48 Page 10 of 20



community structures of the control and STAT groups

were distinct. When specimens were grouped by clinical

phenotype (NAFLD, insulin resistance) or by not showing

the pre-defined disease definitions (healthy), there were

distinct differences at weeks 4, 11, and 30 (Additional

file 6: Figure S5; p <0.005), but not at week 16. These

results provide evidence that before HFD initiation, the

intestinal microbial communities in mice that devel-

oped disease were distinct from those that did not. Al-

though the addition of HFD diminished this distinction,

the communities again were separate, long after the

transition (week 30).

Differentiating taxa

On the day of weaning (week 4), control mice were

enriched in Firmicutes and Candidatus Arthromitus

(“Savagella”) (SFB), while STAT mice were enriched in

Bifidobacterium, S24-7, and Prevotella, as determined by

LEfSe [24]. While some individual taxa differed, that pat-

tern was unchanged while the mice were receiving normal
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Fig. 5 STAT alters microbial communities. a α-diversity of all samples over time, rarefied to a depth of 1014. Only differences observed at week 8

were significant (p <0.05). b STAT exposure and diet corresponding to the PCoA at weeks 4, 11, 16, and 30. c–d PCoAs of beta diversity at weeks

4, 11, 16, and 30. c Control vs. STAT, d healthy vs. disease outcome. p values calculated by Kruskal–Wallis and AUC analysis (*p <0.05; **p <0.01;

***p <0.001). Adonis testing also indicated significant differences (p <0.0005) between the UniFrac distances for the diet:treatment and diet:disease

features, when accounting for the repeated measures design (Additional file 3: Table S1)
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chow (week 11). When the mice were receiving HFD

(week 16), the patterns continued similarly, except that

SFB and Prevotella differences disappeared, and Allobacu-

lum and Actinobacteria, enrichment was seen in control

and STAT mice, respectively (Fig. 6a).

In controls, the week 4 to 11 transition showed a shift

from Firmicutes-dominance, whereas the STAT transition

was accompanied by a bloom in Proteobacteria (Fig. 6b).

The transition between weeks 11 and 16 differed from the

earlier transition, with the selective power of HFD having

similar effects on control and STAT mice. The further

transitions between weeks 16 and 30 similarly affected

control and STAT communities (Fig. 6b). Thus, the effects

of HFD on individual taxa appear to overwhelm the con-

tinuing effects of STAT.

Based on the LEfSe results, we sought to determine if

any taxa could predict whether a host would develop meta-

bolic disease (defined as insulin resistance or NAFLD). To

accomplish this, a Random Forest classification model was

built to predict disease outcome (class) based on bacterial

OTU relative abundances (features) for each week of life.

Of particular interest was the observation that for early

weeks (prior to week 6); six OTUs were predictive (Prevo-

tella, Lactobacillus, Erysipelotrichaceae, SFB, and two

different S24-7 OTUs). The model had substantially (more

than twofold) better than random predictive power at

nearly all time points (Fig. 6c).

To understand the developmental differences in mi-

crobial communities, we calculated microbiota-by-age

z-scores (MAZ) [11, 25] to compare the communities

observed in control and STAT that did not develop

disease, with the STAT mice that did (Fig. 6d). Intestinal

microbiota follow reproducible patterns of community

succession during early life, allowing “microbiota age” to

be used as a benchmark of normal intestinal development,

as described in studies of humans [25]. In this model, a

maturity difference from control indicates either accel-

erated or delayed development of an age-appropriate

a

b c

d

Fig. 6 Differential microbial features between STAT and control. a LEfSe cladograms showing discriminant taxa between control and STAT at

weeks 4, 11, 16, and 30, respectively, with corresponding diet. All identified taxa were significantly altered by Kruskal–Wallis test (p <0.05) and had

at least twofold increase by LDA. b Inter-week comparisons in control (upper) or STAT (lower). The week 4 to 11 comparison shows changes across

weaning, the week 11 to 16 comparison shows changes from the introduction of HFD, and the week 16 to 30 comparison shows changes with

increasing age. c A Random Forest classification model was built to predict disease outcome (class) based on bacterial OTU relative abundance

(features) for each week of life. Heat map indicates the importance of each OTU (as mean increase error %) to the disease prediction models at

each stage of life. The mean increase error for each OTU indicates the incremental decrease in prediction accuracy if that OTU is removed from

the model. Highlighted time points show HFD. The table lists the predictive accuracy of the model by week. d Average microbiota-by-age z-score

(MAZ) over time; z-score = 0 indicates appropriate maturation over time; higher or lower z-scores indicate accelerated or delayed microbiota

development, respectively. ***p <0.001 relative to Control, one-way ANOVA with Fisher’s LSD adjusted for false-discovery rate
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microbial community. At week 4, samples from the

STAT mice that would later develop insulin resistance

or NAFLD had significantly lower MAZ scores than

controls (p <0.001), but differences were lost at weeks

11, 16, and 30. These data provide evidence that STAT

can delay the normal development of the early-life

microbiome, and that this delay is associated with ele-

vated risk for metabolic diseases in later life.

Associations between host phenotypes and microbial

taxa

We applied multi-level, sparse PLS models to fecal micro-

biota data to assess linear relationships between OTUs

and seven host phenotypes (Fat, Lean, BMC, DMI,

Weight, Weight + 1, and NAFLD). We verified the efficacy

of a multi-level linear model by visualizing the within-

subject portion of the clr-transformed data. ISOMDS

indicates clear separation between subjects of differing

groups (Fig. 7a compared to Additional file 4: Figure S3A).

We also computed biplots for the sPLS model (Fig. 7b

and Additional file 7: Figure S6B), with sample scores

colored by (scaled and centered) response variable and

significant OTUs, represented by a loading vector colored

by phylum.

Overall, 29 taxa (about 4 % of the total) were selected

by the fully specified sPLS model, and three additional

a b

Fig. 7 Fecal microbial compositions are associated with host body phenotypes and disease indications. a Isometric multidimensional scaling (MDS) of

Euclidean distances between clr-transformed OTU compositions, with within-subject variances extracted. The first two MDS components are shown,

with Control vs. STAT and NC vs. HFD (point color, shape) explicitly modeled in this approach. This was done by evaluating between-subject variances

within each respective group and subtracting from the full dataset. b Within-subject response-selected OTUs are shown as biplots. For each phenotype

of interest (NAFLD, BMC, or Weight), the relevant two-component (out of seven possible latent components) subspaces from the sPLS model are

shown. Taxa are filtered for statistical significance (α = 10–2) and key taxa are highlighted for biological significance. “Response Level” indicates the

centered and scaled within-subject variances of the relevant measurement
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OTUs (two Clostridiaceae, and Odoribacter) were found

to not be significant at α = 10–2. However, we found a

large number of significant associations between taxa

and body composition phenotypes (Additional file 8:

Table S2). With the exception of two S24-7 families, all

other Bacteroidetes OTU abundance levels were positively

associated with body mass phenotypes, while Firmicutes

associations were mixed.

More specifically, we found that Lactobacillus (n = 2)

OTUs to be significantly associated with Lean, BMC,

DMI, and Weight and one other Lactobacillus directly

associated with Fat, DMI, Weight, and Weight + 1. This

is consistent with prior findings that Lactobacillus

reuteri reduces abdominal fat and age-associated weight

gain [43]. Turicibacter genera (n = 2) were found to be

negatively associated with DMI and Fat, but were not

significantly associated with other body composition

measurements, consistent with prior studies of low-dose

antibiotic exposure [12] and HFD feeding [44] in mice.

A single Anaeroplasma genus was negatively associated

with BMI, but not NAFLD, which is consistent with

HFD administration in C57BL/6 J mice [45] and abun-

dance enrichment in low-weight rabbits [46].

Notably, we found a negative association between an

Allobaculum OTU and NAFLD, accompanied by signifi-

cant positive associations to other body composition

measurements. Our findings are consistent with the

previous observations that Allobaculum has been dir-

ectly correlated with adiposity after switch to a HFD

[12], yet negatively correlated with the development of

the metabolic syndrome and total cholesterol levels

[47, 48]. Finally, we also find Candidatus Arthromitus

(SFB, n = 3 OTUs) to be negatively associated with body

composition phenotypes, primarily Weight, BMC and

Lean (consistent with elevated levels of SFB in control vs.

STAT mice reported in [12]) with one particular SFB

OTU predicted to have additional associations with

NAFLD, Fat, and Weight + 1.

Microbial network topology corresponds to host

physiology

We next sought to develop a network model that would

permit insights about microbial relationships with the

physiology of the hosts studied. The PLS model that we

used transforms the primary microbiota population data

into a subspace that maximally co-varies with the host

responses. Using a Gaussian mixture model with boot-

strap stability validation of cluster assignment, we per-

formed unsupervised clustering of these transformed

data. These studies revealed that samples are best grouped

into six clusters, each of which has a distinct phenotype

profile (Fig. 8a). Clusters 1, 3, and 5 were primarily associ-

ated with STAT mice. The switch from normal chow to

high fat diet largely corresponds to the transition from

Cluster 3 to Cluster 5. Clusters 2 and 4 were associated

with Control mice receiving normal chow or HFD, re-

spectively. As such, Cluster 4 comprises the microbiota in

fecal samples primarily from 18–30-week-old mice.

To identify whether changes in host physiology are

also reflected in the global rewiring of the gut microbial

community structure that we observed, next we inferred

microbial association networks from each of the six

sample groups and analyzed their global topological

network properties. Using graphlet correlation distance

as a global distance measure between networks, and

using isometric MDS as an analytic tool, we inferred a

low-dimensional embedding of the microbial association

networks (Fig. 8b). Importantly, these largely recapitulate

the transitions seen in the subspace clustering described

above (Fig. 8a). Networks 2 and 3 are closest to network

1. Networks 3 and 5, representing the gut microbiome

community in samples from mice that received STAT

are distinct from networks 2 and 4, which represent the

microbial communities in samples from control mice

Network 6, which is inferred from samples of older

mice, is distinct from all the other networks.

Since clusters are dominated by samples that were

obtained from mice under specific experimental pertur-

bations, we classified the networks as being dominated

by STAT (clusters 1, 2, and 3) or Control (2 and 4) or by

normal chow (NC) (clusters 1, 2, and 3) or by HFD (4, 5,

and 6). Then we calculated several graph topology sta-

tistics to assess trends as a function of sample type

(Additional file 9: Figure S7). Overall, NC and STAT

networks comprise more taxa, have larger network di-

ameters, and show lower average betweenness and de-

gree centrality. These are ecological terms indicating a

node’s centrality in a network and the number of cross-

ties, and low values are consistent with greater dispersion

within the network. The HFD and Control networks

tended to be more modular. Finally, the NC and Control

networks had higher assortativity at the phylum level; this

means that under normal conditions in the absence of

antibiotics or an abnormal diet, particular OTUs are more

likely to be directly associated with common phyla than

under antibiotic and HFD exposure.

We also analyzed OTUs that could potentially serve

as keystone species in the different association net-

works. For each network, we identified the top two taxa

that serve both as hub species (having high node

degree) and as bottleneck species (as characterized by

the highest betweenness centrality) (Additional file 10:

Figure S8). Across all networks, these potential key-

stone taxa are largely represented by Lactobacillus, Lach-

nospiraceae, and S24-7 families. For instance, in network

1, the top two taxa are Eubacterium dolichum and Lacto-

bacillus reuteri. While these OTUs are not predicted to be

directly associated with host physiological changes, both
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species are known to have strains that are resistant to

penicillin [49, 50] and require sugar and amino acid

import for survival in the host GI tract. In particular,

L. reuteri has been shown to be a key mediator in

host and microbe interactions for processing carbohy-

drate metabolites [51].

In addition to changes in microbial compositions,

we also analyzed whether overall network robustness

correlates with host health, since microbial ecological

networks should have evolved to be resilient to distur-

bances. One example of this concept would be redun-

dancy in network wiring that may ensure access to a vital

metabolite. Thus, we hypothesized that Western-style in-

terventions would promote network fragility by disrupting

a critical threshold of keystone taxa or by changing the

flux of normal metabolic exchange.

a

c

b

Fig. 8 Network properties recapitulate physiology. a For each of the six clusters, which were defined from clustering scores in the multilevel

sPLS model-fitted subspace, we show the treatment group identity (STAT/Control and NC/HFD, colored horizontal bars) and average physiological

responses (vertical bar plots). Since each response is scaled and centered, the axes represent the mean response over the whole population at each

time point. The state-change diagrams represent real-time transitions for the community in an individual mouse moving into a new cluster. For greater

clarity, we removed transitions representing fewer than six mouse cluster changes. Clusters 1 and 3 are predominantly obtained from communities in

STAT mice early-in-life, and Cluster 2 represents the early-in-life communities in control mice. The switch from NC to HFD corresponds to transitions

from Cluster 3 to 5 and from Cluster 2 to 4. Transitions to Cluster 6 primarily include samples from week 30 STAT mice and week 18 and 30 Control

mice. The circular arrows shown indicate those communities in mice that do not change clusters b We inferred networks using SPIEC-EASI [34] over

the set of samples defined by each cluster. To compare graphs, we include a two-dimensional embedding of graphlet correlation distances (using

isometric MDS, with the network positions shown as colored hexagons). These show that based on summarized local network topologies, closeness

networks reflect cluster identity. The networks are shown in force directed layouts (overlaid on the ISOMDS, near their respective position in the

embedding) and nodes are colored at the Phylum level, except for the two nodes with the highest betweenness (shown in gray, see also Additional

file 6: Figure S6). c We used natural connectivity to assess the robustness of microbial ecological interaction networks to sequential node removals. The

order of node removals was either random or ordered by degree or betweenness centrality. Natural connectivity is shown as a function of the relative

size of the network
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To test this hypothesis, we used natural connectivity

as a general stability metric of the inferred networks

after simulated network “attacks”. We found that only

the network from cluster 2 – control mice receiving

normal chow – was reliably robust, independent of the

specific node removal strategy (Fig. 8c). Network 4,

representing the microbial community after the switch

to HFD, showed a decrease in network robustness, yet

remained more stable than most STAT networks. Inter-

estingly, the natural connectivity of network 4 decreased

at a slower rate when bottleneck taxa were removed

compared to hub taxa. This property suggests an in-

creased redundancy of bottleneck taxa in the absence of

antibiotic exposure. Importantly, microbial networks

inferred in the communities in the STAT-exposed mice

were found to be particularly fragile under targeted at-

tacks, independent of the diet.

Discussion
This study both confirms and extends our prior stud-

ies of antibiotic-induced growth promotion in murine

models [11–13]. We confirm the growth promotion

of STAT [12, 13] and its enhanced effect in combination

with HFD compared with HFD-only controls [12]. Con-

sistent with the enhanced adiposity were elevated plasma

levels of insulin, C-peptide, leptin, and triglycerides [52].

The decreased ghrelin observed might also reflect the

extreme adiposity of the mice [53]. Our observation that

the perturbed microbiome is a key player in the develop-

ment of NAFLD is consistent with a large body of work in

both rodent models and human studies [6–10].

This work included both males and females; while the

sexes shared many of the same STAT-induced phenotypes,

there are several key differences in specific phenotypes

related to diabetes, hyperlipidemia, and inflammatory

cytokines. This model, and its manipulation, provides

approaches to untangling the complex sex-specific patho-

physiology observed in many prior studies [54, 55]. We do

not have simple answers for the differences observed

between male and female mice; however, we found differ-

ences in our prior study as well [12]. There are many prior

citations in the literature showing sexual dimorphism in

relation to diet and adiposity [56]. Adiposity and lean

mass are primary determinants of glucose responsiveness;

differences in body composition generally underlie these

observations [57]. Hormonal differences between males

and females may play a role in explaining these observa-

tions; and recent microbiota transfers between male and

female mice affected phenotypes in a murine model of

type 1 diabetes [58].

Cox et al. showed that early-life antibiotic exposure

was of critical importance to the development of the

obesity phenotype [12]. This study provides further

supporting evidence. As previously observed [12], both

body weight (Fig. 2b) and microbial community compos-

ition (Fig. 5) were already altered by the first measure-

ment at the time of weaning (4 weeks). Furthermore, by

the time of this earliest measurement, we found evi-

dence for microbial community immaturity (Fig. 6c, d),

taxa predictive of disease (Figs. 6c and 7, Additional file

8: Table S2), and altered community composition in

mice that would eventually develop disease (Fig. 6c). To-

gether, these studies further emphasize the criticality of

early life microbiome perturbations in the development

of later in life phenotypes, especially as enhanced by

further environmental (antibiotic and/or dietary) insults.

Our prior studies addressed whether a relatively brief

exposure (first 4 weeks of life) was sufficient for an

adiposity phenotype; we found that it was [12]. In that

study, we also compared starting antibiotics slightly pre-

birth and post-weaning; although the effects were in the

same direction, the stronger phenotype was in the mice

with the earlier exposure.

We had previously observed that female STAT mice

consumed significantly more food than female control

mice. In the current study (Additional file 1: Figure S1),

female STAT mice consumed significantly fewer calories.

Microbiome differences in the Cox et al. study (LEfSe

comparison of STAT vs. control at 4 weeks) also seem

inconsistent with the current study. There were a num-

ber of differences between the present studies and our

previous observations, including the age at which the

animals were studied in metabolic cages, and even the

form of penicillin used. As such, it is hard to reach con-

clusions across experiments and we focus on differences

within experiments in the different experimental groups.

STAT enhanced the abnormalities in insulin homeo-

stasis observed in the mature mice, often already obese,

that were receiving long-term HFD. Both male and fe-

male mice had multiple abnormal markers consistent

with T2DM. Two recent, large epidemiologic studies in

England and Denmark, point to prior exposure to antibi-

otics, even years earlier, as a risk factor for development

of T2DM [59, 60]. The current studies provide a model

system to more closely examine the pathogenic relation-

ship between early life microbiome perturbation and

later development of obesity and related metabolic

dysfunction.

In the presence of HFD, STAT exposure causes marked

hepatic abnormalities. By 32 weeks, the increased hepatic

fat was visible to the unaided eye (Fig. 4a), while micro-

scopic examination revealed marked increases in hepatic

steatosis and hepatocyte ballooning (Fig. 4b, c). The fat

accumulation was primarily triglycerides (Fig. 4g), with

increased Vldlr expression in STAT (Additional file 5:

Figure S4C) and diminished ABCA1 in mice with insulin

resistance (Additional file 5: Figure S4D). These findings

suggest that STAT-exposed mice accumulate hepatic
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lipids by both increased uptake (via VLDL receptor) and

decreased efflux through ABCA1. One possible explan-

ation for this phenomenon is altered gut permeability

[61], allowing translocation of bacteria, their constituents,

and/or their products to the hepatic parenchyma via the

portal circulation; we plan to explore this hypothesis in

future studies.

Since normal chow is high in plant fiber, cellulose-

degrading members of the phylum Firmicutes dominate

the microbial communities of control mice. As seen in

this and other studies [12, 13], STAT exposure reduces

Firmicutes dominance, with members of other phyla

increasing in relative abundance. Obesity in humans and

rodents has been associated with decreased phylogenetic

diversity of the intestinal microbiota [62, 63]; however,

these observations generally concerned humans and mice

that already were obese. The current findings are consist-

ent with our previous observations in STAT-exposed mice

that increases in measured diversity was a predictor of

the development of obesity [12]. Consistent with prior

studies [12], analysis of fecal β-diversity shows that

STAT-exposed communities are distinct from control

from the first observation at 4 weeks, throughout life,

and across all dietary interventions (Fig. 5c). LEfSe

analysis showed parallel dynamic patterns in the abun-

dance of specific taxa, in both STAT and control com-

munities at each time point. Importantly we found that

when the 4-week-old mice were grouped by outcome

and not by treatment, the communities from those that

would eventually develop NAFLD or insulin resistance

were distinct from the communities of those who would

remain healthy. One implication of this finding is that

community structure in early life could be used for both

prediction and for possible interventions to prevent devel-

opment of metabolic diseases.

Detecting significant host-taxa associations from high-

dimensional microbial compositional data, under a multi-

level experimental design and with multiple, relevant

clinical indications is an important challenge in micro-

biome research. Here, we developed a general analysis

framework based on compositionally robust data trans-

formations, data decomposition steps, and a sPLS re-

gression that accounts for compositional biases and

treatment-irrelevant variation in the data. This has led

to predictions about the relationship between specific

OTUs and host phenotypes, while correcting for pos-

sible colinearity within OTU and response measure-

ments. Many of the inferred direct relationships and

targeted predictions in this study are consistent with

previous studies of relative abundance changes in mam-

malian guts.

We were also able to make novel specific predictions,

e.g. that Allobaculum may increase in abundance in

direct association with weight gain during aging, but still

be largely protective against NAFLD, particularly in the

absence of STAT. Describing gut microbiota compos-

ition in mice prone or resistant to NAFLD development,

Le Roy et al. observed a negative association between

Allobaculum and NAFLD, consistent with our findings

[7]. The strong hepatic phenotypes were not apparent

until sacrifice, so we did not have the opportunity to

explore them pre-mortem. However, we found high

NAFLD activity scores (Fig. 4c) and substantial inflam-

mation (Fig. 4d), and were able to characterize the

nature of the lipid accumulation (Fig. 4f–h). Future

studies will focus on specific steps leading to these

extreme phenotypes.

We had previously observed significant differences in

bone mineral density due to STAT exposures [12, 13].

To address this point further, we sought to determine

whether microbiota composition would predict scale

weight at the next measured time point. Although using

the PLS model, there are differences between Weight

and Weight + 1, we did not quantify these relatively

minor effects. On the other hand, including Weight + 1

led to a stable clustering solution; therefore, we kept

this response variable for consistency while developing

the pipeline.

The proposed analysis techniques also have the power

to correct for transitive correlations, e.g. by distinguish-

ing between direct and indirect associations between

specific SFB OTUs and NAFLD or other body compos-

ition measurements. Additionally, we have demonstrated

that learning OTU-OTU associations in different eco-

logical contexts can lead to predictions about how entire

ecosystems are structured and to identification of key-

stone species. While these species may be distinct from

those that demonstrably co-vary with host phenotypes,

they could be critical control points through which

ecological interventions propagate. For instance, we have

found that non-intervention corresponds to overall

network stability, even in an inbred mouse strain, but

targeted removal of critical nodes in the presence of low

doses of antibiotics could lead to ecosystem collapse.

These putative keystone taxa: E. dolichum and, in par-

ticular L. reuteri, have been shown to have probiotic

effects and many microbe interactions. We confirm this

finding with network analysis and additionally postulate

that these taxa could be the last line of defense in the

presence of a significant intervention (STAT). However,

before targeted experiments can be done, we must

identify species and strain level identities for these taxa,

as well as construct dynamic models, which requires

more densely sampled time series. The first point guar-

antees specificity of a transfer or targeted intervention,

while the second point would allow us to generate

hypotheses about the direction and magnitude of the

impact.
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Conclusions
In conclusion, extension of the STAT studies provides

new models relevant to the pathogenesis of obesity, T2D,

and NAFLD. The consistency of the observations, both

internally and in relation to prior studies [12, 13], indicate

the tractability of the model for future investigations. Use

of perturbations, such as dietary and antibiotic exposures,

and developing new computational tools provides new

approaches for assessing the complexity inherent in

studies of the relationship between the gut microbiota and

metabolic phenotypes and disease.
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All animal experiments were performed according to
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Availability of data and materials

The 16S sequence data have been uploaded to Qiita

(https://qiita.ucsd.edu/) with Study ID: 10469 as the

identifier. These data are also available on EBI (https://

www.ebi.ac.uk/metagenomics/) with ERP014859 as the

identifier.

Additional files

Additional file 1: Figure S1. STAT did not change energy balance, or

bone morphometrics. STAT (3 male, 3 female) and control (3 male, 3

female) mice were housed individually in metabolic cages for 5 days.

A Gross caloric intake. Food consumed was measured daily by weight.

Calories per gram from the chow package insert were used to calculate

calories consumed. Each point represents a single 24 h of data. B Gross

fecal calories. All fecal pellets were harvested for each mouse each day,

and homogenized to create a daily fecal pellet for each mouse. Total dry

fecal volume per day combined with bomb calorimeter values for the

daily pellets were used to determine total calories out. C Net daily

calories, calculated as (calories in (from A) – calories out (from B)).

D Proportion of daily caloric intake retained (Net daily calories (from C)

divided by gross caloric intake (from A)). Data points are the mean of

duplicate determinations (Kruskal–Wallis test; *p <0.05). DEXA bone

measurements for all four groups: E mineral density, F mineral content,

and G area. Arrow indicates start of the HFD. p values calculated from

individual mouse data (Mann–Whitney U test; *p <0.05; **p <0.01;

***p <0.001). Gray dots signify outliers greater than 2 standard

deviations from the mean. (PDF 1337 kb)

Additional file 2: Figure S2. Quality scores across all sequenced bases.

Amplicon pools were sequenced on the 2 × 150 bp Illumina MiSeq

platform and total reads were across both paired ends. A For 10, 725,612

total reads, 3,688,882 were joined using the EA-utils toolbox. To ensure

higher fidelity of paired-end read-joining, bases with PHRED threshold

<18 were trimmed from the ends of each sequence read (number of

“Trimmed Seqs” for each paired end read). B, C With summarization

produced by FastQC, the average and range of base-pair quality was

high (PHRED scores >30) across the length of the sequenced reads.

(PDF 89 kb)

Additional file 3: Table S1. Adonis tests of repeated measures.

(DOCX 20 kb)

Additional file 4: Figure S3. A We used the mclust package to find the

optimal model and number of mixture parameters (number of data

classes) using a 14 variants of a Gaussian mixture model (GMM), over 3-9

possible data classes. The VVE model (ellipsoidal, equal orientation) under

6 latent components was selected, under a Bayesian Information

Criterion (starred). The EVE model (ellipsoidal, equal volume and

orientation) was also competitive, but slightly suboptimal. For a full list of

possible models, see the help page for ’mclustModelNames’ in R. B To

visualize the clustering solution, we back-transformed the data (sPLS

scores) using the within-cluster precision matrix and scaling factor,

estimated by the GMM independently for each cluster. The first three

model components are shown, together with cluster identity and

Control/STAT status. (PDF 65 kb)

Additional file 5: Figure S4. Inflammatory and metabolic profiling

in control and STAT mice. Serum was collected at 32 weeks for analysis

by MILLIPLEX® MAP Magnetic Bead Panel. Circulating inflammatory

hormones A IL-6 and B TNF-α were measured. Mice were sacrificed

at 32 weeks of age and hepatic gene expression was assessed using

RT-qPCR. C Genes involved in free fatty acid (FFA) transport, triglyceride

(TG) uptake, fatty acid catabolism, TG synthesis, lipid droplet formation,

transcription factors, and FFA oxidation were measured. D Abca1

expression from mice that had normal vs. high HOMA-IR scores. E Cd36

expression from mice that had normal vs. high HOMA-IR scores. F Cd36

expression from mice that had normal vs. positive NAFLD diagnosis.

p values calculated from individual mouse data (Mann–Whitney U test;

*p <0.05). (PDF 64 kb)

Additional file 6: Figure S5. STAT alters microbial communities. Unifrac

distance at weeks 4, 11, 16, and 3. A Control (C) vs. STAT (S); “I” represents

intergroup measures. B Healthy (I) vs. disease (D) outcome; “I” represents

intergroup measures. C Control (C) vs. STAT (S) with non-responder

females; “CN” represents the intergroup measure between control

and non-responders; “NS” represents the intergroup distance between

non-responders and STAT. p values calculated by Kruskal–Wallis and

AUC analysis (*p <0.05; **p <0.01; ***p <0.001). (PDF 58 kb)

Additional file 7: Figure S6. Additional OTU-host phenotype associations.

A Isometric Multidimensional scaling (MDS) of Euclidean distance between

CLR transformed OTU compositions. The first two MDS components are

shown, with Controls vs. STAT and NC vs. HFD (point color, shape) leads to

an effective unsupervised grouping. B Additional biplots for within-subject

response-selected OTUs are shown. For each phenotype of interest (DMI, Fat,

Lean, Weight + 1), the relevant two component subspace from the sPLS

model (out of six possible latent components) are shown. Taxa are filtered for

statistical significance (α = 10–2) and key taxa are highlighted for biological

significance. “Response Level” indicates the centered and scaled within-

subject variances of the relevant measurement. (PDF 125 kb)

Additional file 8: Table S2. Significant Taxa-host associations as

determined from sparse PLS regression. p values are based on bootstrap

evaluation of the PLS permutation test compared to a permutation-based

null model on the variable support selected by sparse PLS. (PDF 43 kb)

Additional file 9: Figure S7. Since clusters are dominated by samples

under specific experimental perturbations, we classified networks as

being dominated by STAT (clusters 1, 2 and 3) or Control (2 and 4) or by

NC (clusters 1, 2 and 3) or HFD (4, 5, and 6). We computed a number of

graph topology statistics to assess trends as a function of sample type.

(PDF 70 kb)

Additional file 10: Figure S8. Betweenness centrality vs. Degree.

For each node, we computed the degree and betweenness

centrality. The top two OTUs by betweenness are consistent with

degree, and are highlighted in gray. For each network the lineages

of these are: 1. f__Erysipelotrichaceae;g__[Eubacterium];s__dolichum

and f__Lactobacillaceae;g__Lactobacillus;s__reuteri; 2. o__Clostridiales

and o__Clostridiales;f__Ruminococcaceae;g__Oscillospira;

3. o__Bacteroidales;f__S24-7 and o__Clostridiales;f__Lachnospiraceae;

4. o__Bacteroidales;f__S24-7 and o__Clostridiales;f__Dehalobacteriaceae;

g__Dehalobacterium; 5. o__Clostridiales;f__Lachnospiraceae;g__Roseburia

and o__Clostridiales; 6. o__Bacteroidales;f__S24-7 and f__Lactobacillaceae;

g__Lactobacillus. (PDF 301 kb)

Abbreviations

clr: Centered log-ratio; DEXA: Dual energy X-ray absorptiometry; FnR: Female

non-responders; HFD: High-fat diet; HOMA-IR: Homeostatic model

assessment of insulin resistance; IPGTT: Intraperitoneal (IP) glucose tolerance

tests; IPITT: Intraperitoneal insulin tolerance tests; ISOMDS: Isometric
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multidimensional scaling; LEfSe: Linear discriminant analysis effect size;

MDS: Multidimensional scaling; NAFLD: Non-alcoholic fatty liver disease;

pam: Partitioning around mediods; PCoA: Principal coordinates analysis;

SPIEC-EASI: Sparse Inverse Covariance estimation for Ecological ASsociation

Inference; sPLS: L1-penalized partial least squares regression; StARS: Stability

approach to regularization selection; STAT: Sub-therapeutic antibiotic

treatment; T2DM: Type 2 diabetes.
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