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Antibiotics in the clinical pipeline in 2011

Mark S Butler and Matthew A Cooper

The emergence of multi-drug-resistant bacteria and the lack of new antibiotics in the antibiotic drug development pipeline,

especially those with new modes of action, is a major health concern. This review lists the 20 new antibiotics launched

since 2000 and records the 40 compounds currently in active clinical development. Compounds in the pipeline from new

antibiotic classes are reviewed in detail with reference to their development status, mode of action, spectrum of activity

and lead discovery. In addition, the NP or synthetic derivation is discussed, with activity against Gram-negative bacteria

highlighted.
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INTRODUCTION

The discovery of sulfonamides and b-lactam antibiotics in the 1930s
had a profound impact on human health by enabling rapid treatment
of patients with bacterial infections that previously had often proved
fatal.1,2 Over the next 40 years, now seen as the ‘‘golden era’’ of
antibiotic research, the majority of antibiotic drug classes in use today
were discovered. Since 1970, most newly approved antibiotics (see
Table 1 for antibiotics launched since 2000) have been based on these
known scaffolds, with the exception of linezolid (1), an oxazolidinone;
daptomycin (2), a lipopeptide; and the topical antibiotics mupirocin
(launched 1985), a pseudomonic acid, and retapamulin (3), a pleur-
omutilin derivative.3

The lack of new antibiotics, the emergence of multi-drug-resistant
bacteria and the economic and regulatory challenges of antibiotic
research have been discussed in depth.4–20 The potential for a major
antibiotic healthcare crisis is best summarized by the Infectious
Diseases Society of America (IDSA)21–23 and the European Centre
for Disease Prevention and Control,16,24 both of which report that
there are only a few potential drugs in clinical development that (1)
offer significant benefits over existing drugs and (2) that target Gram-
negative, hospital-based infections. Gram-negative bacteria are espe-
cially difficult to kill as they have an additional outer membrane
permeability barrier that compounds need to surmount to be effica-
cious, as well as often possessing multiple efflux pumps, and antibiotic
and target-modifying enzymes.20,25,26 Despite these considerable chal-
lenges, antibiotic drug development is in fact well validated, with a
historically high approval rate following successful completion of
phase-I studies.15

This article reviews all antibiotics that have been launched since
2000, and compounds that are currently undergoing clinical develop-
ment in phase-I, II or III trials, and under regulatory evaluation as of

early 2011. Compounds representing new antibiotic classes are
reviewed in detail with reference to their development status, mode
of action, spectra of activity and historical discovery. New combina-
tions of previously approved antibiotics have not been included. In
addition, the origin of the drug pharmacophore; the natural product
(NP) or synthetic derivation, is also reviewed. These data were
obtained by reviewing the journal literature and internet resources
such as company webpages, clinical trial registers and biotechnology-
related newsletters. Some compounds where there has been no
evidence of recent development have been excluded from this review.
Every endeavor has been undertaken to ensure that these data are
accurate, but it is possible that compounds undergoing early clinical
development have been overlooked.

The drug development and approval process, as well as commonly
used abbreviations associated with antibiotic development used in this
review, are summarized as follows:

� Before clinical trials can start, an Investigational New Drug
Application (IND) must be approved by the US Food and
Drug Administration (FDA), European Medicines Agency (EMA),
Japanese Pharmaceuticals and Medical Devices Agency (PMDA)
or equivalent agency.

� The clinical indication for clinical trial approval in general falls
within one of the following categories of antibacterial infections:
Clostridium difficile infections (CDI), C. difficile-associated diarrhea
(CDAD), skin and skin structure infections (SSSi), which are further
divided into complicated (cSSSi), uncomplicated (uSSSi) and acute
bacterial (ABSSSi), community/hospital acquired pneumonia (CAP/
HAP), community-acquired bacterial pneumonia (CABP), urinary
tract infections (UTI), complicated intra-abdominal infections
(cIAI) and tuberculosis (TB).
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� Upon successful completion of phase-III clinical trials, a New Drug
Application (NDA/FDA and PMDA) or a Marketing Authorization
Application (MAA/EMA) must be submitted to seek approval to
be able to market the drug.

ANTIBACTERIAL DRUGS LAUNCHED SINCE 2000

Since 2000, 20 new antibiotics have been launched worldwide (Table 1;
Figures 1 and 2), of which 11 are NP-derived and nine are synthe-
tically derived. A majority of the NP-derived antibiotics belong to
the b-lactam class, with the other five belonging to separate classes.
Noteworthy among the NP-derived antibiotics are daptomycin (2)
and retapamulin (3), the first members of the lipopeptide and
pleuromutilin classes, respectively, approved for use in humans.
Within the synthetically derived antibiotics there is minimal diversity,
with eight of the nine antibiotics belonging to the quinolone class and
linezolid (1), which is the first and, to date, the only representative of
the oxazolidinone class.

COMPOUNDS UNDERGOING CLINICAL EVALUATION

This section describes compounds and their structures currently
undergoing clinical trials and under regulatory evaluation for the
treatment of bacterial infections as of early 2011 (phase-III/(NDA) in
Table 2, with structures in Figure 3; phase-II in Table 3, with structures
in Figures 3 and 4; and phase-I in Table 4, with structures in Figure 7).
Compounds that represent new antibiotic classes are underlined in the
tables and a summary of their development status, mode of action and
discovery is discussed in detail.

Phase-III trials and NDA/MAA applications
Fidaxomicin (21), which is being developed by Optimer Pharmaceu-
ticals (San Diego, CA, USA), is currently undergoing evaluation for

market approval by the FDA (NDA finalized in November 2010) and
EMA (MAA submitted in September 2010) for the treatment of
patients with CDIs.27,28 C. difficile is a spore-forming Gram-positive
anaerobe that can cause serious intestinal infections through secreted
toxins that cause inflammation of the colon, severe diarrhea, fever
with an elevated white blood cell count, and intestinal paralysis and
sepsis in widespread infections.29,30 CDI can be lethal, especially in
compromised patients, and there are increasing worldwide outbreaks
of new virulent and highly toxic strains of C. difficile.31 Currently only
metronidazole and vancomycin are routinely used to treat CDI, and
development of new agents is urgently required.32 Data from two
phase-III trials indicated that fidaxomicin (21) was able to achieve the
primary endpoint of clinical cure, which was defined as patients not
requiring any further CDI therapy 2 days after the completion of the
fidaxomicin (21) course.33,34 In addition, fidaxomicin (21) showed a
higher global cure rate than vancomycin and a lower recurrence rate,
which was defined as no recurrence within 4 weeks. Fidaxomicin (21)
belongs to a family of actinomycete-derived macrolactone with a
complex history. The structure of 21, which was named tiacumicin-B,
and a series of analogs were reported by Abbott Laboratories in a
patent filed in 198635 and published in 1987.36,37 Fidaxomicin (21)
and analogs have identical structures to the lipiarmycins whose
isolation and biological activity, and structure elucidation, were
reported in 197538–41 and 198742,43 respectively, and the clostomicins
whose activity and structures were reported in 1986.44 Early on these
macrolactones were shown to be inhibitors of the bacterial DNA-
dependent RNA polymerase.41,45–47 Recent studies have shown that
these macrolactones impede the de novo initiation of RNA synthesis
through binding to the ó70-subunit region-3.2 and the RNA poly-
merase b¢-subunit switch-2 element, which controls the clamping of
the promoter DNA in the RNA polymerase active-site cleft.48 In

Table 1 New antibacterial drugs launched since 2000 divided into NP- and synthetically-derived listed by antibiotic class

Year Name Class Lead (source)

NP-derived

2002 Biapenem (4) b-Lactam (carbapenem) Thienamycin (actinomycete)

2002 Ertapenem (5) b-Lactam (carbapenem) Thienamycin (actinomycete)

2005 Doripenem (6) b-Lactam (carbapenem) Thienamycin (actinomycete)

2009 Tebipenem pivoxil (7) b-Lactam (carbapenem) Thienamycin (actinomycete)

2008 Ceftobiprole medocaril (8) b-Lactam (cephalosporin) Cephalosporin (fungus)

2010 Ceftaroline fosamil (9) b-Lactam (cephalosporin) Cephalosporin (fungus)

2001 Telithromycin (10) Macrolide (ketolide) Erythromycin (actinomycete)

2003 Daptomycin (2)a Lipopeptide Daptomycin (actinomycete)

2005 Tigecycline (11) Tetracycline Tetracycline (actinomycete)

2007 Retapamulin (3)a,b Pleuromutilin Pleuromutilin (fungus)

2009 Telavancin (12) Glycopeptide Vancomycin (actinomycete)

Synthetically-derived

2000 Linezolid (1)a Oxazolidinone Oxazolidinone

2002 Prulifloxacin (13) Fluoroquinolone Quinolone

2002 Pazufloxacin (14) Fluoroquinolone Quinolone

2002 Balofloxacin (15) Fluoroquinolone Quinolone

2004 Gemifloxacin (16) Fluoroquinolone Quinolone

2007 Garenoxacin (17) Quinolone Quinolone

2008 Sitafloxacin (18) Fluoroquinolone Quinolone

2009 Antofloxacin (19)c Fluoroquinolone Quinolone

2009 Besifloxacin (20) Fluoroquinolone Quinolone

Abbreviation: NP, natural product.
aFirst member of a new antibiotic class approved for human use underlined. Please note that pleuromutilin derivatives had been previously used in animal health.132

bFor topical use only.
cJointly developed by the Shanghai Institute of Materia Medica and Anhui Global Pharmaceutical and approved for use in China in 2009.133–135
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addition to showing activity against Gram-positive bacteria, these
macrolactones also function against multi-drug-resistant tuberculosis
(TB) strains through the same mechanism.49

Phase-II trials
In December 2009, Nanotherapeutics (Alachua, FL, USA) acquired
ramoplanin (30) from Oscient Pharmaceuticals, a company under-
going bankruptcy proceedings that had in turn licensed the North
American rights from Vicuron (Figure 5).50 Ramoplanin (30), which
is the abbreviation commonly used for ramoplanin-A2, has been
evaluated in phase-II trials for the treatment of C. difficile-associated
diarrhea, with plans to undertake phase-III trials.50 The ramoplanin
lipopeptide antibiotic complex produced by Actinoplanes sp. was first
described by Gruppo Lepetit S.p.A. in 1984,51,52 with structures
reported in 1989.53–55 Ramoplanin (30) has been shown to bind to
the peptidoglycan intermediate Lipid-II, which disrupts bacterial cell

wall synthesis, causing bacterial cell death.56–58 An X-ray structure of
ramoplanin (30) in the presence of detergents showed that 30 forms
an intimate and highly amphipathic dimer, which allowed a model of
30 binding to Lipid-II to be proposed.59

GSK1322322 (34),60–63 which is being developed by GlaxoSmithK-
line (GSK, Brentford, UK), has recently completed a phase-II trial for
acute bacterial skin and skin structure infections (ABSSSis).64 As well
as possessing potent activity against methicillin-resistant Staphylococ-
cus aureus (MRSA), this compound also shows activity against the
respiratory pathogens Haemophilus influenzae and Streptococcus pneu-
moniae. GSK1322322 (34) targets bacterial peptide deformylase, a
metallo-hydrolase enzyme that catalyzes the removal of the formyl
group from the N-terminal methionine following translation.65,66

BB83698 (47) (Oscient)66,67 and LBM-415 (48) (Novartis, Basel,
Switzerland)66,68,69 were the first peptide deformylase inhibitors to
reach phase-I trials, but no further development of either compound
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Figure 1 Structures of NP-derived antibiotics launched since 2000.
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was undertaken.66 The original lead compound, actinonin (49),70,71

was identified by Vicuron as a peptide deformylase inhibitor by
searching for NPs that possessed a hydroxamate metal chelating
group and methionine-like structures (Figure 6).72

NVC-422 (35) (N,N-dichloro-2,2-dimethyltaurine), which was dis-
covered by NovaBay Pharmaceuticals (Emeryville, CA, USA), is being
evaluated in a phase-II trial to prevent urinary catheter blockade
and encrustation.73 NovaBay has also been working with Alcon
(Hünenberg, Switzerland) for eye, ear and sinus infections, and
contact lens care, and with Galderma (Les Templiers, France) for
acne, impetigo and other dermatological indications.74 NVC-422 (35)
was designed to be a more stable derivative of the naturally occurring
oxidant N-dichlorotaurine.75–77 N-chloro derivatives of amino acids
and peptides can act as oxidants, and are involved in the human
immune defense system in the killing of pathogens and control of
inflammatory responses.78 N-dichlorotaurine was first identified in
1971, when chlorination of amino acids by the myeloperoxidase
system79,80 was identified as having an important role in the human

body because of its relatively high concentration and superior stability
over other chlorinated amino acids.78

PMX-30063 (structure not released), which was discovered by
researchers at the University of Pennsylvania and PolyMedix (Radnor,
PA, USA), is currently being evaluated in phase-II trials as a treatment
of Staphylococcus infections, including MRSA.81,82 PMX-30063 is a
membrane-active antimicrobial arylamide oligomer mimetic of a host
defense protein,83–86 which is bactericidal against both Gram-positive
and Gram-negative bacteria, and has a has a very low propensity for
resistance development.82

Bedaquiline (36) (TMC207, R207910, JNJ-16175328) is being
developed by Tibotec (Beerse, Belgium) and the Global Alliance for
TB Drug Development (New York, NY, USA)87 for the treatment of
patients with pulmonary TB.88 Bedaquiline (36) has successfully
completed one phase-II trial and was found to be efficacious against
multi-drug-resistant TB.89,90 Whole-cell screening of Mycobacterium
smegmatis, a surrogate for screening against M. tuberculosis, identified
a series of diarylquinolines and structure optimization led to the
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Table 2 Compounds in phase-III clinical trials or under NDA/MAA evaluation

Name (synonym) Lead compound (source) Mode of action Development status, indication (Developer)

Fidaxomicin (21) (tiacumicin-B,

difimicin, OPT-80)27–31,33,34,36,37,48

Tiacumicin-B (21) (NP) RNA synthesis inhibition CDI MAA in September 2010 and NDA

November 2010 (Optimer)

Amadacycline (22) (PTK-0796;

MK-2764)136,137

Tetracycline (NP) Protein synthesis inhibition Phase-III cSSSi (Paratek/Novartis)

Torezolid phosphate (23)

(TR-701, DA-7218)138–140

Oxazolidinone (S) Protein synthesis inhibition Phase-III ABSSSI (Trius Therapeutics)

Oritavancin (24)141–145 Glycopeptide

(chloroeremomycin) (NP)

Cell wall production inhibition Phase-III ABSSSi (The Medicines Company)

Dalbavancin (25)145–149 Glycopeptide (A40926) (NP) Cell wall production inhibition Phase-III ABSSSi (Durata Therapeutics)

Cethromycin (26) (ABT-773)150–154 Erythromycin (NP) Protein synthesis inhibition CAP NDA submitted October 2008 but

rejected due to ‘‘no efficacy’’ 2 June 2009

(Advanced Life Sciences )

Abbreviation: NDA/MAA, New Drug Application/Marketing Authorization Application.

Antibiotics in the clinical pipeline in 2011
MS Butler and MA Cooper

416

The Journal of Antibiotics



fidaxomicin (21)

O
O

OH

OH

O

O
O

HO
OH

H

O

O

OCH3

OH

O

O
O

OH

Cl

Cl

OH

H

CONH2

OHOOOH

N

OH

N
OH

H
N

amadacycline (22)

torezolid phosphate (23)
F

N
O

O

O

NN
N
N N P

O OH

OH

oritavancin (24)

OH
OH

HO

O

HO

O
O

OHO
NH2

O O
O

OH
OH
OH

OHO

OHO

N
H

H
N

N
H

H
N

O

Cl

Cl

N
H

H
N

NH2

O
OHN

Cl
HN

dalbavancin (25)

O O
N

OH
OH

CO2H

HO

N
H

H
N

N
H

H
N

O

Cl

NH

OHN

O
OH

HO

O

O

O

O

HO

O

N
HO

HO
OH

OH
OHOH

H

ClN
H
N

cethromycin (26)

O

O

O

H
N

OO

O

O

O
O

HO
N

N

OO

OO

O

OO

O

H

Figure 3 Structures of compounds in phase-III clinical trials or under NDA/MAA evaluation. NDA/MAA, New Drug Application/Marketing Authorization Application.

Table 3 Compounds in, or that have recently completed, phase-II clinical trials

Name (synonym) Lead compound (source) Mode of action Development status, indication (Developer)

ACHN-490 (27)155–157 Aminoglycoside (NP) Protein synthesis inhibition UTI and pyelonephritis (Achaogen)

BC-3781 (28)132,158–160 Pleuromutilin (NP) Protein synthesis inhibition ABSSSi (Nabriva)

CB-183,315 (29)161,162 Daptomycin (NP) Membrane depolarization CDAD (Cubist)

Ramoplanin (30)50–59 Ramoplanin (NP) Cell wall production inhibition CDAD completed (Nanotherapeutics)

TP-434 (31)163,164 Tetracycline (NP) Protein synthesis inhibition cIAI (Tetraphase)

Solithromycin (32) (CEM-101)165–168 Erythromycin (NP) Protein synthesis inhibition CABP (Cempra)

CXA-101 (33) (FR264205)169–171 Cephalosporin (NP) Penicillin-binding protein cIAI (Cubist)

GSK1322322 (34)60–64 Actinonin (49) (NP) Peptide deformylase cSSSi completed (GSK)

PMX-3006381–86 Defensin (NP) Bacterial cell membrane lysis ABSSSi (PolyMedix)

NVC-422 (35)75–78 N-chlorotaurine (NP) Oxidation Ophthalmic, impetigo, urinary catheter blockade

and encrustation (Alcon/Galderma/Novabay)

ACT-179811172 Unknown Unknown CDAD (Actelion)

Bedaquiline (36) (TMC207, R207910)87,89–94 Diarylquinoline (S) F0 subunit of mycobacterial

ATP synthase

TB (Tibotec/Global Alliance for TB Drug Development)

SQ109 (37)173–175 Ethambutol (S) Cell wall synthesis TB, H. pylori associated duodenal ulcer (Sequella)

OPC-67683 (38)176,177 Nitroimidazole (S) Mycolic acid inhibitor TB (Otsuka Pharmaceutical)

PA-824 (39)178–181 Nitroimidazole (S) DNA and cellular damage TB (Global Alliance for TB Drug Development)

Delafloxacin (40) (RX-3341, ABT-492)182–184 Fluoroquinolone (S) DNA gyrase and topoIV cSSSi completed (Rib-X )

Finafloxacin (41) (BAY 35-3377)185,186 Fluoroquinolone (S) DNA gyrase and topoIV H. pylori and UTI completed (MerLion)

JNJ-32729463 (42) (JNJ-Q2)187,188 Fluoroquinolone (S) DNA gyrase and topoIV CABP, cSSSi (Furiex)

Zabofloxacin (43) (PB-101, DW-224a)189,190 Fluoroquinolone (S) DNA gyrase and topoIV CAP (IASO Pharma/Dong Wha)

Nemonoxacin (44) (TG-873870)191–194 Quinolone (S) DNA gyrase and topoIV CAP, diabetic foot infection completed

(TaiGen/Warner Chilcott)

Iclaprim (45) (AR-100, Ro 48-2622)195–198 Trimethoprim (S) Dihydrofolate reductase HAP, cSSSi completed (Acino Holding)

Radezolid (46) (RX-1741)199–202 Oxazolidinone (S) Protein synthesis inhibition uSSSI, CAP completed (Rib-X)
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identification of bedaquiline (36).91 In vitro serial passage experiments
generated resistant mutants that suggested that 36 targets the myco-
bacterial proton pump of ATP synthase.91 Further mechanistic studies
have shown that bedaquiline (36) specifically targets the oligomeric
subunit-c of mycobacterial ATP synthase.92–94

Phase-I trials
Lotilibcin (53) (WAP-8294A2), which is being developed by aRigen
Pharmaceutical (Tokyo, Japan), is being evaluated as an injectable
formulation in phase-I trials (Figure 7).95 aRigen recently announced
that they had licensed 53 to Green Cross Corporation (Yongin, Korea),
who will undertake phase-II after completion of the phase-I trial.95

Lotilibcin (53) is the major component of a WAP-8294 antibacterial
complex96 produced by the Gram-negative bacterium Lysobacter
sp. discovered by Wakamoto Pharmaceutical (Tokyo, Japan).97–99

Lotilibcin (53) has excellent bactericidal activity against MRSA and
acne, and has been proposed to interact selectively with phospholipids
in the bacterial membrane, which results in membrane damage
leading to bacterial cell death.97–99

XF-73 (54) is a porphyrin derivative being developed by Destiny
Pharma (Brighton, UK) that has been evaluated in a phase-I trial as
treatment for nasal decolonization of S. aureus (including MRSA).100

XF-73 (54) is also being evaluated in pre-clinical studies for the
treatment of ulcers and the promotion of wound healing, and CDI.
XF-73 (54) has activity against a variety of drug-resistant, Gram-
positive pathogens that is thought to be mediated by perturbation of
the cytoplasmic membrane, although the exact mode of action is
unknown.101–105

GSK2251052 (55) (AN3365) was discovered by Anacor (Palo Alto,
CA, USA) and is currently being evaluated in phase-I trials by GSK

Figure 4 Structures of NP-derived compounds in phase-II clinical trials. NP, natural product.
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for the treatment of hospital-acquired Gram-negative infections,
including Escherichia coli, Klebsiella pneumoniae and Enterobacter
species.106,107 GSK2251052 (55) is a new type of protein synthesis

inhibitor108,109 that binds to the active editing site of LeuRS through
coordination of the Boron atom to the cis-diols of the ribose on
the terminal nucleotide of tRNALeu GSK2251052 (55), which was

Table 4 Compounds in phase-I clinical trials

Name (synonym) Lead compound (source) Mode of action Development status, indication (Developer)

BAL30072 (50)203–205 Monobactam (NP) Penicillin-binding protein Dosing studies, Gram-negative (Basilea)

BC-7013 (51)132,206 Pleuromutilin (NP) Protein synthesis inhibition Topical (Nabriva)

BC-3205 (52)132,207 Pleuromutilin (NP) Protein synthesis inhibition Oral (Nabriva)

Lotilibcin (WAP-8294A2) (53)95–99 WAP-8294A2 (53) (NP) Phospholipid binding resulting in bacterial

membrane damage

i.v. formulation (MRSA) (aRigen)

XF-73 (54)100–105 Porphyrin (NP) Membrane-perturbing activity Topical MRSA (Destiny Pharma)

AZD9742208 Unknown Unknown i.v. dosing and metabolism studies

(AstraZeneca)

GSK2251052 (55) (AN3365)106–112 AN2690 (S) Aminoacyl-tRNA synthetase Gram-negative systemic (GSK/ Anacor)

AZD5847209 Oxazolidinone (S) Protein synthesis inhibition Dosing studies, TB (AstraZeneca)

PNU-100480 (56) (PF-02341272)209–212 Oxazolidinone (S) Protein synthesis inhibition Dosing studies, TB (Pfizer)

AFN-1252 (57) (API-1252)15,113–115,118 Synthetic lead 58 (S) FabI inhibition Oral formulation, MRSA (Affinium)

FAB-001 (59) (MUT056399)117,119 Triclosan (60) (S) FabI inhibition Entered phase-I September 2009 (FAB Pharma)

CG400549 (61)117,120–122 Triclosan (60) (S) FabI inhibition Dosing studies (CrystalGenomics)
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discovered using a structure-based design approach that was initiated
with a co-crystal of tRNALeu and AN2690,108–112 is noteworthy as
being one of the first truly novel antibiotics with Gram-negative
activity that has successfully completed a phase-I trial.

AFN-1252 (57)113,114 is being evaluated in a phase-I trial using an
improved oral formulation by Affinium Pharmaceuticals (Austin,
TX, USA), having successfully completed other phase-I trials that
used single and multiple ascending doses.115 AFN-1252 (57) selectively
disrupts staphylococcal bacterial fatty acid biosynthesis through inhi-
biting FabI, an essential enzyme that catalyzes the reduction of trans-
2-enoyl-ACP to acyl-ACP in the final step of the fatty acid elongation
cycle.116,117 The activity of 57 is restricted to S. aureus, Staphylococcus
epidermidis and a few other bacterial species due to the specificity and
the restricted distribution of FabI.113,114 Although this narrow spec-
trum of activity may impart a safety advantage over conventional
antibiotics that can indiscriminately kill non-pathogenic microorgan-
isms, it will also limit the compound’s use, and as a consequence,
potential market size. AFN-1252 (57) is a synthetically derived
antibiotic that had its genesis in a high-throughput screen undertaken
at GSK that tested 305 189 compounds against the S. aureus FabI and
identified a benzodiazepine 58 with micromolar range activity.15,118

The use of a crystal structure-based design led to the discovery of the
3,4-dihydro-1,8-naphthyridin-2(1H)-one 62, which had selective,
potent activity against FabI, and good in vitro and in vivo antibacterial

Figure 6 Structures of peptide deformylase inhibitors 47 and 48, and lead
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activity with no significant cytotoxicity.118 GSK licensed this discovery
to Affinium in 2002, with further structure optimization leading to the
clinical candidate AFN-1252 (57) (Figure 8).113,114

There are two further FabI inhibitors, FAB-001 (59) (MUT056399)
and CG400549 (61), under clinical evaluation for the treatment of
drug-resistant staphylococci whose structures were derived from
triclosan (60).117 FAB Pharma (Paris, France) started a phase-I trial
of FAB-001 (59) in September 2009,117,119 whereas CrystalGenomics
(Seoul, Korea) have completed a single ascending-dose phase-I trial of
CG400549 (61)120–122 and are currently studying 61 in a multiple
ascending-dose phase-I trial. Triclosan (60) is a trichloro-phenoxy
phenol topical antibiotic123–125 launched in the early 1970s with broad
spectrum activity against a variety of Gram-positive and Gram-
negative bacteria that is present in a variety of cleaning and personal
care products.126 At lower concentrations, triclosan (60) was found to
be bacteriostatic, and in 1999 various groups showed that this was
because of FabI inhibition,125,127–130 whereas the bactericidal activity
observed at high concentrations has been proposed to be caused by
membrane destabilization.131

ANALYSIS OF COMPOUNDS UNDERGOING CLINICAL TRIALS

There are a total of 40 compounds currently undergoing clinical trials
(Figure 9), with one being evaluated in an NDA/MAA (Table 2), five
in phase-III (Table 2), 22 in phase-II (Table 3) and 12 in phase-I
(Table 4). There are slightly more NP-derived compounds (20)
compared with those synthetically derived (18), with two compounds
of unknown derivation. The distribution between NP-derived and
synthetically derived is relatively similar in phase-I and II, whereas NP-

derived compounds predominate in phase-III and NDA/MAA. The
synthetically derived compounds classes are quite diverse (4 oxazoli-
dinones, 1 diarylquinoline, 1 ethambutol, 2 nitroimidazole, 5 quino-
lones, 1 trimethoprim and 2 different types of FabI inhibitors), with
strong influences from increased TB research (oxazolidinones, diaryl-
quinoline, ethambutol and nitroimidazole) and leads from the screen-
ing of synthetic libraries combined with X-ray structure design
(diarylquinoline and AFN-1252-type FabI inhibitors).

The difficulty in identifying new antibacterial templates to treat
Gram-positive bacteria has been well documented. It is pleasing to
note that GSK2251052 (55) represents a new antibiotic template,
which is being actively pursued in clinical trials to treat various drug-
resistant, Gram-negative bacteria. In addition, the monobactam-side-
rophore hybrid BAL30072 (50), the aminoglycoside ACHN-490 (27)
and various quinolones are being developed to treat Gram-negative
bacteria. GSK1322322 (34), NVP-422 (35), iclaprim (45), XF-73 (54),
PMX-30063 and selected oxazolidinones have also been reported to
have in vitro activity against Gram-negative bacteria.

There are also more NP-derivative new antibiotic templates (7)
compared with those synthetically derived (4) (Figure 10). It must be
noted, however, that three of the NP-derived lead compound tem-
plates (porphyrin, N-chlorotaurine and defensin) are not classic
secondary metabolites, as is the case with the actinomycetes-derived
fidaxomicin (21), ramoplanin (30) and actinonin (49), and the
bacterial-derived lotilibcin (53).

The predominance of NP-derived compounds in late-stage trials
(Table 2; Figure 10) and the lack of recently launched antibiotics
outside the quinolones (Table 1) is rather striking. Whether this
predominance is biased by historical screening methods, or a hint
that NP-derived compounds (outside of the quinolones) are more
likely to prove efficacious and safe in late-stage clinical trials, is a key
question. We will need to observe the progress of compounds through
the clinical pipeline in the years to come, while continuing to promote
scientific, regulatory and economic mechanisms to promote antibiotic
discovery, development, approval, stewardship and appropriate use in
the market.
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