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History of mankind is regarded as struggle against infectious diseases. Rather than

observing the withering away of bacterial diseases, antibiotic resistance has emerged as

a serious global health concern. Medium of antibiotic resistance in bacteria varies greatly

and comprises of target protection, target substitution, antibiotic detoxification and block

of intracellular antibiotic accumulation. Further aggravation to prevailing situation arose on

observing bacteria gradually becoming resistant to different classes of antibiotics through

acquisition of resistance genes from same and different genera of bacteria. Attributing

bacteria with feature of better adaptability, dispersal of antibiotic resistance genes to

minimize effects of antibiotics by various means including horizontal gene transfer

(conjugation, transformation, and transduction), Mobile genetic elements (plasmids,

transposons, insertion sequences, integrons, and integrative-conjugative elements) and

bacterial toxin-antitoxin system led to speedy bloom of antibiotic resistance amongst

bacteria. Proficiency of bacteria to obtain resistance genes generated an unpleasant

situation; a grave, but a lot unacknowledged, feature of resistance gene transfer.

Keywords: antibiotics, bacteria, bacterial resistance, diseases, health care

INTRODUCTION

Antibiotics, representing both naturally as well as chemically synthesized entities, emerged as a
powerful tool in counteracting infectious diseases, following serendipitous discovery of penicillin
from Penicillium notatum by Alexander Fleming in 1928. Widespread usage of antibiotics that
imposes strong selection pressure for resistance development (ability to withstand effects of
antibiotics) took a strong grip over the health care system globally as concerns regarding resistance
to available drug regime restrict therapeutic options available to treat the disease. Emergence of
resistance at rapid pace made the pathogens well-fit and well-adapted, resulting in causing serious
life threatening complications as we lack robust drugs to curb the menace of multidrug resistance.
Growing menace of antibiotic resistance is inevitable fallout of the introduction of new antibiotics
aimed at long-term efficacy in the treatment of infectious diseases. Deteriorating public health
ensuing emergence among pathogenic and commensal bacteria of resistance, illustrates a grave
predicament globally (Bennett, 2008). Steadily increase in the development of resistance among
bacteria thwarts current treatment regimes in hospitals and community settings. Through each
passing day, treatments of infectious diseases require administration of high doses of antibiotics
and longer stay in hospital. Widening gap between lean productions of drugs increases need of
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either to rejuvenate the drying antibacterial pipelines or design
innovative strategies to combat bacterial antibiotic resistance.
The present review analyses development of resistance and
focusing on the factors that regulate acquisition of resistant
determinants.

ANTIBIOTICS AND BACTERIAL
RESISTANCE

Antibiotics are the agents used commonly in the treatment and
prevention of infections. Owing to their structure and degree
of affinity to target sites, they are classified into Penicillin’s,
Cephalosporins, Tetracyclines, Aminoglycosides, Macrolides,
Sulfonamides, Quinolones, Diaminopyrimidines, Polymyxin and
Carbapenems (Sengupta et al., 2013; Bi et al., 2015; Liu et al.,
2016). Being specific in their effect toward different bacterial
species, antibiotics culminates them either by: (i) affecting cell
wall synthesis (β-lactams), (ii) by targeting protein synthesis
machinery via, interaction with ribosomal subunits (Tetracycline,
Chloromphenicol, Aminoglycosides etc), (iii) disrupting with
nucleic acid machinery (Rifampcin, Fluoroquinolones), (iv)
interfering with metabolic pathways (Folic acid analogs,
sulfonamides), and (v) by disrupting bacterial membrane
structure (Polymyxins; Walsh, 2010; Table 1).

RESISTANCE MECHANISMS

Aminoglycosides
The main aminoglycoside resistance mechanism involves
modification of the enzymes. Three major classes of proteins
are classified in accordance with the kind of modification: AAC
(acetyltransferases) which are AAC(1), AAC(2), AAC(3), and
AAC(6); ANT (nucleotidyl transferases or adenyl transferases),
which includes five nucleotidyl transferases: ANT(2), ANT(3),
ANT(4), ANT(6), and ANT(9), and APH (phosphotransferases)
which includes seven phosphotransferases: APH(2), APH(3),
APH(3), APH(4), APH(6), APH(7), and APH(9) (Kotra et al.,
2000; Ramirez and Tolmansky, 2010).

β-Lactam
Resistance is acquired through production of β-lactamases, like
extended-spectrum β-lactamases (ESBLs), ESBL genes (blaCTX-
M, blaSHV, blaTEM) plasmid-mediated AmpC enzymes,
and carbapenem-hydrolyzing β-lactamases (carbapenemases).
Though, Stenotrophomonas maltophilia have endogenous
metallo β-lactamases (MBL) L1 that makes it resistant to
carbapenems (Sánchez, 2015). Carbapenem resistance among
gram positive bacteria is acquired by mutations in the penicillin
binding proteins (PBPs). However, in gram negative bacteria,
lower penetration of the drug through decrease in the expression
of outer membrane porin proteins such as OprD of Pseudomonas
aeruginosa (Bonomo and Szabo, 2006). A tripartite efflux
pump that causes exclusion of carbapenems from periplasmic
space, adds to carbapenems resistance (Schweizer, 2003).
Additionally, carbapenemases also contributes to carbapenem
resistance (Poirel et al., 2007; Walsh, 2010). The main efficient
carbapenemases responsible for carbapenem hydrolysis and

its geographical dissemination are KPC, VIM, IMP, NDM,
and OXA-48 types (Poirel et al., 2010; Nordmann et al.,
2012). In a plasmid of K. pneumoniae HS11286 strain it was
seen that deletion of bla KPC−2 abolished resistance toward
carbapenem (cefoxitin, ceftazidime), and exhibited dose-
dependent susceptibility toward cefepime supporting that bla

KPC−2 is a key factor for the resistance toward cephalosporins
and carbapenems in K. pneumoniae (Bi et al., 2015).

Chloramphenicol
It acts as a broad spectrum antibiotic resistance mechanism
for chloramphenicol involves enzymatic inactivation via
acetylation mediated by chloramphenicol acetyltransferases
(CATs) (Schwarz et al., 2004; Wright, 2005). Apart from
enzyme inactivation chloramphenicol resistance mechanisms,
also involves inactivation by phosphotransferases, target site
mutation, permeability barriers and efflux pumps (Schwarz et al.,
2004).

Glycopeptide
The vancomycin resistance originated from the production of
modified peptidoglycan precursor, d-Ala–d-Lac (VanA, VanB,
and VanD) or d-Ala–d-Ser (VanC, VanE, and VanG), to which
glycopeptides display diminished binding affinities. The vanA
and vanB operons are positioned on plasmids as well as on
chromosome; whereas the vanC1, vanC2/3, vanD, vanE, and
vanG solely show their presence on chromosomes (Klare et al.,
2003; Depardieu et al., 2007).

Quinolone
Though resistance mechanism for quinolone was found
restricted to chromosomes, three plasmid-mediated resistance
mechanisms have also been reported (Courvalin, 2008; Martinez-
Martinez et al., 2008). The chromosome-encoded resistance
produce a declined outer-membrane permeability linked with
porin loss, while over expression of the naturally existing efflux
pumps create mutations in the molecular targets, DNA gyrase
and topoisomerase IV (Hooper, 2000; Jacoby, 2005). Mutations
were found occurring at quinolone resistance determining
regions (QRDR) in the genes gyrA, gyrB, parC, and parE; which
program the subunits of DNA gyrase and topoisomerase IV.
Despite the fact that qnr determinant is the first recognized
plasmid-mediated quinolone resistance gene, five new lineage of
qnr genes have been accounted: qnrA, qnrB, qnrC, qnrD, and
qnrS. Second kind of plasmid positioned quinolone resistant
gene is a cr variant of aac(6)-Ib, that is aac(6)-Ib-cr, encoding
aminoglycoside acetyl transferase (Park et al., 2006; Strahilevitz
et al., 2009). The third means of resistance involves qepA, a
plasmid-mediated efflux pump along with its E. coli derivative
QepA2 (Cattoir et al., 2008), is able to expel hydrophilic
fluoroquinolones, e.g., ciprofloxacin (Perichon et al., 2007).

Sulfonamide
Sulfonamide resistance in chromosome appears through
mutations in the folP gene, encoding dihydropteroate synthase
(DHPS; Grape, 2006). Acquired sulfonamide resistance was
identified in the 1960s, and the plasmid-mediated genes sul1
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and sul2 were described after 1980s (Swedberg and Sköld, 1983;
Rådström and Swedberg, 1988). In addition a third plamid
mediated gene sul3 has also been recognized (Perreten and
Boerlin, 2003).

Tetracycline
Mechanisms of resistance for tetracycline hold three key
strategies: energy-dependent efflux pumps (ABC efflux pumps)
ribosomal protection proteins {RPPs, Tet(O)} or enzymatic
inactivation (TetX; Roberts, 2002).

Colistin
Modifications in the lpxA, lpxC, and lpxD genes of A. baumannii
result in neutralization of lipid A biosynthesis, causing total
loss of LPS leading to a loss of the polymyxin target (Moffatt
et al., 2010). Polymyxin resistance is controlled by two-
component systems PhoP/PhoQ and PmrA/PmrB (Olaitan et al.,
2014), which react to cation (calcium, iron, and magnesium)
concentrations and pH variations. These systems are concerned
in the alterations of LPS resulting in polymyxin resistance.
Several molecular mechanisms have been associated with
colistin resistance in Gram-negative bacteria, like modifications
with PmrA/PmrB, PhoP/PhoQ, ParR/ParS, ColR/ColS, and
CprR/CprS two-component systems and alterations in the mgrB
gene, that codes for negative regulator of PhoPQ. Addition of
cationic groups on lipid A due to mutations creat less anionic
lipid A ultimately causing less fixation of polymyxins. The
polymyxins remains one of the last classes of antibiotics in
which resistance is not known to spread from cell to cell via
plasmid mediated. There is a current report of plasmid mediated
colistin resistance in china designated as mcr-1 gene (Liu et al.,
2016) which is also reported closely in five continents viz, Asia,
Europe, Africa, North America, and South America (Schwarz and
Johnson, 2016).

Antibiotics do not, in themselves, cause resistance but
frequent and high exposure of antibiotics to bacteria creates a
selection pressure which triggers resistance strategies of bacteria.
Acquirement of resistance genes has been viewed as main donor
in favor of the extensive dispersal and increase in antimicrobial
resistance through horizontal transfer involving MGEs (Xu et al.,
2011). Their presence on mobile genetic elements facilitate
transfer to un-related bacteria in a process referred to as
horizontal gene transfer (HGT) via, conjugation, transduction,
or transformation (Aminov and Mackie, 2007; Martinez, 2008).
Transformation involves movement of cellular DNA among
closely linked bacteria, imparted by chromosomal set of proteins
that occur in naturally transformable bacteria. Conjugation needs
autonomously replicating genetic elements known as conjugative
plasmids that cause movement of plasmid from the donor cell
to a recipient cell that is devoid of it. Transduction involves
transfer of DNA facilitated by bacteriophages, constituted host
DNA in their capsid and insert this DNA into a new host, where it
combines with cellular chromosome and is inherited (Frost et al.,
2005). Movement of genes confers new metabolic capabilities
to the recipient, thereby helps them in their adaptation to
new ecological niches. Resistance to antibiotics conferred by
chromosomal or mobile genetic elements, is achieved by

following strategies: (i) reduction of membrane permeability to
antibiotics either by decreasing uptake or increasing efflux, (ii)
drug inactivation either by hydrolysis or by modification, (iii)
alteration in drug target and decreased binding permeability, and
(iv) mutation (Walsh, 2000; Figure 1).

GENETIC BASIS OF ANTIBIOTIC
RESISTANCE

Bacteria appeared on this planet billion of years ago, so have
their skills sharpened due to genomic flexibility at shielding
themselves from toxic chemicals. Bacteria are well-known potent
originators for the dissemination of antimicrobial-resistant
genetic apparatus (Woodford et al., 2011). They are competent
to offer secured platform for the upholding and transmission
of genes accountable for antimicrobial resistance as part of
mobile genetic elements (MGE; plasmids, transposons and
integrons). The transposons and integrons, owing to their
genomic plasticity have contributed a great deal to the fitness
quotient and robustness of bacteria to survive in varying
environments. Integrons, typically transported by plasmids or
enclosed in transposons, performing the task of resistance gene
dissemination plays an important role in the revealing of Super
Bugs (Xu et al., 2011). Since its earliest assessment in 1989
(Stokes and Hall, 1989) molecular mechanisms involved in the
mobility of integrons, their excision and integration for gene
cassettes, is currently being scrutinized (Hall et al., 1999; Mazel,
2006). Establishing role of MGEs in genomic evolution justifies
the predictions of Barbara McClintok that transposons play a
major role in the genomic diversity and evolution. Owing to their
capacity to relocate between host genomes, MGEs play a vital
function of acting as vehicles for resistance gene acquisition and
their successive propagation.

Resistance Mediated by Plasmids
Plasmids that mediate horizontal movement of plasmid-
borne genes are accountable for global spread of resistance
(Carattoli, 2013). Resistance plasmids (attributing resistance to
commonly used antibiotics) are mostly conjugative; additional
are mobilizable. Conjugative plasmids display both broad (no
host restriction within the division) and narrow (shifting limited
to small number of related bacterial groups) host range. Genes
acquired through homologous recombination, integration and
excision from the host chromosome relocate from donor to
recipient cells by conjugation. These type of plasmid-encoded
complexes help the contributor by attaching to promissing
recipient that lead to the generation of secured association,
required prior to the relocation of DNA. Plasmids that fails to
get reloctaed by this approach are transferred by conjugative
elements subsequent to the development of transitory or steady
fusions called cointegrates. Plasmids also encourage cell contact
development through production of pheromone influenced
microfibrillar exterior covering substances. Mobilizable plasmids
carry DNA transfer genes essential for structure of all or element
of the relaxasome, but are deficient of genes essential for mating
pore formation. They have a capacity to use conjugative plasmids
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FIGURE 1 | Various ways of resistance mechanisms to counteract effect of antibiotics. Horizontal Gene transfer facilitates transfer and exchange of genetic material

among bacterial cells. Transformation involves direct uptake of genetic material from the surrounding by competent recipient having chromosomal set of proteins.

Transduction involves DNA insertion into chromosome as prophage which then replicates, packages host DNA alone or in combination with the host cell

chromosome. Conjugative plasmids utilize a protein structure pilus to make a link with the recipient cell so as to move them into the recipient cell that ultimately

transfers the copy of entire bacterial chromosome, multicopy plasmid or a small portion to a recipient cell, where these genetic elements insert into the chromosome

or replicate independently if compatible with the inhabitant plasmids. Integrons use site specific recombination mechanism where it provides a promoter for gene

cassettes to exchange and disseminate. Transposons and insertion sequences insert into new sites on the chromosome or plasmids by non-homologous

recombination and increase the copy number of transferred genes giving rise to chromosomal mutations, deletions and rearrangements.

for horizontal spread; these are immobile in cells which are
short of mobile elements carrying compatible mating-pore genes.
The majority of known mobilizable plasmids utilize conjugative
element mating-pores by expressing their own relaxase (Mob)
which works on the plasmid’s cognate oriT (Joshua et al., 2016).
Current studies have revealed that plasmid transfer can also
take place even when the mobilizing plasmid and the plasmid
being mobilized are in two diverse bacterial cells (Andersen and
Sandaa, 1994; Sia et al., 1996). This type of recruitment, in which
a contributor strain possessing a self-transmissible plasmid is
getting a second plasmid from a receiver strain, is known as
retrotransfer. Retrotransfer take place through two stages; (1)
self-transmissible plasmid move from the contributor to the
receiver, and (2) mobilization of plasmid from receiver back
to the contributor (Ankenbauer, 1997). As the capacity of a
self-transmissible plasmid to promote the acquirement of novel
plasmids by its bacterial host possibly grant a benefit to the
contributor bacterium, it can be said retrotransfer may play a
significant job in the progression of plasmid transfer system.

Transphylum mobilization events that incorporate elements
from entirely diverse phylogenetic group of bacteria, underscores
broad range of interactive capacity originated in gene relocation
elements. Besides being recognized through PCR amplification of
identified incompatibility groups (Götz et al., 1996), mobilizing

plasmids are identified by conducting a triparental mating among
E. coli having a mobilizable IncQ plasmid, a recipient lacking
plasmid and amalgam of local soil or marine bacteria (Top
et al., 1994). Endurance of plasmids in natural isolates and
their perceptible firmness in absence of antibiotics, opposes a
common thought that in non-existence of selection pressure
plasmids additional gene transport factors are easily lost. The
multitude of antibiotic-resistant strains in environmental milieu
where bacteria apparently do not appear to be in touch with
antibiotics, suggest that resistance genes can also be firmly
retained even in the paucity of antibiotic selection (Andersen
and Sandaa, 1994; McKeon et al., 1995; Calva et al., 1996).
As plasmids exhibit remarkable property of crossing species
borders effortlessly (Hatch and Michael, 2011) co-mobilization
of resistance genes aggravates furthermore clinical crisis.

Resistance Mediated by Transposons
Transposable elements (TE) are the DNA sequences that
provide flexibility to the genome (Archana et al., 2013). Being
proficient to alter their position, they are able to alter their
genetic background along with that they change the genetic
setting of the locus, where they get inserted (Wicker et al.,
2007; Shapiro, 2010). Based on their role in identification and
recombination of particular sequences, TEs are categorized
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into two classes; composite transposons (Class I; holding a
range of resistance genes which possess identical structural
and functional characteristics, but small DNA homology) and
complex transposons (class II; constituting three dissimilar but
interrelated families; Tn3, Tn21 and Tn2501; Schmitt, 1986;
Wiedemann et al., 1986; Lafond et al., 1989). Some of the
composite transposons in gram negative bacteria are Tn5, Tn9,
Tn10, Tn903, Tn1525, and Tn2350 and among gram positive
bacteria are Tn4001 and Tn4003. Compared to Tn1, Tn3,
Tn21, Tn501, Tn1721, and Tn3926 found among gram negative
bacteria, gram positive bacteria encompass Tn551, Tn917 and
Tn4451 complex resistance transposons. These components
are possessed with the capability to progress both intra and
inter-molecularly which means they can jump within a DNA
molecule or from one DNAmolecule to another (Bennett, 2008).
Tn21 being majorly studied, bear OXA (a carbapenems, possess
oxacillinase activity) and PSE (β-lactam gene Pseudomonas
specific enzyme) determinants that makes them resistant to
aminoglycoside antibiotics. Tn21 also show resistance toward
mercury compounds (Brown et al., 1986) and trimethoprim
imparted by dhfr II and V (Sundström et al., 1988). Class
I or retro-transposons work by copying RNA from DNA by
transcription and RNA to DNA by reverse transcription; thereby
get inserted into the genome at a diverse location (Kapitonov and
Jurka, 2008). Acting in cut and paste manner, class II transposons
does not involve RNA intermediate (Wicker et al., 2007). These,
transposases create staggered cut at specific site, creating sticky
ends; following its transposition to the aimed site, generally
followed by target site duplication and construction of short
direct repeat at insertion sites (Madigan et al., 2006). Though
transposons provide antibiotic resistance due to the existence of
an extra gene on a plasmid, there are chances that transposons
can jump from chromosomal DNA to plasmid DNA and vice
versa for development of resistance (Wagner, 2006).

Insertion Sequences (ISs; size < 2.5 kb) are basic form
of mobile genetic elements disseminated in bacteria. ISs are
contemplated as non-complex bacterial mobile DNA taking into
account their structure (Allaaeddin El et al., 2013). They include
more than 19 families, having dissimilar size (Wagner et al.,
2007). ISs include an open reading frame that codes for a
transposase enzyme, surrounded by inverted repeat sequences
of 10–40 base pairs at both ends. The transposase enzyme cuts
target DNA and inserts the IS due to possible association with
the inverted repeat sequences. Exhibiting fondness toward AT-
rich region of DNA, higher chances of undergoing homologous
recombination, creates variety of possibilities such as deletions,
inversions and duplications. There are evidences that when two
identical IS elements surround a region of DNA, a composite
transposon is produced, and the total interceded DNA flanked
by the terminal inverted repeats get mobilized by one or both of
the IS coded transposases (Ochi et al., 2009; Gyles and Boerlin,
2014).

Resistance Mediated by Integrons
Integrons attribute a great deal to the fitness quotient and
robustness of bacteria to survive in varying environments.
Harboring resistance determinants such as antibiotic resistance

genes, their mobilization as part of chromosomes and plasmids
and integration far off from their origin confer resistance to
antimicrobials. Their categorization is based on amino acid
sequences of integrase IntI; those carrying IntI1 are referred as
class 1, IntI2 as class 2, IntI3 as class 3 and so on. Integrase
IntI1, IntI2, and IntI3 were found associated with mobile genetic
elements, while IntI4 was found linked with chromosomal
integrons.

Class 1 Integrons
Class I integrons are found associated with the acquisition
and mobilization of antibiotic resistance genes. Originated
from Tn402, they are composed of two sequence; 5′ conserved
sequence (5′CS) representing an integrase gene and a 3′

conserved sequence (3′CS) encoding quaternary ammonium
compound resistance gene (qac1E1) and sulfonamide resistance
gene (sul1), respectively (Cambray et al., 2010). With three
recombination sites (attI1, attC and secondary site), expression of
captured gene cassettes acquired via site-specific recombination
is driven by a promoter located in the 5′-conserved segment (5′-
CS) region (Collis et al., 1993). Class 1 integrons are associated
with a variety of resistance gene cassettes, but most integrons
contain an aadA resistance determinant, encoding streptomycin-
spectinomycin resistance. Trimethoprim resistance determinants
are also detected frequently (Fluit and Schmitz, 2004; Mazel,
2006; Cambray et al., 2010). Showing prevalence of 22–
59%, its localization is reported among diverse groups of
Gram negative bacteria; Escherichia, Klebsiella, Aeromonas,
Enterobacter, Providencia, Mycobacterium, Burkholderia,
Alcaligenes, Campylobacter, Citrobacter, Stenotrophomonas,
Acinetobacter, Pseudomonas, Salmonella, Serratia, Vibrio, and
Shigella (Ramírez et al., 2005; Crowley et al., 2008; Partridge et al.,
2009; Xu et al., 2009, 2011). Gram positive bacteria; Enterococcus,
Corynebacterium, Streptococcus, Brevibacterium, Aerococcus,
and Staphylococcus show high prevalence of aadA and dfrA gene
cassettes (Nandi et al., 2004; Xu et al., 2010; Veise et al., 2013).

Class 2 Integrons
Class 2 integrons associated with the Tn7 transposon family
(Tn1825, Tn1826, and Tn4132), carry a recombination site attI2
and promoter within these transposons (Xu et al., 2009). Its
3′ conserved segment (3′-CS) contains 5 tns genes (tnsA, tnsB,
tnsC, tnsD and tnsE) associated with movement and preferential
insertion at unique site within bacterial chromosomes (Hansson
et al., 2002; Labbate et al., 2009). The amino-acid sequences
coded by intI2 gene show <50% homology with intI1, and
its non-functionality was found attributed by replacement of
glutamic acid with a termination codon (amino acid 179) that
leads to production of a shorter and inactive polypeptide (Barlow
and Gobius, 2006). The classic structure of class 2 integrons
contain a range of gene cassettes, including streptothricin
acetyltransferase (sat1), adenyltransferase (aadA1), dihydrofolate
reductase (dfrA1; Hansson et al., 2002; Xu et al., 2009).
Class 2 integrons have been reported among Salmonella,
Enterobacteriaceae, Acinetobacter, and Psuedomonas (Machado
et al., 2008; Vinué et al., 2008; Macedo-Viñas et al., 2009;
Ozgumus et al., 2009; Xu et al., 2009, 2010, 2011).
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Class 3 Integrons
Class 3 integrons (IntI3) create excision of integrated cassettes
and integration of circularized cassettes into the attI3 site
with a considerably lower recombination than that observed
with IntI1 (Arakawa et al., 1995). This class of integron was
firstly identified from Serratia marcescens in 1993, and then
found associated with blaGES-1 from Klebsiella pneumoniae
strain FFUL 22K. Class 3 integron containing blaGES-1 within
the IncQ plasmid was also found in E. coli (Collis et al.,
2002). Occurence of class 3 integrons associated with IMP-1
metallo-beta-lactamase is limited to Acinetobacter, Alcaligenes,
Citrobacter, Escherichia, Klebsiella, Pseudomonas, Salmonella,
and Serratia (Arakawa et al., 1995; Rowe-Magnus et al., 1999,
2001; Ploy et al., 2003).

Class 4 Integrons
Class 4 integrons are distinguished from other Resistance
Integrons (RIs) by two key features; incorporation of hundreds
of cassettes (V. cholerae, 216 unidentified genes in an array of
179 cassettes, holding roughly 3% of the genome) and the high
similarity between the attC sites of those assembled cassettes
(Poirel et al., 2010). Class 4 integrons carry gene cassettes
for antibiotics chloramphenicol and fosfomycin (Fluit and
Schmitz, 2004). Inspite of huge array of cassettes, identification
of class 4 integron has been limited within members of
Pseudomonas, Xanthomonas, Shewanella, Vibrionaceae, and
other proteobacteria (Clark et al., 2000; Rowe-Magnus et al.,
2001).

Integrative and Conjugative Elements
Integrative and conjugative elements (ICEs) were first of all
anticipated by Burrus et al. (2002) are different mobile elements
found in both Gram-positive and Gram-negative bacteria.
These are self transmissible integrative elements that code for
complete match of conjugation apparatus. ICEs can integrate
into and excise from a host chromosome. These versatile
entities support their own mobilization facilitating horizontal
transfer of antibiotic-resistant genes, virulence factors and
various bacterial traits. ICEs possess three genetic modules:
(i) integration and excision module; (ii) conjugation module;
and (iii) regulation module. These modules contain different
array of genes that code for proteins operating by distinct
mechanisms. ICEs contain a gene encoding an integrase (Int)
that promotes site-specific integration and excision of the
element, frequently into a unique site on the chromosome
of the host organism (Boyd et al., 2009). Some ICEs bear
maintenance modules such as toxin–antitoxin systems (Wozniak
and Waldor, 2009) and additional partition systems that
guarantee thriving vertical inheritance of these elements. In
contrast to plasmids, ICEs, are not found in extrachromosomal
state, because they lack autonomous replication, the first known
MGEs with ICE-like properties were Tn916 in Enterococcus
faecalis and CTnDOT in Bacteriodes thetaiotaomicron; Franke
and Clewell, 1981; Shoemaker et al., 1989). Bacteroides
CTnDOT promote dissemination of antibiotic-resistant genes
(Whittle et al., 2002). ICEs are distinguished by element-
specific properties although they possess a general life cycle

and modular structure. Apart from resistance to antibiotics
(Böltner et al., 2002; Whittle et al., 2002) ICEs show a extensive
collection of phenotypes on their hosts, including resistance
for heavy metals (Böltner et al., 2002; Davies et al., 2009) and
the power to degrade aromatic compounds (Ravatn et al.,
1998). In addition, complex traits such as the capacity to
inhabit a eukaryotic host (Sullivan and Ronson, 1998) fix
nitrogen (Sullivan and Ronson, 1998) or encourage virulence
and biofilm development have been recognized (Drenkard
and Ausubel, 2002; He et al., 2004; Davies et al., 2009) the
connection between ICEs and the propagation of antibiotic
resistance genes in some pathogens show that these mobile
elements have considerable clinical significance (Hochhut
et al., 2001; Whittle et al., 2002; Mohd-Zain et al., 2004).
ICEberg (http://db-mml.sjtu.edu.cn/ICEberg/) is an integrated
database that provides comprehensive information about
integrative and conjugative elements (ICEs) found in bacteria
(Bi et al., 2012).

Bacterial Toxin Anti-toxin Systems
Toxin-antitoxin (TA) systems, initially identified as plasmid
addiction modules, are plentiful in the chromosomes of most
free-living bacteria (Xie et al., 2018). TA systems provide
endurance to bacterial populations in conditions of stress like
nutrient deprivation or antibiotic pressure (Harms et al., 2016).
Generally TA systems are made of a stable toxin and a labile
antitoxin coded by a bicistronic locus (Lee and Lee, 2016).
Toxin genes encode for proteins, while the antitoxin genes
code for RNAs or antitoxin proteins, classifying them as type
I–VI TA loci (Gerdes and Maisonneuve, 2012; Chan et al.,
2016; Page and Peti, 2016) categorized due to mechanisms
applied by the antitoxins to counteract the actions of the toxins.
In TA systems I-VI product of the toxin gene is typically a
protein, whereas the antitoxin gene is either a non-coding RNA
among TA I and III or a low-molecular-weight protein in TA
systems II, IV, V and VI. Toxins work on diverse targets to
distress various cellular processes such as DNA replication,
cell wall synthesis or protein synthesis. Amongst six types of
TA system, type II is broadly studied, due to great quantity
and high quality of freely accessible data. Currently two open-
access bioinformatics resources in the field of type II TA
loci, the online tool RASTA (Sevin and Barloy-Hubler, 2007)
and the web-based database TADB (Shao et al., 2011) are
available.

Presently, a new toxin is reported that contains a Gcn5-
related N-acetyltransferase (GNAT) domain that transfers the
acetyl group from acetyl coenzyme A (Acetyl Co∼A) to the
amine group of tRNAs (Jurenas et al., 2017b; Van Melderen
and Wood, 2017) resulting in acetylation of tRNAs following
inhibition of translation in bacterial cells. Similarly TacT of
Salmonella enterica Typhimurium (Cheverton et al., 2016) and
AtaT of Escherichia coli O157:H7 (Jurenas et al., 2017a), also
transfer the acetyl group from acetyl coenzyme A to the amine
group of the tRNAs, In stress environment, the intensity of the
alarmone molecule, (p)ppGpp, is amplified, which activates a
particular proteinase that degrades the antitoxin by proteolytic
cleavage, thus permitting the toxin to stop cell expansion. The
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TABLE 2 | Strategies to combat the menace of drug resistance.

S. No Strategy Entity Explanation Target species/effect References

1. Antimicrobial peptides

(oligopeptides with a varying

number of amino acids)

Bacteriocins Cationic and amphiphilic peptides

containing 20–50 amino acids. Their

interactions with negatively charged

bacterial membrane lead to formation

of transmembrane pores that causes

leakage of cellular solutes, and

eventually cell death. Genetic

determinants for bacteriocin

production are located on mobile

genetic elements. Most bacteriocins

are reported from E. coli and other

enterobacteria.

They target pathogens including

Clostridium difficile and emerging

antibiotic-resistant bacteria such as

MRSA, VRE and enterohaemorrhagic

E. coli via, inhibition of cell wall

biosynthesis. Lysostaphin bacteriocin

exhibitsbactericidal activity against

Staph. aureus and Staph.

epidermidis.

Hassan et al., 2012

Gordya et al., 2017

Maria-Neto et al., 2015

Kościuczuk et al., 2012

Kaur et al., 2016

Defensins They are a group of AMPs containing

α-helix/β-sheet elements coordinated

by three disulfide bridges.

They are effective against Gram

positive bacteria.

Lehrer et al., 1989; de

Leeuw et al., 2010

Cecropins They are linear amphipathic α-helical

AMPs

They act selectively active against

Gram-negative bacteria.

Cirioni et al., 2008

Diptericins They are members of glycine-rich

AMP family

Their selective toxicity against

Gram-negative Enterobacteria like E.

coli occurs via, disruption of cell wall.

Cathelicidins They are small, cationic, antimicrobial

peptides, varying in amino acid

sequence, structure and size. They

are stored in the secretory granules of

neutrophils and macrophages,

released extracellular upon leukocyte

activation.

They exhibit broad spectrum of

activity against bacteria, enveloped

viruses and fungi.

Main target is bacterial cytoplasmic

membrane.

Zanetti, 2004; Kaneider

et al., 2007

Microcins It is a low-molecular weight

antimicrobial peptide produced by

Gram negative Enterobacteria as host

defense peptides. They are <10 kDa

in size, much smaller than other

antimicrobial peptides.

They display strong antimicrobial

activity against Gram-negative

bacteria, such as E. coli O157:H7,

Salmonella enteritidis and S.

typhimurium.

Inhibit DNA replication by targeting

DNA gyrase.

Nocek et al., 2012;

Rebuffat, 2012

Auranofin’s Its ability to suppress bacterial protein

synthesis leads to significant

reduction in the production of key

methicillin-resistant Staphylococcus

aureus (MRSA) toxins

Inhibition of multiple biosynthetic

pathways including cell wall, DNA,

and bacterial protein synthesis.

Thangamani et al., 2016

Buforin II 21 amino acid cationic and linear

molecule peptide. Crosses cell

membrane without permeabilizing it.

Inhibition of DNA replication and

protein synthesis

Cho et al., 2009; Xiea et al.,

2011

2. Phage therapy OMKO1, wksl3

and Φ1

A new approach to therapy where

bacteriophages exert selection for

MDR bacteria to become increasingly

sensitive to traditional antibiotics.

Ability of phages to kill

antibiotic-resistant bacteria allied with

their ubiquitous nature, high

specificity (minimal disruption of

normal flora), self-replication ability at

the infection site, and more

importantly low inherent toxicity

qualifies them as “safe” and “green”

technology.

Chan et al., 2016

3. Combination therapy Antibiotic-

antibiotic

Colistin in association with tigecycline,

aminoglycoside, meropenem,

imipenem

These antibiotic combination showed

a decrease of 2.6- to 2.8-fold in MIC

Soudeiha et al., 2017

Bae et al., 2016

Antibiotic inhibitor Combination of inhibitor and antibiotic

such as Augmention i.e., combination

of clavulanate and amoxycillin)

(Continued)
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TABLE 2 | Continued

S. No Strategy Entity Explanation Target species/effect References

4. Nanoparticle based delivery

of drugs, AMPs and

essential oils

Delivery of drug,

AMPs and

essential oils

AgNPs of penicillin G, amoxicillin,

erythromycin, and vancomycin show

enhanced antibacterial and anti

bio-film formation in bacteria like

Acinetobacter baumannii,

Enterococcus faecalis, Klebsiella

pneumoniae, Pseudomonas

aeruginosa, Staphylococcus aureus,

Vibrio cholera by Alteration of

membrane permeability, cell wall and

cytoplasm as well as by Irreversible

damage on bacterial cells.

Au, Mg, NO, ZnO, CuO, Fe3O4 and

YF NPs also ceases biofilm formation.

Demonstrated the improvised

antibacterial activity. Since

nanoparticles do not enter the

bacterial cell, and its mechanism of

killing bacteria is fundamentally done

via direct contact with the bacterial

cell wall.

Beyth et al., 2015; Franci

et al., 2015; Wang et al.,

2017

5. Liposomes as drug delivery

vehicles

Drug loaded

liposomes

Liposomes are spherical vesicles,

with particle sizes ranging from 30nm

to several micrometers, consisting of

one or more lipid bilayers surrounding

aqueous spaces used as targeted

drug delivery systems.

Liposomes like BBLs

(biomineral-binding liposomes), LLSs

(liposome loaded scaffolds), SSLs

(solid supported liposomes) help in

the delivery of drugs like Vancomycin,

gentamicin, Triclosan, chlorhexidine,

Benzyl penicillin G, Amikacin,

Tobramycin, Meropenem etc. ABL

(apoptotic body-like) resulting in the

reduced biofilm formation by the

bacteria like E. coli P. aeruginosa A.

baumannii, S. aureus, S. oralis.

Nag and Awasthi, 2013;

Rukavina and Vanic, 2016;

Poerio et al., 2017

6. Use of natural compounds Flavonoids

(Isocytisoside

Eucalyptin)

Pigmented compounds found in fruits

and flowers of plants which include

flavone, flavanones, flavanols, and

anthocyanidins.

They show activity against MDR

Pseudomonas aeruginosa, S. Typhi,

E. coli, K. pneumoniae. Disruption of

membrane stability by increasing

membrane permeability.

Chandra et al., 2017

García et al., 2012

Savoia, 2012

Zeng et al., 2010

Alkaloids

(Berberine)

Consists of heterocyclic nitrogenous

compounds

Exhibit broad spectrum antimicrobial

activity P. aeruginosa, E. coli, S.

aureus, S. mutans, M. gypseum, M.

canis and T. rubrum.

Savoia, 2012

Coumarins

(Asphodelin A)

They are aromatic benzopyrones with

fused benzene and alpha pyrone rings

They possess activity against S.

viridians, S. mutans, etc

García et al., 2012

7. Modification of

antimicrobials

Plazomicin

(ACHN-490)

Derivative of sisomicin produced by

addition of a hydroxyl-aminobutyric

acid substituent at position 1 and a

hydroxyethyl substituent at position 6

A bactericidal aminoglycoside with

enhanced activity against MDR

Gram-negative bacteria and S.

aureus.

Tillotson and Theriault, 2013

Tsodikova and Labby, 2016

Lopez-Diaz et al., 2017

free toxins then cause the dormant state of bacterial cells
(persister cells) which can encourage bacterial tolerance to
antibiotics (Gerdes and Maisonneuve, 2012). Persisters are a
fraction of bacterial cells in the culture that survive through
a prolonged antibiotic treatment. Many studies have shown
that toxins of diverse chromosomal TA systems encourage the
development of persister cells. GNAT-RHH TA system is a
newly exposed approach of bacterial cells to support persister
cell formation by disturbing tRNA functions (Jurenas et al.,
2017b), in S. enterica over expression of the TacT causes drug
tolerance (Cheverton et al., 2016). Chromosomal type II TA loci
have been reported to be activated by environmental stress (Li
et al., 2016). To assess if antibiotic stress would stimulate the
transcription of kacAT operon, exponential phase HS11286-RR2

cells were checked with different antibiotics at the minimum
inhibitory concentration (MIC). Transcript levels of the toxin
gene, kacT, were quantified by RT-qPCR at various time points
after antibiotic challenge. RT-qPCR results showed that the
exposure to meropenem or tigecycline antibiotics caused 10-
fold or 40-fold increase in kacT transcription levels (Qian et al.,
2018).

Klebsiella pneumoniae faces a wide diversity of environmental
conditions, including antibiotic stress. Fifteen pairs of putative
type II TA loci are detected on the K. pneumoniae HS11286
chromosome. Activation of the toxin plays an important
role in bacterial multidrug tolerance (Harms et al., 2016).
The chromosomally encoded kacAT bicistronic operon of K.
pneumoniae HS11286 is a functional GNAT-RHH TA locus with
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kacA encoding the cognate antitoxin to the toxic product of
kacT. (Hall et al., 2017). Over expression of KacT inhibited
K. pneumoniae cell growth and resulted in dormant cell
formation. Crystal structure analyses show that the KacT
toxin adapts a typical GNAT-fold, which may confer the
same catalytic mechanism as the one revealed for TacT of
S. enterica (Cheverton et al., 2016). It may bind cellular
tRNAs via its positive groove and transfer the acetyl group
from AcCoA to tRNAs halting translation leading to cell
arrest.

STRATEGIES TO COMBAT BACTERIAL
ANTIBIOTIC RESISTANCE

Emerging antibiotic resistance is a problem of global magnitude.
Confronted by increasing amounts of antibiotics use,
emergence and dissemination of antibiotic resistant strains
has compromised therapeutic potential of antibiotics. Of
the different strategies adopted, techniques that materialize
ideally include; (1) Designing antimicrobial peptides (AMPs;
Bacteriocins, Cathelicidins, Microcins, etc.) with broader
spectrum of targets (Gordya et al., 2017), (2) Phage therapy
(exploiting phages such as OMKO1, wksl3 and Φ1 to kill
antibiotic-resistant bacteria; Chan et al., 2016), (3) combination
therapy (using combination of antibiotics e.g., colistin in
association with tigecycline, aminoglycoside, meropenem, etc
or combination of inhibitor and antibiotic such as Augmention
i.e., combination of clavulanate and amoxicillin; Soudeiha
et al., 2017), (4) Delivery of drugs, AMPs and essential oils as
nanoparticles (NPs) for sustained and controlled release (AgNPs
of penicillin G, amoxicillin, erythromycin, and vancomycin;
Wang et al., 2017), (5) Liposomes as drug targeting vehicles
(Poerio et al., 2017), (6) Use of natural compounds such
as Flavonoids, Alkaloids, Coumarins, etc. (Chandra et al.,
2017), and (7) Modification of antimicrobials e.g., Plazomicin
(ACHN-490); derivative of sisomicin produced by addition
of a hydroxy-aminobutyric acid substituent at position 1 and
a hydroxyethyl substituent at position 6 (Lopez-Diaz et al.,
2017; Table 2). Other approaches include use of genomics
to find out new bacterial targets and optimization of newer
approaches that target bacterial pathogens while exerting
selection for reduced pathogenesis, if bacteria evolve resistance
to therapeutic intervention. Additionally, strategies such as
designing molecules that can block bacterial attachment to
surfaces and target bacterial virulence factors along with
contribution to protect through production of inactivating
antibodies, seems other suitable options to over the menace of
drug resistance.

CONCLUSION

Bacterial infections continue to be one of the leading causes
of morbidity and mortality worldwide. Fallout of excessive
and imprudent antibiotic use, widespread dissemination of
resistant determinants as part of MGEs has increased the rate
of resistance development. Being capable to relocate between
host genomes, they act as vehicles for resistance gene acquisition
and their successive propagation. Thorough molecular studies
have identified several mechanisms in microbes to attain the
antimicrobial resistance. Among these mechanisms, plasmids,
transposons, insertion sequences, integrons, ICEs and bacterial
Toxin Anti-toxin systems have exposed how and why resistance
has attained alarming stage. The possibility for recombination of
genes from different bacterial populations is huge and it seems
that it doesn’t take bacteria much time to acquire the genetic
resources to flourish in surroundings that would have otherwise
hindered it’s growth. Occurring with increasing frequency,
resistance limits therapeutic option, resulting in the cases where
certain human infections cannot be treated. Pertinently, where
there is stiff resistance on the implementation of evidence-based
clinical practice, scientists of the health care organizations are still
searching as how to keep pace with the demand of actionable
knowledge. This adverse condition of antimicrobial resistance
demands the rejuvenation of dried pipeline for the development
of new and efficient drugs to treat the deadly infection. With
a goal to get hold of the menace of antibiotic resistance, it
seems essential for everybody to have some basic knowledge
about the systems in order to ensure optimal use of antibiotics
from the surrounding milieu, to slow down the development of
antibiotic-resistant superbugs.
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