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Abstract 

 

Antibody conjugated nanoparticles (ACNPs) represent a novel strategy for the development 

of therapies exploiting antibodies to augment the delivery of chemotherapy payloads. 

Following in the footsteps of the success of antibody drug conjugates (ADCs), ACNPs are 

only now reaching clinical evaluation. In this review we discuss the success of ADCs and 

explore the opportunities ACNPs offer, such as broad chemotherapy payload selection, high 

drug to antibody ratios and the ability to finely tailor drug release in comparison to ADCs.  

The ability of ACNPs to elicit increased avidity due to multivalent effects and the potential to 

use these modular platforms in immunotherapeutic approaches is also explored. Through 

addressing challenges that still remain in bringing these complex formulations to the clinic, 

ACNPs hold obvious potential for the treatment of a wide range of cancers and other 

diseases where selective targeting of drug agents is essential. 
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1. Introduction  

 

The targeted delivery of chemotherapy to tumours has been a major focus in cancer 

research since the early 20th century [1]. Antibody drug conjugates (ADCs) are one particular 

method of enhancing targeting of a drug to the tumour site. Modern ADCs are monoclonal 

antibodies with highly potent drug molecules covalently linked to them. These ‘Trojan horse’ 

therapies are designed to target a tumour-specific receptor and be internalised where they 

are metabolised in the lysosome, releasing anywhere between 1 to 8 drug molecules which 

subsequently can elicit their cytotoxic mechanism(s) of action.  

ADCs were first evaluated in the late 1950s using antibodies which targeted leukaemia cells 

and had the anti-cancer drug methotrexate conjugated [2]. The first in human clinical trial 

involving an ADC was reported in 1983 with encouraging results [3]. However, development 

of antibodies and ADC drugs stagnated, and it took innovations such as hybridoma fusion 

and humanisation to overcome the issues of single antibody species production and 

immunogenicity respectively; opening a pathway for the development of antibody-based 

drugs. 

Currently there are four ADCs that have reached the market. The first to be approved in 

2000 was gemtuzumab ozogamicin (Mylotarg®), which was given accelerated approval by 

the FDA for treatment of acute myeloid leukaemia (AML). Mylotarg® targeted CD33 and 

carried a DNA fragmenting payload (calicheamicin). However, it was withdrawn from the 

market after disappointing results from a post-approval trial, becoming the first formulation to 

be given accelerated approval and then subsequently withdrawn. The disappointing 

performance of Mylotarg® somewhat subdued industry interest in ADCs, but in 2011 and 

2013 respectively, Brentuximab vedotin (Adcetris®, which targets CD30 positive lymphoma) 

and trastuzumab emtansine (Kadcyla®, which targets HER2 positive breast cancer) were 

approved; both using anti-tubulin payloads. In 2017 Besponsa® (targeting CD22 positive 

leukaemias) became the most recent ADC to be approved and like Mylotarg®, uses the 



DNA targeting calicheamicin payload. At this time there are roughly 60 ADCs undergoing 

clinical trials for various cancers [4].  

Another technology with potential in drug delivery are nanoparticle formulations 

(nanomedicine). Nanomedicine has been much heralded as a formulation-based approach 

to enhance the bioavailability of drug substances [5,6].  Indeed, non-targeted nanoparticles 

containing current chemotherapies have now reached the market. They are generally 

liposomes, polymeric or metal nanoparticles. One of the key clinical attributes to these 

formulations is their ability to reduce the toxicity profiles of the cargo chemotherapeutic thus 

enhancing the therapeutic window for that agent [7,8]. An exemplar of this is Doxil®, which is 

liposomal preparation of doxorubicin and has been on the market for over 20 years [9]. More 

recently, liposomal irinotecan (Onivyde®) was approved for the treatment of advanced 

pancreatic cancer [7]. 

Antibody conjugated nanoparticles (ACNPs) represent a relatively new approach that builds 

on the success and potential of both ADCs and nanotechnology. Conceptually ACNPs are 

similar to ADCs in that the antibodies can be used to specifically target diseased cells, thus 

delivering encapsulated cargo drug (Figure 1&2). The first targeted nanoparticles appeared 

in the literature in 1980 and the first to enter clinical trials was in 2011 [10–14]. Herein, we 

discuss the current status of the concept, its benefits and current bottlenecks. 



 

Figure 1. Schematic representation highlighting the conceptual structure of an ADC and ACNP 

 

2. Advantages of ACNPs in chemotherapy delivery 

2.1 Payload selection 

A range of chemotherapies have been evaluated for encapsulation in nanoparticle systems.  

Whilst there are many various forms of nanoparticles, from liposomes to dendrimers, the 

choice of nanoparticle carrier is usually dependent on the nature and solubility of the cargo 

drug to ensure a high drug entrapment.  For example, polymeric nanoparticles consisting of 

commonly employed poly-lactide based polymers are frequently used for the entrapment of 

hydrophobic agents, whereas liposomes can entrap hydrophobic or hydrophilic drugs in 

either the phospholipid bilayer of the liposome or its aqueous lumen respectively [15,16]. 

The combination of chemotherapies in nanoparticles has also been explored. This has 

advantages as it offers the opportunity to overcome pharmacokinetic differences in drug 

agents to ensure they are delivered at the disease site in the required proportions/ratios to 

provide synergistic therapeutic effects [17].  



The diversity of drug agents that can be incorporated into ACNPs offers further development 

opportunities than can be afforded with standard ADC technologies. Early ADCs used 

existing standard of care chemotherapies such as methotrexate as their payload and 

suffered from a lack of potency as a result. Furthermore, it was found that the early linkers 

used had the potential to reduce payload potency [18–20]. It was soon realised that the 

payload conjugated to the antibody required much higher potency in order to achieve 

efficacy. This is because considerably fewer drug molecules were internalised (via receptor 

mediated endocytosis, which becomes a efficacy-limiting factor) into the target cell when 

compared to standard chemotherapy [21]. However, with enhanced potency, increased 

toxicity can be a side effect as was observed with the DNA binding calicheamicin cargo in 

Mylotarg®, and has driven the need for high potency payloads that are more selective 

towards actively dividing cancerous cells such as the anti-tubulin agents in Adcetris® and 

Kadcyla® [22]. Importantly, no direct drug linker is required with ACNPs and therefore this 

avoids disruption of the payload potency (Figure 1) [23]. 

 

2.2 Drug to antibody ratio (DAR) 

Drug to antibody ratio is an important factor influencing effectiveness of ADCs. It is thought 

that the optimal DAR for an ADC is approximately only 4:1 for the optimal balance between 

cytotoxicity and acceptable pharmacokinetic profiles [24,25]. It is also important that the DAR 

is homogenous throughout the formulation population [26,27]. ACNPs on the other hand can 

potentially offer DARs over 100 and consequently when the rate limiting step for drug uptake 

is receptor copy number on the cell surface, ACNPs may offer an approach to ensure 

internalisation of much higher concentrations of drug [28]. This higher drug targeting 

capacity also means that drugs with lower potency than auristatins or mertansines may be 

successfully employed such as camptothecin derivatives [7]. 

 



2.3 Drug release 

With both ADC and ACNP technologies, the selective release of the chemotherapy at the 

disease site is of paramount importance. In this case of ADCs, this is primarily due to the 

potential for side effects if healthy tissues are exposed to the highly potent payload. To 

prevent side effects, ADCs are mostly designed so the drug will only be released upon 

internalisation into the target cell. This often requires complex linker chemistry, using either 

cleavable or non-cleavable linkers. Cleavable linkers are usually cleaved in response to a 

change in the physical environment such as the lowering of pH in the lysosome or presence 

of a lysosomal cathepsin-labile motif. With non-cleavable linkers, release of the payload is 

dependent on the general degradation and metabolism of the ADC in the endo-lysosomal 

lumen [29].   

In ACNPs, as the linker is used to conjugate the antibody to the polymer or lipid, the release 

of the drug is independent of this. Drug release in these formulations is therefore simply a 

consequence of both drug diffusion and particle degradation. Whilst almost impossible to 

prevent some leaching of the drug from nanoparticles unless covalently attached, the use of 

lower potency chemotherapies as described earlier may mean an acceptable premature 

release can be tolerated [30]. A strategy that has been explored to maintain drug inside 

polymeric nanoparticles until uptake, is the use of ion-pairing which serves to hold the drug 

within the nanoparticle longer through electrostatic interactions, limiting early release and 

providing a longer therapeutic window once at the disease site [30]. 

2.4 Multivalency effects 

The augmenting of receptor clustering and downstream signal transduction, mimicking 

natural ligand binding is an approach that holds much therapeutic potential, either as an 

independent agent or in combination with other drugs [31–34]. In the case of ACNPs, 

antibody conjugation to the surface of the nanoparticle allows for the formulation to exhibit 

multivalency and can therefore induce hyperclustering of receptors. In the case of death 



receptor 5 (DR5), monovalent targeting antibodies did not show an adequate survival benefit 

to warrant their use in the clinic. The requirement of Fcγ receptor activation is thought to 

have hindered their efficacy in clinical trials [35–37]. Encouragingly, it has been shown that 

conjugating an anti-DR5 antibody to the surface of a nanoparticle circumvents the need for 

Fcγ activation and can induce apoptosis in vitro and in vivo [38]. This could potentially offer 

benefit in the clinic, with the antibody functioning not only as a targeting moiety but also 

provides therapeutic effects itself. This avidity effect has also been exploited with 

nanoparticles with other targeting ligands such as carbohydrates [32,39–41]. 

 

Figure 2. Schematic representation of ADC and ACNP internalisation, breakdown and drug 

release. (Antibodies illustrated at different scales) 

3. Immunotherapy 

Both passively and actively targeted nanoparticles are now being extensively researched as 

potential immunotherapies. They are advantageous as immunotherapies tend to require 

delivery of multiple payloads such as a cancer associated antigen and an adjuvant. 

Nanoparticles are more suited to the loading of multiple payloads due to the higher DAR 

they possess in comparison to ADCs. 



One strategy is the targeting of dendritic cells to take advantage their antigen presenting 

properties. Dendritic cells can then recruit T cells against tumour specific antigen 

encouraging their maturation into cytotoxic T cells resulting in tumour killing. Passive 

targeting nanoparticles have been used to deliver both tumour-specific antigens and 

adjuvants to dendritic cells. It has been demonstrated that altering particle size can increase 

dendritic cell internalisation when administered subcutaneously [42,43]. The use of active 

targeting has been shown to improve delivery to antigen presenting cells resulting in 

improved production of cytotoxic T cells and reduced tumour growth in vivo [44]. The 

dendritic cell targeting formulation Lipovaxin-MM has passed a phase 1 dose escalation 

study [45]. 

An alternative approach to targeting antigen presenting cells to stimulate T cells is to target T 

cells directly. ACNPs have also been used to target T cells directly in mouse models which 

ultimately showed reduced tumour growth and increased survival [46]. While ACNPs have 

not yet reached clinical trial for their potential use in immunotherapy, the data so far is 

promising. 

 

4. Barriers facing ACNPs pathway to the clinic 

There are only a limited number of ACNPs that have reached clinical trials which are 

summarised in Table 1. None have yet reached phase 3. While the passively targeted 

nanoparticle formulations that have reached the market generally cause a more favourable 

pharmacokinetic profile than their free payload, it does require careful consideration of 

aspects of nanoparticle size, shape and surface charge. A survey of 117 nanomedicine 

publications presenting quantitative biodistribution data in cancer models revealed that only 

a median average of 0.7% of nanoparticles reach the tumour site in vivo [47]. While it was 

acknowledged that the formulations on the market or in clinical trial were much higher than 

this figure, further development is needed to increase the median average across the board. 



The nanomedicine field had over relied on the enhanced permeability and retention (EPR) 

effect to increase delivery to the tumour; the ability of nanomedicines to seep into tumours 

due to tumour neovasculature leakiness and reduced interstitial pressure. The FDA 

approved imaging formulation Ferumoxytol® has been shown to be predictive of 

nanoparticle accumulation in vivo which could one day give clinicians a useful tool to predict 

how beneficial nanomedicine could be for a specific patient – a personalised or precision 

medicine approach [48]. In an effort to increase tumour delivery, methods are now emerging 

to enhance ‘permeability’ of the tumour rendering it more susceptible to nanoparticle 

deposition by selectively targeting the integrity of the tumour specific neovasculature. This 

has proven to be successful in vivo [49,50]. Thus, using approaches like this to overcome 

reliance on EPR will be essential in order to realise the potential of active targeting on 

ACNPs.  By using the antibody to not only target the tumour but also elicit independent 

therapeutic effects can only enhance the opportunities provided by the technology [47].  

Another key bottleneck at this time is the developability and manufacturability of ACNPs. 

Routes to synthesis and access to CMOs specialising in the large-scale cGMP 

manufacturing of ACNPs is an issue that will need to be overcome in order for the 

technology to become more widely adopted. However, these are issues that have been 

faced previously with biologics manufacture and with ADC manufacture itself [51,52]. 

Therefore, if therapeutic efficacy of the formulations can be clearly demonstrated, the 

investment needed by large pharmaceutical organisations in manufacturing to overcome this 

‘valley of translational death’ will be de-risked and made more compelling.  

 

 

 

 

 



Table 1. Antibody targeted nanoparticle formulations that have gone through or are currently 

undergoing clinical trial adapted from Richards et al. and van der Meel et al. [53,54] 

Name Target Ligand Type Payload Indication Phase 

SGT-53 Transferrin 

receptor 

Anti-

transferrin 

receptor 

ScFv 

Lipid P53 DNA Recurrent 

Glioblastoma 

II 

SGT-94 Transferrin 

receptor 

Anti-

transferrin 

receptor 

ScFv 

Lipid RB94 DNA Solid 

tumours 

I 

C225-ILS-

Dox 

EGFR Cetuximab 

Fab 

Lipid Doxorubicin High-grade 

gliomas 

I 

MM-302 HER2 Anti-HER 

scFv 

Lipid Doxorubicin Breast 

cancer 

II 

MM-310 Ephrin receptor 

A2 

Anti-EphA2 

scFv 

Lipid Docetaxel Solid 

tumours 

I 

MCC-465 Uncharacterised 

(GAH) 

Anti-GAH 

F(ab’)2 

Lipid Doxorubicin Metastatic 

stomach 

cancer 

I 



Lipovaxin-

MM 

Dendritic cell 

CD209 

dAb Lipid Melanoma 

antigens + 

IFNγ 

Melanoma I 

Erbitux-

EDVspac 

EGFR Bispecific 

monoclonal 

antibody 

(mAb) 

Bacterially 

derived 

mini-cell 

Paclitaxel Solid 

tumours 

II 

 

 

 

5. Conclusion 

The best way to use the targeting abilities of antibodies may never be agreed. ADCs have 

proven their ability to deliver cytotoxic payloads to tumours and are currently the most 

beneficial targeted, drug conjugated therapy for patients. ACNPs however may allow for 

existing chemotherapies to be made available in nanomedicinal preparations. Drug release 

from nanoparticles can be more finely controlled with a range of nanoparticle materials and 

co-excipients to choose from. ACNPs may provide benefit over ADCs when targeting 

receptors where receptor agonism can derive additional therapeutic effects. Furthermore, in 

this age of immunotherapy, the ability to use ACNPs to augment immune responses to 

tumours also hold much promise.  With strategies to enhance the ability of these agents to 

reach tumours to facilitate active targeting, combined with improved uniform 

manufacturability from improved conjugation chemistries [55], it is anticipated that there will 

be an increase in the interest of these agents for clinical evaluation.  
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