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Antiviral activities of antibodies may either be dependent only on interactions between

the antibody and cognate antigen, as in binding and neutralization of an infectious

virion, or instead may require interactions between antibody–antigen immune complexes

and immunoproteins or Fc receptor expressing immune effector cells. These Fc

receptor-dependent antibody functions provide a direct link between the innate

and adaptive immune systems by combining the potent antiviral activity of innate

effector cells with the diversity and specificity of the adaptive humoral response.

The Fc receptor-dependent function of antibody-dependent cellular phagocytosis

(ADCP) provides mechanisms for clearance of virus and virus-infected cells, as well

as for stimulation of downstream adaptive immune responses by facilitating antigen

presentation, or by stimulating the secretion of inflammatory mediators. In this review,

we discuss the properties of Fc receptors, antibodies, and effector cells that influence

ADCP. We also provide and interpret evidence from studies that support a potential

role for ADCP in either inhibiting or enhancing viral infection. Finally, we describe

current approaches used to measure antiviral ADCP and discuss considerations for

the translation of studies performed in animal models. We propose that additional

investigation into the role of ADCP in protective viral responses, the specific virus epitopes

targeted by ADCP antibodies, and the types of phagocytes and Fc receptors involved

in ADCP at sites of virus infection will provide insight into strategies to successfully

leverage this important immune response for improved antiviral immunity through rational

vaccine design.

Keywords: antibody effector functions, antibody-dependent cellular phagocytosis (ADCP), Fc receptors,

phagocytes, antiviral antibodies

INTRODUCTION

Antibodies are a key component of the human adaptive immune system, and the elicitation
of antibodies has been correlated with vaccine efficacy in many diseases (1). Passively infused
antibodies have been used in anti-toxin, anti-viral, and anti-inflammatory treatments; and
monoclonal recombinant antibodies are also currently being pursued for prevention of HIV-1
infection in large Phase IIb clinical trials (NTC02716675 and NCT02568215). Antibodies can exert
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their protective functions via a multitude of mechanisms. Some
functions, such as neutralization, mainly depend on interaction
of the Fv domain (Figure 1A) with antigen and are therefore
predominantly Fc domain independent. Other functions,
including antibody-dependent cell-mediated cytotoxicity
(ADCC) and antibody-dependent cellular phagocytosis (ADCP),
require interactions between the antibody Fc domain with other
proteins or immune effector cells via recognition by Fc receptors
(9–11) (Figures 1A–C). These Fc receptor-dependent antibody
functions provide a direct link between the innate and adaptive
immune systems, harnessing the potent anti-pathogen functions
of the innate immune system, and overcoming its inherent
limited pattern recognition capacity by utilizing the diversity
and specificity of the adaptive immune response. Fc receptor-
dependent antibody functions are important components of
the immune response that provide mechanisms for clearance of
infected host cells, immune complexes, or opsonized pathogens.
Fc receptor-dependent antibody functions are also involved
in activation of downstream adaptive immune responses by
facilitating antigen presentation or by stimulating the secretion
of inflammatory mediators (12, 13). This review is focused on
the antibody Fc receptor-dependent effector function ADCP
in immune responses against viruses and targets three areas of
interest: (1) discussion of the biophysical factors that influence
ADCP including the properties of the receptors, antibodies,
and effector cells; (2) survey and interpretation of evidence
supporting a potential role for ADCP in either inhibiting
or enhancing viral infection; and (3) description of current
approaches used to measure ADCP with consideration for the
translation of studies performed in animal models.

ANTIBODY AND Fc RECEPTOR
INTERACTIONS INVOLVED IN ADCP

Immune complexes formed between antigen and antibody are
capable of engaging a diversity of Fc receptors on innate immune
cells. The type I IgG Fc receptors are activatory FcγRI, FcγRIIa,
FcγRIIc, FcγRIIIa, FcγRIIIb, and inhibitory FcγRIIb (Figure 1C).
Other IgG Fc receptors include the non-classical (type II) IgG
Fc receptors CD209 and CD23, neonatal FcR (FcRn) which
is involved in IgG transport and recycling, and the cytosolic
Fc receptor TRIM21. IgA antibodies are specifically engaged
by FcαRI (Figure 1C), and the specific receptor for IgE is
FcεRI—which is involved in rapid allergic responses. Immune
complexes may also interact with other receptors that have
been described to bind to immunoglobulins but have been
relatively uncharacterized, including FCA/MR (14), FCMR (15),
IgD-R (16), CD71 (17), secretory component receptors (18),
asialoglycoprotein receptors (19), and M cell receptors (20).

When engaged, most Fc receptors are capable of cytoplasmic
signaling. For instance, as shown in Figure 1C, FcγRIIa and
FcγRIIc signal via their immunoreceptor tyrosine-based
activation motif (ITAM) domains, whereas FcγRI and FcγRIIIa
lack ITAM domains but associate with an FcRγ signaling
chain (γ2) and signal via its ITAM domain. The inhibitory
FcγRIIb signals via an immunoreceptor tyrosine-based

inhibition motif (ITIM) domain. The IgA receptor, FcαRI,
also associates with the FcRγ signaling chain (Figure 1C), but
this seems to be dispensable for signaling, and signaling is
dependent on dephosphorylation of the intracellular domain
of FcαRI (21). Downstream signaling pathways are complex
and dependent on the Fc receptor, cell type, and stimulation
mechanism, but generally act via increasing intracellular
calcium cation concentration, activation of PKC, or activation
of ras (22).

As a result of the ubiquitous presence of antibody in both the
systemic and mucosal microenvironments, regulatory systems
are required to prevent constitutive Fc receptor signaling. This
is achieved via several mechanisms that are either intrinsic
to Fc receptor signal pathways, impacted by external soluble
signals detected by the phagocyte, or established at the genetic
level (Figure 2). A key intrinsic regulator is the inability of free
antibody to activate Fc receptor signaling. The low-affinity Fc
receptors, including FcγRIIa, FcγRIIb, FcγRIIc, and FcγRIIIa
require multiple coordinated interactions for sufficient binding
avidity, and thus can only be triggered by multivalent antibody-
antigen immune complexes (22). Even for the high-affinity
FcγRI, which is able to bind monomeric IgG, binding does
not trigger signaling through its associated γ-chain; instead,
signaling requires receptor clustering and cross-linking (23).
Moreover, activatory Fc receptors can also produce inhibitory
signals when engaged at a low level–the mechanisms for
this phenomenon are not well-understood but may involve
ITAM monophosphorylation which activates the inhibitory
SHIP-1 (24) rather than the diphosphorylation required for
activatory Syk engagement (25). Similarly, immunostimulatory
and immunoinhibitory Fc receptors are often co-expressed
on the same cell, thus the outcome of antibody-mediated
signaling is often dependent on the balance of activating or
inhibiting signals. The abundance of these receptors on the cell-
surface and their ability to interact with immune complexes
is influenced by soluble signaling molecules, which allows the
local inflammatory milieu to also contribute to the regulation
of Fc receptor-dependent responses of phagocytes (26–28).
Finally, Fc receptor signaling is regulated at the genetic level.
Single nucleotide polymorphisms in human Fc receptors affect
interactions with antibody Fc, resulting in Fc receptor variants
with lower or higher relative affinities for immune complexes
(2, 6, 11, 12, 29). Several Fc receptor polymorphisms have
been associated with the occurrence or progress of disease
resulting from infection with viruses including dengue virus
(30, 31), influenza virus (32), human coronavirus (33), Epstein-
Barr virus (EBV) (34), Kaposi’s Sarcoma virus (KSV) (35), and
HIV-1 (36–38).

The specific Fc receptor engagements involved in ADCP
of different viruses or virus-infected cells at sites of infection
and throughout antiviral immune responses have not been
completely defined, and are not expected to follow a generalizable
rule. As will be described in the following sections, the receptors
involved will differ depending on the characteristics of the
antibody forming the complex —such as isotype, subclass, and
glycosylation— as well as on the particular type of phagocyte
encountering the immune complex.
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FIGURE 1 | (A) Surface representation of human IgG1 indicating: the Fv regions, which are the portions of the Fab arms required for antigen binding; the Fc region,

which interacts with immunoproteins and specific receptors for effector functions; and the hinge region, which provides flexibility for the Fab and Fc regions. The IgG

heavy chain 1 is depicted in blue, heavy chain 2 in teal, light chain 1 in orange, and light chain 2 in gray. Glycans are represented by yellow sticks. Rendering was

made in PyMOL software using protein data bank ID 1HZH. (B) Expanded view of human IgG1 Fc region after 180◦ rotation, indicating residues involved in binding to

Fcγ receptors (2–5), and the glycosylation site at asparagine 297 (N297). (C) Binding affinities (6–8) of Fc receptors commonly implicated in ADCP and comparison of

receptor composition and signaling domains. Absence of values indicates no detectable binding.

ANTIBODY CHARACTERISTICS THAT
IMPACT ADCP

In addition to the Fc receptor regulatory mechanisms described
above, the ability of interactions between immune complexes and
Fc receptors to result in Fc receptor signal transduction is further
regulated by specific characteristics of the antibody Fc region.
Antibody isotype serves as the principal level of regulation, as
most Fc receptors are specific for only one isotype of antibody.
Within isotype, there is additional regulation at the level of
antibody subclass (Figure 1C). For the human IgG isotype, IgG3
has the highest affinity for most of the type I FcγRs, followed

by IgG1, then IgG4, then IgG2 (6). In contrast, subclass is not
a predominant source of regulation for ADCP by IgA, as human
FcαR has been demonstrated to have similar affinity for IgA1, and
IgA2 (7).

Additional regulation of Fc–Fc receptor interactions required
for ADCP occurs via diversity in glycosylation of the antibody
Fc (39). The IgG Fc region contains an N-linked glycan at
asparagine 297 (Figure 1B) that impacts the conformation of
the antibody and affinity for Fc receptors (39). As described
in a comprehensive recent review by Jennewein and Alter, for
IgG antibodies there are 36 possible glycoforms and 4 different
subclasses, yielding a total of 144 possible unique Fc regions
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FIGURE 2 | Factors impacting ADCP and potential outcomes of the ADCP

response to virus infection.

(40). Importantly, antibody glycovariation can be modulated by
inflammatory responses, allowing the immune system to adapt
and adjust antibody Fc glycoforms to modulate biologic activities
in response to infection (40). Changes in antibody glycosylation
have been described during the course of HIV-1 infection (41,
42), and in response to influenza vaccination (43, 44), but for
many viral diseases the role of glycovariation in antiviral antibody
responses has yet to be defined.

Fc RECEPTOR SIGNALING FOR ADCP

Leukocytes involved in ADCP must express at least one type of
Fc receptor. This includes monocytes, macrophages, neutrophils,
and eosinophils; canonically referred to as professional
phagocytes. In ADCP the phagocyte is engaged by antibody,
either directly via Fc receptor or indirectly via antibody-fixed
complement, to engulf one or more opsonized particles or
molecules, which typically including pathogens, infected cells,
and their derivatives (45, 46). The internalization in most
cases leads to the destruction of the internalized target by
phagolysosomal degradation, though it is important to note that
several human pathogens have evolved to co-opt this process
and survive within phagocytes (47–50). Phagocytosis leads to
different immune outcomes depending on the cell type—for
instance, antibody-mediated phagocytosis by macrophages leads
to enhanced pathogen destruction and antigen presentation,
whereas antibody-mediated phagocytosis by plasmacytoid
dendritic cells leads to enhanced secretion of interferon
alpha (51–53).

In Fc receptor-mediated phagocytosis, ligated and aggregated
Fc receptor become phosphorylated via Src family tyrosine
kinases (54) on their ITAM domains (either their own or from
an associated γ-subunit), forming a docking site for Syk (55)
and triggering a signaling cascade involving PKC (56, 57), PI3K
(58–60), and synthesis of PI(4,5)P2, (3,4,5)-PIP3, and DAG (61).
These lead to actin cytoskeleton remodeling (62), allowing the
advance of the phagocytic cell over the target. The strength of
early signaling events is proportional to the number of engaged
Fc receptors, whereas late signaling events required to complete
phagocytosis require a concentration threshold of 3′PI to be
satisfied (63).

PHAGOCYTES INVOLVED IN VIRUS ADCP

The type of phagocyte involved in an ADCP responses to
virus infection depends not only on the profile of Fc receptors
expressed by the cell and characteristics of the antiviral antibodies
as described above, but also on the phagocyte being present at,
or recruited to, sites of infection. Professional phagocytes are
differentially distributed in the circulation and tissues (64–67),
and inflammatory signaling can promote both ingress and egress
of immune effector cells (68). Therefore, cells present at the site of
infection and involved in the antiviral response likely change over
time. Transgenic mouse models and cell-type specific depletions
can help to identify essential cell populations, but a clear view
of the specific interactions involved in the tissue at the site of
virus infection is often limited, especially in humans. Despite
the difficulties inherent to accessing and studying immune
cells in situ within human tissues, a remarkable study by Sips
et al. defined the distribution and frequency of Fc receptor
expressing immune cells in mucosal and lymphoid tissues
(69). They identified differential distribution of professional
phagocytes —with macrophages being the dominant phagocyte
population in lymph nodes, and intestinal tissues and neutrophils
representing the dominant phagocyte population in tissues
from the lower female reproductive tract. Using a novel tissue
phagocytosis assay, they compared the HIV-1-specific ADCP
activity of neutrophils and macrophages from the colon and
cervix. They found that although abundant in the colon, colon-
resident macrophages were deficient in ADCP compared to
colon- and cervix-resident neutrophils as well as cervix-resident
macrophages. This seminal study likely only partially defines
the diversity of professional phagocytes, both for phenotype
and functionality, within tissues that can be encountered by
antibody-virus immune complexes during virus infection, and
that inevitably impacts outcome of these encounters.

BALANCE OF ACTIVATORY AND
INHIBITORY SIGNALS DETERMINE HOW
PHAGOCYTES RESPOND TO
IMMUNE COMPLEXES

Importantly, most phagocytes are capable of other Fc-dependent
effector functions in addition to ADCP. Thus, the outcome of
each interaction between phagocytes and immune complexes
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is determined by a combination of signals (Figure 2). Many
phagocytes express more than one type of Fc receptor, often
expressing both activatory and inhibitory Fc receptors. The
balance of these divergent signal pathways is critical to simulating
and regulating each potential effector response. Signals mediated
by other types of receptors also contribute to determining the
type of effector response a phagocyte will mount. Among them,
information from pattern recognition receptors (PRRs) that
can detect molecular patters associated with different types of
pathogens are integrated in the response to Fc receptor stimuli.
For example, Toll-like receptor 3, 7, 8, and 9 have the ability to
detect viral nucleic acids and activate immune cells (70), and are
therefore able to potentiate effective antiviral responses including
ADCP. In contrast, alternative inhibitory signals, such as CD47
SIPα can negatively regulate phagocytosis. Intriguingly, some
viruses express homologues of CD47, which may act to prevent
activation of professional phagocytes as a strategy for immune
evasion (71, 72).

Apart from direct antiviral activity through uptake and
elimination of virus or infected cells, antibody-dependent
phagocytosis is also important in the development and regulation
of immune responses themselves (Figure 2) (12). Pathogen-
associated molecular patterns (PAMPs) derived from virus
antigens can be released upon phagocytosis and digestion
of antibody–virus immune complexes. The released virus
PAMPs can prime an inflammatory response upon sensing
by PRRs, which may then stimulate additional immune cells
and activate subsequent immune responses (12, 13). For
instance, in adenovirus infection of the respiratory tract, alveolar
macrophages are responsible for internalizing adenovirus and
initiating early pro-inflammatory signaling (73). A similar
response, termed antibody-induced inflammation, has been
demonstrated to have an important role in protection against
influenza infection (74). There are also direct roles for ADCP in
modulation of adaptive immunity. ADCP of immune complexes
by dendritic cells via FcγRIIa promotes MHC class I and II
antigen presentation and induces cellular and humoral immune
responses, while uptake through FcγRIIb prevents dendritic
cell maturation and does not promote immune activation (75).
Antibody production and affinity is also regulated by FcγRIIb-
mediated induction of B-cell apoptosis, which helps to eliminate
B cells with low affinity B cell receptors (75). Based on the
diverse roles of ADCP in immune responses it is unsurprising
that ADCP has been shown to be an important component of
immune responses to infection by many different viruses.

EVIDENCE FOR THE IMPORTANCE OF
ADCP IN IMMUNE RESPONSES
AGAINST VIRUSES

Phagocytosis has traditionally been known for its role in
clearance of bacteria and fungi, as evidenced by the fact that
persons with defects in phagocytosis are susceptible to common
bacterial and fungal infections (76). It is important to note
that these observations relate to total phagocytosis (antibody
dependent and antibody independent) and thus do not allow for

dissection of the specific contribution of ADCP to protection
from bacterial and fungal infection. The role of ADCP in immune
responses against viruses is similarly complex and difficult to
dissect given its association with other antibody functions in the
settings of infection, vaccination, and passive immunization.

HIV-1
In the context of natural infection with HIV-1, the first line of
evidence for a role of ADCP in the antiviral immune response is
associations between Fc receptor genetics and disease progression
or risk of infection. Forthal and collaborators (37) performed
FcγRIIa genotyping of a large cohort HIV-1 infected men (n
= 559), over 90% of which were entered into the study prior
to the availability of antiretroviral therapy, and all of whom
were enrolled into the cohort with CD4+ T cell counts above
500/mm3. They found that homozygosity for the low affinity
allele of FcγRIIa (R/R131), the Fc receptor implicated in IgG-
mediated ADCP activity of antibody responses against HIV-1
(77, 78), significantly predicted an accelerated rate of disease
progression —defined as CD4+ T cell counts under 200/mm3–
when compared to subjects that were heterozygous for this
allele (H/R131), or homozygous for the high affinity allele
(H/H131) of FcγRIIa (37). No such correlation was observed
for FcγRIIIa allelic variants, which is conventionally regarded
as the primary Fc receptor involved in natural killer (NK) cell
ADCC. Associations between Fc receptor genetics and risk of
HIV-1 infection have also been studied in the setting of vertical
transmission. Using samples collected from antiretroviral-naïve
HIV-seropositive mothers and paired infants in western Kenya,
Brouwer et al. (36) identified infant homozygosity for the high
affinity allele of FcγRIIa as a risk factor for perinatal HIV-
1 infection. They observed no impact of maternal FcγRIIa
alleles on transmission. Recently, a similar study was conducted
using samples collected from 79 HIV-1 transmitting mothers,
234 non-transmitting mothers, and their offspring, in a South
African cohort with contrasting results (79). In this latter
study, the infant FcγRIIa acquisition risk factor identified
by Brouwer et al. was not recapitulated, but instead the
authors reported that mothers with the high affinity allele for
FcγRIIIa (homozygous or heterozygous) were associated with a
significantly lower risk of HIV-1 vertical transmission (79). Taken
collectively, these three observations highlight the complexity
in interpreting correlative studies. How can the seemingly
contradictory findings be explained? Many factors are likely
contributing to the divergent outcomes including differential
requirements for immune control of disease progression vs.
infection when comparing the Forthal study to the two studies
investigating vertical transmission. Within the transmission
studies, the authors of the South African study put forth the
hypothesis that differences in timepoints used for determination
of HIV infectionmay have resulted in inclusion ofmore postnatal
breastfeeding transmission events in the Brouwer study, which
likely have different requirements for protection compared to
infections occurring in utero or perinatally. Although this may
be the case, it is also important to reiterate that Fc receptor
genetics is only one level of regulation for ADCP and other Fc
receptor-dependent immune responses. As previously described,
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further regulation occurs at the level of the cell (type of
phagocyte and combination of receptors expressed), within tissue
immune environment (presence or absence of inflammatory
signals), and via the antibody comprising the immune complex
(specificity, isotype, subclass, and glycoforms). Thus, although
studies based on genetic factors alone may provide insight
into the potential for ADCP and other Fc receptor-dependent
antibody functions to contribute to immune responses to HIV-
1 they are limited by an inability to account for the myriad
of factors that impact these antibody effector functions in vivo.
Other studies have helped to address some of these limitations
and provide additional evidence that ADCP plays an important
antiviral role against HIV-1. By comparing ADCP activity
of polyclonal IgG collected from HIV-1 infected individuals
and healthy controls, Ackerman and collaborators determined
that phagocytosis activity was higher for IgG from viremic
patients and HIV-1 controllers compared to IgG collected from
patients on highly active antiretroviral therapy. Importantly,
they found that the antibodies from controllers were able
to outcompete phagocytic activity of antibodies from viremic
individuals and were biased toward interactions with activatory
FcγRIIa over interactions with inhibitory FcγRIIb (78). In follow-
up studies, they demonstrated that ADCP was a component of a
polyfunctional response in HIV-1 controllers that included NK
cell activation, ADCC, and complement deposition (80), and
that was likely impacted by skewing of antibody glycoforms (42).
Unlike that observed for HIV controllers, impaired phagocytosis
is one of the hallmarks of chronic viremic HIV-1 infection
(81–83), and may be related to a loss of FcγRII expression on
monocytes and dendritic cells (77).

Preclinical and clinical trials of candidate HIV-1 vaccines
have provided more opportunities to evaluate the importance of
ADCP in protection against SIV/SHIV/HIV-1 infection. Immune
correlates analyses suggest that protection against infection as
well as inhibition of virus replication after establishment of
infection is mediated not only by direct neutralization, but also
by Fc-mediated antibody effector functions (80, 84–92).

In rhesus macaque SIV and SHIV preclinical animal
models, non-broadly neutralizing antibody functions, including
phagocytosis, correlated with reduced risk of infection as
measured by increased number of low-dose challenges to
infection (86, 90, 93). Of particular interest is the elegant study
by Ackerman and colleagues, which identified distinct immune
signatures of vaccine-mediated protection dependent on the
route of immunization (94). In this study, rhesus macaques
were immunized with a DNA prime-Ad5 SIVmac239 Env-based
vaccine regime, either via the intramuscular (IM) route, or
intranasally in an aerosol (AE) formulation. Equivalent levels
of vaccine efficacy (∼70%) against repeated low dose smE660
intra-rectal challenge were observed for both the IM and
AE immunization groups, although unique humoral immune
profiles and correlates of risk were identified. ADCP however,
was identified as a correlate of reduced infection risk in both the
IM and AE vaccine groups. Remarkably, although ADCP was a
common immune function linked to protection independently
of the route of immunization, the phagocytes and antibody
isotypes associated with ADCP differed. For animals vaccinated

by the IM route, monocyte ADCP and IgG were associated
with reduced risk of infection, while ADCP by neutrophils
(termed antibody-dependent neutrophil phagocytosis, ADNP)
and IgA were associated with reduced risk of infection in animals
vaccinated via the AE route. Importantly, a cross study validation
of the ADCP correlate was preformed, and ADCP was also
identified as associated with reduced risk of infection by low dose
SHIV challenge in rhesus macaques vaccinated with an ALVAC
prime gp120-boost vaccine regimen (93, 94), providing evidence
for ADCP in vaccine-elicited protection afforded by different
vaccine regimens and routes of inoculation, and against different
challenge viruses.

Consistent with the observations from efficacious preclinical
studies performed in rhesus macaque models, an immune
correlates analysis of the partially efficacious RV144 vaccine
human clinical trial provided evidence that non-neutralizing
antibodies contributed to reduced risk of infection. Vaccine-
elicited variable region 1 and 2 (V1/V2) IgG antibodies correlated
with decreased risk of HIV-1 infection (85, 89, 91, 95) and
these V1/V2 antibodies were not broadly neutralizing but were
capable of multiple antiviral functions, such as ADCC, virion
capture, ADCP, and tier-1 neutralization (91, 96–98). Notably,
the RV144 vaccine regimen elicited antibodies that exhibited
coordinated Fc-mediated effector responses (87, 91). Fc receptor
polymorphisms also influenced RV144 vaccine efficacy (99),
although these polymorphisms were for FcγRIIc and have not
been associated with ADCP. Other HIV-1 vaccine efficacy trials
that showed no efficacy either lacked a coordinated Fc receptor-
dependent effector response (87) or lacked evidence of strong
Fc-mediated antibody functions (100, 101).

When considered collectively, the results from non-human
primate and HIV-1 candidate vaccine clinical trials provide
strong evidence that ADCP is an achievable and potentially
protective antiviral immune response to induce by preventative
HIV-1 vaccines. As efforts continue toward development of
vaccines that can induce broad-neutralizing antibodies it will be
important to ensure that ADCP and other Fc receptor-dependent
antibody responses are elicited. Fortunately, although HIV-1
broadly neutralizing antibodies (bnAbs) are defined based on
their ability to neutralize a broad range of viruses, many bnAbs
are also capable of mediating Fc receptor-dependent antiviral
functions including ADCC and ADCP (69, 102–104).

Passive immunization trials have also show that antibody-
mediated protective activity is not solely due to neutralization,
but also in part due to Fc receptor-dependent functions. In
non-human primate (NHP) passive immunization studies, with
both high and low dose vaginal challenge of rhesus macaques
with SHIV162p3, protection decreased by about 50% when
the administered passive antibody was incapable of binding Fc
receptors (105, 106). Similarly, in passive immunization studies
performed with humanized mice, antibodies with enhanced
ability to bind activating Fc receptors gave greater protection
than their epitope-matched counterparts (107, 108). Although
the specific role of ADCP in these observations has not been
determined, when combined with the evidence provided from
studies of HIV-1 virus control and disease progression, and
from candidate vaccine trials, there is strong evidence to support
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ADCP as contributing to antibody-mediated protection from
HIV-1. However, a recent study by Parsons and collaborators
demonstrated that for the highly potent neutralizing antibody
PGT121, Fc-receptor dependent functions were dispensable for
maximal protection (109). These results suggest that the extent
to which Fc receptor-dependent antibody functions contribute to
protection is variable, and likely dependent on multiple factors
including neutralization potency and/or characteristics of the
virus challenge (110).

Influenza Virus
Huber and colleagues used a murine vaccination and challenge
model to provide evidence supporting a role of ADCP in
protective immune responses to influenza virus infection
(111). Normal BALB/c mice and BALB/c mice engineered
to lack expression of the Fc receptor γ-chain—and thus
deficient in Fc receptor signaling—were given identical influenza
immunizations and challenges. Mice lacking the Fc receptor
γ-chain were incapable of antibody-mediated phagocytosis,
and were highly susceptible to influenza infection, despite
the presence of normal levels of cytokines (IFN-γ and IL-
10) and antibodies. The condition was not reversed even
in the presence of passively-infused anti-influenza antibodies
from immune wild type mice, indicating that a defect in
interactions of antibody with immune effector cells caused the
susceptibility. The effector mechanism was narrowed down by
demonstrating protection after passive transfer of immune sera
into CD3ε-transgenic mice that lack T cells and NK cells,
thereby showing lack of dependence on NK cells and suggesting
against ADCC as the mechanism of inhibition. In contrast,
macrophages were observed to be ingesting opsonized virus
particles, implicating ADCP in inhibition of influenza infection
(111). Subsequent work demonstrated that neutrophils may be an
essential phagocyte that interacts with influenza specific antibody
in protection from disease (112).

Another line of evidence showed that depletion of lung
phagocytes, i.e., neutrophils and alveolar macrophages, caused
uncontrolled growth of influenza in mice, and caused mortality
at doses that were sub-lethal to normal mice (112, 113).
Passive immunization studies performed in normal mice
or neutrophil-depleted mice demonstrated that the effector
mechanism responsible for control of influenza infection by
phagocytes was likely antibody-dependent, since control of
infection was enhanced by passively infused antiserum (112).
Consistent with these results, DeLillo and collaborators used
humanized Fcγ receptor mice in a passive immunization model
to demonstrate that influenza hemagglutinin protein stalk-
specific neutralizing human monoclonal antibodies (see Epitope
section below) were dependent on interactions with activatory
Fcγ receptors for protection from influenza challenge (114). The
antiviral mechanisms of this protection were found to likely
be dependent on both ADCC (114) and ADCP (115). Passive
immunization experiments performed by He and collaborators,
and in a second study by DiLillo and collaborators, also
demonstrated a requirement for Fc receptor interactions in
order to achieve maximal protection with both neutralizing,
and non-neutralizing influenza-specific antibodies (74, 116).

He and collaborators found that protection was dependent
on alveolar macrophages, and that these cells were capable
of ADCP of immune complexes formed with influenza virus
and non-neutralizing or neutralizing antibodies, suggesting
a role for ADCP in the observed protective efficacy of
passive immunization.

The contribution of ADCP to protection from influenza
infection observed in passive immunization studies supports
antibodies capable of ADCP as a desirable outcome of
active immunization to protect against influenza infection.
A paramount goal for the armamentarium against influenza
pandemics is development of a universal vaccine that is
efficacious against the high diversity of influenza subtypes and
strain variants that result from antigenic drift. Many approaches
toward this goal attempt to focus the immune response on
highly conserved influenza antigens. Results of testing such
candidate vaccine regimens have suggested that ADCP may
be an important immune response elicited by antibodies that
target conserved influenza epitopes. Using influenza virus like
particles (VLPs) as an immunogen to elicit responses to the
highly conserved matrix protein 2 (M2), Song and colleagues
demonstrated, in mice, that M2 VLP immunes sera induced cross
protection across heterologous influenza A viruses including
the 2009 H1N1 pandemic virus, as well as the heterosubtypic
H3N2 and H5N1 influenza viruses. They also found that the
immune sera responsible for this cross-protection required the
presence of dendritic cells and macrophages (117). Another
group independently identified similar observations and reached
similar conclusions. Using a vaccine approach based on the
conserved M2e influenza epitope, they showed that passive
immunization by M2e-specific antibodies depends on the
presence of alveolar macrophages with intact FcγRI and FcγRIII
for immune protection (118). The authors of this study point
out that the M2 protein is highly expressed on the surface of
infected cells, but limited on influenza virions. They therefore
hypothesized that the anti-M2e antibodies preferentially target
influenza infected cells and eliminate them via ADCC and ADCP
prior to virus propagation and release by budding. ADCP of
infected cells is an understudied aspect of immune responses to
all viral infections, and it should be further investigated in this
context. Collectively, these preclinical candidate vaccine studies
provide evidence that protection by Fc receptor-dependent
processes including ADCP may be broad and stretch across
influenza subtypes. However, ADCP activity has also been shown
to be a component of the non-cross-reactive immune response
induced by the seasonal trivalent influenza vaccine (119), and
anti-influenza sera ADCP activity is common in healthy adults
(120). It remains unknown how ADCP and other Fc receptor-
dependent functions contribute to persistent natural and vaccine-
induced responses to seasonal influenza.

While most evidence from studies performed in animal
models suggests that phagocytes and ADCP contribute to
protective immune responses against influenza virus there may
also be aspects of their function that augment influenza infection.
For example, inhibition or removal of the ability of phagocytes
to produce reactive oxygen species improved the resolution of
lung influenza infection in mice (121), and the high affinity allele
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of FcγRIIa was found to be a risk factor for severe pneumonia
during the 2009 A/H1N1 pandemic (32).

Herpesviruses
ADCP of herpes simplex virus-infected fibroblast by both
neutrophils and monocytes has been observed in vitro (122),
and several studies have implicated ADCP as having a role in
immune responses to herpesvirus infections. ADCP was recently
identified as a component of the antibody response elicited
by vaccination with a cytomegalovirus (CMV) subunit vaccine.
Nelson and collaborators investigated the humoral components
of reduced risk of CMV acquisition observed in the moderately
(∼50%) efficacious clinical trial of the CMV glycoprotein
gB/MF59 vaccine conducted in postpartum women (123, 124).
Consistent with previous observations (125), they found that this
vaccine induced only modest neutralizing antibody responses.
However, the vaccine-elicited antibodies were demonstrated to
bind to the surface of infected cells and mediate robust ADCP
of both gB-protein coated beads and fluorescently-labeled whole
CMV virions (124). Interestingly, the vaccine elicited high
magnitude gB-specific IgG3 responses, which likely contributes
to the high levels of ADCP observed as the IgG3 isotype
has previously been shown to be superior to IgG1 for virion
ADCP in studies performed with HIV-1 (104). The study by
Nelson et al. is novel in that it implicates non-neutralizing
antibody responses as having an important role in antibody
responses against CMV, and therefore may help to open new
pathways toward development of highly effective next-generation
CMV vaccines.

A genetic link providing evidence of a role ADCP in immune
responses to herpesviruses was described for EBV. The low
affinity allele of FcγRIIa was found to be enriched in EBV
infection and correlated with the expression of the latency
protein LMP1, suggesting that this allele may be a risk factor for
latent EBV infection (34).

Collectively these studies provide evidence that ADCP
contributes to vaccine-elicited and natural immune responses
to herpesvirus infection. Due to the prevalence of herpesviruses
worldwide, and the need for additional strategies for
treatment and prevention, additional research in this area
is warranted.

Other Virus Infections
Although the ADCP has not been comprehensively studied in
the context of most virus infections, it may be a common
component of antiviral humoral immune responses to diverse
types of viruses as supported by the study of respiratory
syncytial virus (RSV), ebola virus, human papilloma virus
(HPV), foot-and-mouth disease virus (FMDV), severe acute
respiratory syndrome coronavirus (SARS-CoV), and West Nile
virus (WNV).

For RSV and ebola virus, evidence of ADCP in immune
responses is limited to in vitro assessment of virus-specific
monoclonal antibodies. ADCC and ADCP activity was
observed for RSV G protein-specific monoclonal antibodies
produced by B cells from healthy (presumably RSV exposed

and immune) adults (126). For ebola virus, glycoprotein-
specific monoclonal antibodies produced by B cells in
response to ebola virus glycoprotein DNA prime and virus-
vectored boost vaccination were shown to have ADCP
activity (127).

The contribution of ADCP activity to protection from HPV
infection was reported for anti-HPV neutralizing monoclonal
antibodies. Using passive transfer experiments in mouse models,
Wang and collaborators provided evidence that HPV-specific
IgGmonoclonal antibodies can cross the vaginal epithelial at sites
of local disruption, and that this IgG had ADCP activity (128).
They propose that ADCP augmented protection against vaginal
HPV infection resulting from virus neutralization because
protection was less efficacious when passive transfers were
performed with F(ab′)2 instead of whole IgG, when performed
in Fcγ-deficient mice, or with mice depleted of neutrophils and
Gr1+ macrophages.

FcγRII genotyping of 180 people previously infected with
SARS-CoV and 200 region-matched normal donors was used
to identify homozygosity for the low affinity allele of FcγRIIa
as significantly associated with severe SARS-CoV infection
(33). Further evidence supporting a role for ADCP in the
immune response that attenuates SARS-CoV infection comes
from depletion studies that demonstrated a requirement for
infiltrating and tissue resident macrophages, as well as SARS
immune sera, for clearance of SARS-CoV from pulmonary
cells in a mouse model (129). NK cells were not required,
suggesting against ADCC as the immune mechanism involved
in the reduction of infection (129). The SARS immune sera use
in these experiments had the ability to neutralize SARS-CoV.
Thus, this study provides another example of ADCP contributing
to the protection mediated by antibodies with the ability to
neutralize virus, as described above for HPV and HIV-1. Similar
observations have been made for FMDV (129–131). Taken
together, these observations suggest the compelling possibility
that for many viruses where neutralization has been shown to
have the ability prevent or control infection, ADCP or other Fc
receptor-dependent effector functions may also contribute and
enhance their protective function to an extent that has yet to be
fully defined.

For WNV, passive antibody transfer of WNV non-structural
protein-1 (NS1)-specific monoclonal antibodies into normal
mice and Fcγ receptor knock-out mice demonstrated Fc
receptor-dependent protection (132). Protection was maintained
in mice lacking only FcγRIII, suggesting that NK cell ADCC
was not essential. The authors demonstrated that murine
macrophages were able to internalize NS1-expressing target cells
in the presence of anti-NS1 antibodies, generating the hypothesis
that ADCP contributed to protection against WNV infection
in this model system. Interestingly, this study demonstrates
a role for ADCP of virus-infected cells in protection, which
is understudied when compared to ADCP of whole virus or
virus proteins. It is possible that infected-cell and virion ADCP
may in some contexts have divergent contributions to antiviral
responses as it has been shown that virion ADCP promotes
higher replication of WNV and other flaviviruses using in vitro
cell culture models (133, 134).
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POTENTIAL FOR ADCP TO ENHANCE
VIRAL INFECTION

ADCP is not always associated with beneficial or protective

immune responses. In some cases, ADCP has been demonstrated
to promote infection. Termed antibody-dependent enhancement

(ADE), this has predominantly been described for viruses
from the genus Flavivirus including dengue virus, yellow fever

virus, Japanese encephalitis virus, and zika virus (135–140). Fc

receptor-dependent ADE is a particular concern for infections
by dengue virus (141–143). There are four serotypes of dengue

virus, and antibodies generated in response to infection with one
serotype have variable degrees of cross reactivity to the other

three serotypes. Upon re-challenge with the original serotype,
antibodies are protective. However, the pre-existing antibody
response will augment infection and promotemore severe disease
upon secondary infection with any of the other serotypes (143).
Moreover, ADE resulting from cross reactivitymay not be limited

to secondary infection with another strain of the same virus; ADE

might also occur when the secondary infection is a different but

closely related virus. For example, the results of recent studies
have suggested that dengue virus-specific antibodies may be

capable of enhancing zika virus infection (144), and reciprocally,
that zika virus-specific antibodies may be capable of enhancing

dengue virus infection (140). These observations have been met

with skepticism (145), and additional work will be required to
demonstrate that this type of ADE has clinical relevance to
dengue and zika incidence and disease. ADE is thought to occur

when non-neutralizing antibodies, or suboptimal concentrations
of neutralizing antibodies, bind and opsonize virus, and are

subsequently internalized by Fc receptor expressing cells via
ADCP. Within the cells these immune complexes may perturb
normal antiviral immune functions resulting in the virus not
being destroyed. Instead, the virus exploits ADCP as a tool
to expand access to host cells, resulting in higher infection

burden and often stimulating an overt inflammatory response

that contributes to disease pathogenesis (143). How do viruses
such as dengue subvert the process of ADCP to promote
increased infection? One potential mechanism that has been
proposed to allow for dengue virus to escape Fc receptor-

mediated antiviral signaling is through engaging the inhibitory
receptor leukocyte immunoglobulin-like receptor-B1 (LILRB1)
(146). Thus, for dengue and other viruses, the outcome of
each interaction between antibody-virus immune complexes and

phagocytes depends on the balance of activating signals, which
are expected to promote ADCP and virus elimination, and
inhibitory signals, which have the potential to enhance infection.

In the studies of HIV-1 infection, early papers reported that
complement and antibodies at low titers could enhance HIV-1
infection in vitro (147–150). Since monocytes and macrophages
can be infected with HIV-1, one theory is that antibody-mediated
phagocytosis may have caused increased viral infection of these
phagocytes. More specifically, enhancement may have been due
solely to weakly or non-neutralizing antibodies that remain
capable of engaging but not neutralizing HIV-1 virus (151).
However, it is notable that no enhancement of infection in the

vaccine arm was observed in the VAX003 and VAX004 clinical
trials, both of which elicited high levels of non-neutralizing
antibodies (152, 153).

As described in a comprehensive review of the topic by Taylor
and collaborators (143), there is evidence of ADE for many other
viruses including influenza, SARS-CoV, RSV, and ebola virus—
for all of which there also exists evidence of ADCP as being part
of beneficial antiviral antibody responses. These dichotomous
observations emphasize the balancing act faced by the immune
system as it attempts to respond to virus infection. Immune
responses of sufficient specificity and potency are required to
protect against infection and disease, but suboptimal responses
can be exploited by pathogens resulting in higher levels of
infection andmore severe disease. Because of this, ADE remains a
concern for the development of vaccines against viruses for which
potent neutralizing antibody response cannot be elicited.

VIRAL EPITOPES RECOGNIZED IN ADCP

One of the best examples of how epitope specificity can
impact ADCP was described for influenza-specific antibodies.
Two distinct epitope regions of the influenza hemagglutinin
protein are recognized by influenza-specific antibodies: the
immunodominant and antigenically variable head domain; and
the more antigenically conserved stalk region (Figure 3). DiLillo
and colleagues demonstrated a requirement for antibody–
Fcγ receptor interactions for protection by the stalk-specific
antibodies, but not for antibodies recognizing the head
domain (114). They further demonstrated that the stalk-specific
antibodies were capable of activating NK cells for ADCC,
and that the protective efficacy of stalk-specific antibodies
could be improved with mutations that selectively enhance
engagement with FcγRIIa and FcγRIIIa (114). Mullarkey and
colleagues followed-up on these insights and identified a similar
epitope-dependent dichotomy of anti-hemagglutinin antibody
responses in antiviral assays performed with neutrophils as the
source of innate effector cells. Using recombinantly-produced
chimeric antibodies with mouse Fv and human Fc regions,
they demonstrated that stalk-specific, but not head-specific,
antibodies induced ADCP, and reactive oxygen production by
neutrophils. Similar observations were made for antibodies
made both as IgG1, and as IgA, indicating that the epitope
dichotomy for interaction with Fc receptors is conserved for
Fcγ and Fcα receptors (115). Their use of recombinantly
produced antibodies with identical Fc regions confirms that at
least for influenza virus, antibody epitope specificity can play
an essential role in establishing downstream antiviral effector
responses. A subsequent study by DiLillo and collaborators
expanded upon their initial observations, and demonstrated that
the requirement for Fc receptor involvement for protection
in vivo was not restricted only to stalk-specific antibodies,
but instead was a common feature of antibodies capable or
recognizing a breadth of influenza strains. Using mouse models,
Fc receptor dependent protection was shown for both broadly
neutralizing stalk and head specific antibodies, as well as broadly-
binding non-neutralizing head-specific antibodies (116). Thus,
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FIGURE 3 | Surface representation of structures of the viral fusion proteins of influenza virus, ebola virus, and HIV-1 that are targets of antiviral antibodies. Perspective

is from the side, such that the proteins are standing atop the virus envelope. These envelope proteins share a general structural architecture as trimers of dimeric

proteins comprised of a receptor binding domain (head, represented by shades of green) and a viral membrane-bound domain (stem/stalk, represented by shades of

orange). Renderings were made in PyMOL using protein data bank ID 3GBN (influenza), 5JQ3 (ebola), and 5FYL (HIV-1).

there exists a yet to be explained relationship between breadth
and Fc receptor-dependence in protective antibody response to
influenza. Sera from human donors has the ability to mediate
anti-influenza ADCP (119, 120), it will therefore be important for
future research to further map the specificities of natural human
influenza ADCP antibodies, and to explain the mechanisms
underlying the differential functions of the strain-specific head
antibodies from multi-strain specific head and stalk antibodies.

A similar epitope dichotomy has been described for ebola
virus. The ebola virus envelope glycoprotein is similar to
the envelope fusion glycoproteins of influenza and HIV-1 in
that they share a common architecture of trimers of dimeric
proteins. The dimers are comprised of a distal receptor-
binding head region, and a membrane-bound stem/stalk region
(Figure 3). The stem/stalk regions are less variable than the head
regions, however the head regions are generally regarded as
immunodominant. Ebola stalk-specific specific antibodies were
demonstrated to be capable of mediating multiple Fc receptor-
dependent effector functions including NK cell activation
and ADCP by monocytes or neutrophils, while glycan cap-
specific mAbs lacked this functionality (154). Thus, it will be
interesting to study parallels and differences between broad-
binding influenza and ebolavirus stalk-specific ADCP antibodies
as the biomolecular interactions underlying the relationships
between epitope and function are elucidated.

Diverse HIV-1 epitopes can be targeted for virion
phagocytosis, including broadly neutralizing epitopes such
as the gp41 MPER (stem region), and gp120 head-region targets
such as the CD4 binding site, V2 glycan, and trimer apex.
Non-broadly neutralizing epitopes such as the gp41 principal
immunodominant domain (stem region), V1/V2 loop and V3
loop (gp120 head region) (104, 155–157) are also targets of ADCP
antibodies. The CD4-induced epitopes found on HIV-infected
cells are not engaged alone for phagocytosis, but can be engaged
synergistically, at least with V2 epitopes, for virus engagement
(98). The ability of these epitopes to be engaged for phagocytosis

varies by strain, indicating the substantial heterogeneity between
viruses. Furthermore, antibodies targeting the same epitope can
vary in their phagocytosis potency, emphasizing the fact that
the rules of antibody-epitope engagement that allow for ADCP
are not completely understood. These may include antibody Fc
availability which can be affected by antigen binding valency
and angle of approach (158). It is also likely that there are non-
neutralizing antigenic targets on the HIV-1 virion surface that
are involved in ADCP or other Fc-dependent functions but have
not been discovered. Our understanding of the HIV-1 envelope
protein (Env) surface is strongly biased toward neutralizing
epitopes, since the search for anti-HIV-1 antibodies typically
involves the selection and characterization antibodies positive
for neutralization. However, these typically make up only a
portion of the antibodies that are elicited in response to HIV-1
infection or vaccination, but the non-neutralizing specificities
capable of binding and engaging Env are typically not further
studied. In addition, monomeric gp140 or gp120 proteins, and
even the current generation of stabilized trimeric proteins that
are typically used as hooks for antibody selection likely do not
fully recapitulate the diversity of natural Env forms on the virion
envelope, which may include both functional trimers and non-
functional forms of envelope (159). If so, large-scale unbiased
antibody screening may identify additional crucial antibody
specificities for Fc-mediated effector functions against virions
that may be targeted by vaccines or passive immunotherapy.
It is important to note that most virion ADCP methods do
not differentiate between infectious and non-infectious virion
particles–thus, an open question remains as to whether non-
neutralizing antibodies that appear to mediate virus ADCP do
indeed cause uptake of infectious viruses, or whether they merely
engage non-infectious epitopes on defective particles.

Virus-infected cells and virion particles are distinct biological
targets of antibody-mediated internalization. The epitope
specificities involved for each process may differ, given different
epitope exposure on viruses and infected cells. For instance, in the
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context of HIV-1, the gp41 principal immunodominant domain
targeted by antibodies such as 7B2 and F240 is frequently found
on virions, but not on infected cells, whereas the converse is true
for the conserved region 1 conformational domain targeted by
antibodies such as A32 and C11 (104, 160, 161). The majority
of studies describing the ADCP response to HIV-1 have been
focused on gp120/gp140 proteins or whole virions, thus there is
much less known about ADCP of HIV-1 infected cells and the
epitopes that may be involved in this process. Additional research
in this area is needed for HIV-1 and other viruses.

Comparatively less has been described regarding the fine
epitope specificity of ADCP antibodies in the immune responses
to other virus infections or vaccination. As a general rule, for
ADCP of virions the epitope must be present on the surface
of the virions, while for ADCP of infected cells any epitope
expressed on the surface of a virus-infected cell may be a
potential target. For most viruses limited antibody specificities
have been described to mediate ADCP: CMV gB (124) protein,
RSV G protein (126), ebola virus glycoproteins (127), HPV L2
protein (128), and WNV NS1 protein (132). In most of these
studies, the ADCP activity was identified by testing available
antibodies, or antibodies selected for alternative functionality
such as neutralization. Therefore, many potential specificities
remain unexplored and it is likely that antibodies that target other
epitope regions are capable of ADCP activity but have not yet
been identified. Overall, there is a dearth of knowledge regarding
specific epitopes that can be targeted by ADCP antibodies against
most viruses, and more insight into this area may inform
new strategies for rational design of vaccines intended to elicit
ADCP responses.

APPROACHES TO MEASURE VIRUS ADCP

Virus ADCP is typically measured via a cell-based assay,
where the amount of viral target internalized by a phagocyte
is quantified. Sample monoclonal or polyclonal antibodies
are first pre-mixed with the viral target to form immune
complexes. Phagocytes are then introduced for antibody-
dependent phagocytosis to occur. Such phagocytes include
primarymonocytes, macrophages, neutrophils, or corresponding
cell lines (104, 162, 163). Phagocytes can be spinoculated (164)
with the immune complexes to increase the signal-to-noise ratio,
though this is not necessary to achieve detectable signal in the
case of antibody-dependent phagocytosis of HIV-1 virions (165).
Non-internalized virus particles are then washed off, and the
amount of internalized viral target is quantified.

In theory, any method capable of quantifying target
particles (e.g., nucleic-acid based RT-PCR, protein-based ELISA,
or fluorescence) can be used as the assay readout, as
long as internalized virus particles can be separated from
extracellular or cell-attached particles. In practice, fluorescence-
based approaches are the most popular due to the capability
for high-throughput readout via flow cytometry (162). In
fluorescence-based approaches, the target particle could be a
live fluorescently-labeled virion (104, 120, 166) or a virus-
derived protein conjugated to a fluorescent bead (120, 162).

Where virions are labeled, this can be done with direct
labeling [including viral membrane labeling which would exclude
detection of membrane-fused viruses (167)], or internal labeling
via co-transfection of genes encoding fluorescent non-structural
proteins, resulting in their random incorporation into packaged
virus particles (168). Fluorescence labels can also be engineered
to report internalization, either by the addition of a non-cell-
permeable fluorescence quencher during the wash step (169), or
by using a pH-sensitive dye.

It is as yet unclear how results compare between different
types of viral targets. Notably, phagocytosis signaling pathways
and particle uptake dynamics are impacted by the physical
properties of the target, including ligand spacing (170, 171),
size (170, 172), shape (173), stiffness (174), and antigen height
(175). Since virus particles differ from protein-coated beads
in a number of these attributes, it remains unclear how these
differences affect Fc-Fc receptor signaling, or how they influence
the range of virus epitope-Fab conformations that are capable
of mediating phagocytosis. In the case of HIV-1, one group
has argued that HIV-1 virus particles cannot undergo ADCP
due to insufficient surface ligand density (176). This was based
on their observation of undetectable internalization of HIV-1
viruses by HIV-specific antibodies as compared with an anti-
phosphatidylserine antibody. However, this result is at odds with
our work demonstrating epitope-specific internalization of HIV-
1 virus particles using a variety of HIV-specific monoclonal
antibodies of different Env specificities (100), as well as
polyclonal antibodies from sera and breast milk (165). Since the
experimental procedures used by both groups were similar, the
reasons for this discrepancy are unclear, and may involve the
method of virus preparation.

Moving forward, it will be important to determine how the
nature of the immune complex affects phagocytosis. Current
assays do not routinely measure the size of the immune
complex engulfed, but only the number of intracellular or
intravesicular virions, which may be either a single immune
complex or an amalgamation of multiple co-phagocytosed
viruses. In fact, for many viruses, it is not even clear whether
antibody-dependent virion internalization is strictly a process of
phagocytosis, or whether other processes including endocytosis
and macropinocytosis are involved. It will also be important
to determine the signaling outcomes of such phagocytosis in
multiple cell types and inflammatory conditions, in order to
determine the role of phagocytosis in the recruitment of other
effector functions as well as the subsequent development of the
local inflammatory response and longer term adaptive immune
priming. For highly polymorphic viruses including HIV-1 and
influenza, it will also be useful to develop a panel of representative
viral strains (fluorescent if necessary) for use as a reproducible
measure of the breadth of ADCP activity which can be compared
across different settings and clinical trials. Indeed, just as HIV-
1 antibody neutralization potency against tier 1 viruses did not
necessarily predict neutralization breadth, ADCP breadth may
provide surprising clues for the development of vaccines that
elicit strong Fc effector function.

In contrast to ADCP of virus particles, methodology
for ADCP of virus-infected cells remains underexplored, as

Frontiers in Immunology | www.frontiersin.org 11 February 2019 | Volume 10 | Article 332

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Tay et al. Antiviral Antibody-Dependent Cellular Phagocytosis

most current ADCP assays have been developed to measure
internalization of immune complexes formed with virions, or
protein-coated beads. Thus, it remains difficult to quantify how
antibody epitope specificity and Fc profile contribute toward
their potency for ADCP of virus-infected cells. Methodologies
to investigate ADCP of virus-infected cells both in vitro and
in vivo, in particular differentiating such events from non-
antibody-mediated phagocytosis of virus-infected cells, will also
be important to determine whether infected-cell ADCP results in
virus inhibition or spread.

In addition to ADCP, trogocytosis is another potential
outcome of Fc-dependent interactions between antibodies and
virus-infected cells. Two assays developed to measure HIV/SIV-
specific ADCC responses have been shown to also detect
antibody-mediated interactions between monocytes and virus-
infected or protein-coated cells (177, 178). Both assays use
fluorescent dyes to label infected or protein-coated target cells.
Flow cytometric analysis of cell populations after incubation of
these target cells with antiviral antibodies and innate effector
cells identified CD14+ cells present in the effector cell population
as having acquired the fluorescent dye used to label the target
cells —indicating transfer of target cell membrane (trogocytosis)
and/or ADCP of cells or cell fragments. More recently, an in
vitro HIV-1 trogocytosis assay has been developed, using flow
cytometry to specifically measure the transfer of membrane
fragments from a gp120-coated CD4+ T cell line to the THP-1
monocytic cell line (179). The relationship between trogocytosis
and phagocytosis remains unclear. It may be that these two
processes are not mutually exclusive, and that trogocytosis
occurs as a result of “aborted phagocytosis” (180). Alternatively,
antibody-dependent trogocytosis may represent an alternative
mechanism for elimination of target cells (181–183). Presently,
the roles of trogocytosis in immune responses to virus infection
are not known, and additional research will be needed to
determine how this process impacts virus pathogenesis and to
further explore potential integrations with ADCP.

CONSIDERATIONS FOR TRANSLATION OF
STUDIES PERFORMED IN
ANIMAL MODELS

There are significant barriers to the translation of Fc effector
functions between animals and humans. The most notable is
the difference between the Fc/Fc receptor systems of rhesus,
mice, and humans. The differences between the mouse and
human Fc/Fc receptor system have been reviewed previously
(184). While rhesus and human Fc/Fc receptor systems might be
expected to be more similar, there remain substantial differences.
Fc differences are apparent when comparing IgA and IgG
subclasses between rhesus macaques and humans (Figure 4).
Rhesus macaques have only one IgA gene, whereas humans have
two IgA genes, IgA1 and IgA2. While both rhesus macaques and
humans have four IgG subclasses, rhesus IgGs are not structurally
or functionally analogous to human IgG1-4. In fact, rhesus IgG
subclasses are genetically more similar to each other than they
are to their human homologues (Figure 4A), and the diversity in

the germline immunoglobulin genes is higher in rhesusmacaques
than in humans (188, 189). Structural differences between rhesus
and human antibodies are best exemplified by the IgG3 subclass.
The human IgG3 CH domain encodes repeats of a hinge region
exon, resulting in a hinge that is approximately four times
longer (in number of amino acids) than that of human IgG1
(Figure 4B) (190). There is no such exon duplication and hinge
elongation in rhesus macaque IgG3 (188). The structure of the
hinge dictates the flexibility of the antibody (185), and therefore
impacts biological functions and has implications for translation
of studies performed in humans and rhesus macaques. For
example, vaccine-elicited HIV-specific IgG3 was identified as a
correlate of reduced risk of infection in the RV144 clinical trial
(87, 89), and in vitro studies have demonstrated higher ADCP
activity for IgG3 HIV monoclonal antibodies compared to other
IgG subclasses (104). Given the differences between human and
rhesus IgG3 it is unlikely that preclinical studies performed in
the rhesus model would have predicted that vaccine-elicited IgG3
could play a crucial role in reducing the risk of HIV infection as
observed in RV144. Caveats such as thismust be considered when
using animal models.

There are also differences in how human and rhesus macaque
antibodies interact with Fc receptors. For instance, rhesus IgG2
and IgG4 retain strong binding to Fc receptors (191, 192),
whereas human IgG2 and IgG4 have severely attenuated binding
(6). Thus, there is more similarity in Fc receptor interactions
and effector functions (191) across rhesus IgG compared to
that observed for humans. This suggests that rhesus macaques
do not use IgG subclasses to tune antibody responses to the
same extent as humans, and highlights the need for caution
when comparing subclass profiles in humoral responses across
these species. In addition, rhesus macaque Fc receptors are more
highly polymorphic than human Fc receptors (189, 192) and
the functional implications of many of these polymorphisms
have yet to be defined. Importantly, while rhesus and human Fc
and Fc receptors can cross-react in binding, antibody binding
to FcγRIIa is different between humans and rhesus macaques
when comparing antibody Fc mutants, suggesting that antibodies
may not behave similarly against human and rhesus macaque
FcγRIIa (193), which is commonly engaged for ADCP (162).
Despite these differences, our preliminary data indicate that there
remains cross-reactivity and some level of functional homology
for phagocytosis between humans and rhesus macaques, with
similar rank order of phagocytosis activity across species when
human IgG and IgA isotypes/subclasses are tested against
human or rhesus monocytes and neutrophils (Pollara et al.,
unpublished observations).

Further studies are required on the interactions between Fc
and Fc receptors in different species, their effects on phagocytosis,
and the subsequent effects of phagocytosis to determine what
findings from preclinical studies can be translated. Passive
immunotherapy may be simpler to model since there appears to
be functional homology for phagocytosis between human and
rhesus systems when human Ig is used. Humanized mice will
also be valuable for these types of studies. Specifically, the mouse
model developed by Smith and collaborators in the laboratory of
Dr. Jeffrey Ravetch is expected to provide the most utility (194).
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FIGURE 4 | (A) Phylogenic tree of human (Hu) and rhesus macaque (RM, red) IgG and IgA CH genes. Scale bar represents the percentage sequence dissimilarity as a

measure of phylogenetic distance. (B) The human IgG3 hinge region is elongated when compared to IgG1. The hinge region in the hybrid surface/schematic rendering

of human IgG3 is drawn to scale, with an estimated hinge length of 80 angstroms, as estimated by Lu and colleagues using small angle x-ray scattering data, and

consistent with prior estimates from electron microscopy data (185, 186). Disulfide bonds (n = 11) are represented by rungs in the ladder structure (187).

In their model, the mouse Fcγ receptor genes have been deleted
and human Fcγ receptor transgenes have been inserted. This
results in mice that express functional human Fcγ receptors on
the same types of cells and at the same levels as found in humans.
The primary limitations of this model are that only human Fcγ
receptors are expressed. Thus, Fcα-receptors, FcεRI, Fc receptor
neonatal, Type II Fc receptors, and other Fc-binding proteins
remain as native mouse forms. Moreover, repeated infusion
of human IgG can result the development of anti-human IgG
antibodies in these mice (195).

CONCLUSIONS AND
FUTURE PERSPECTIVES

ADCP is an Fc receptor-dependent function of antibodies that is
likely common to immune responses elicited by virus infection
and in response to vaccination. Importantly, there is substantial
evidence that supports ADCP as contributing either to protection
from infection, or reduction in disease severity for diverse
types of viruses. In most cases, it is likely that ADCP works
in tandem with additional Fc-independent and Fc-dependent
antiviral activities as part of an effective polyfunctional humoral
response. In fact, for many viruses that have been demonstrated
to have antibody-dependent correlates of protection it is highly
likely that ADCP is involved, but perhaps was not thoroughly
explored. Additional investigation into the role of ADCP in
protective viral responses, and the specific virus epitopes targeted
by ADCP antibodies, may provide insight into strategies for
rational vaccine design to elicit these types of antibody responses
while avoiding deleterious ADE activity. Additionally, identifying
the types of phagocytes and Fc receptors involved in ADCP at

sites of virus infection within tissues, throughout the course of
infection and virus clearance, remains an understudied aspect
of host and virus interactions. Finally, as most ADCP assays
used to measure this immune response in vitro quantify uptake
of virus subunits, virions, and in some cases infected cells,
there remains a gap in knowledge regarding the outcome of
phagocytosis. Further research into this area could determine if
protection by ADCP is dependent on clearance and elimination
of virus and virus infected cells, or by potentiating subsequent
immune responses via antigen presentation or immune signaling.
As our understanding of ADCP grows, it is likely that approaches
to successfully leverage this important immune response for
improved antiviral immunity will be discovered.
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