

Open access • Posted Content • DOI:10.1101/2021.07.29.454333

Antibody Evolution after SARS-CoV-2 mRNA Vaccination — Source link 🗹

Alice Cho, Frauke Muecksch, Dennis Schaefer-Babajew, Zijun Wang ...+25 more authors

Institutions: Rockefeller University, Howard Hughes Medical Institute

Published on: 29 Jul 2021 - bioRxiv (Cold Spring Harbor Laboratory)

Topics: Memory B cell, Vaccination and Antibody

Related papers:

- Anti- SARS-CoV-2 Receptor Binding Domain Antibody Evolution after mRNA Vaccination
- Vaccination boosts naturally enhanced neutralizing breadth to SARS-CoV-2 one year after infection
- mRNA vaccines induce durable immune memory to SARS-CoV-2 and variants of concern.
- Case Report: Infection With SARS-CoV-2 in the Presence of High Levels of Vaccine-Induced Neutralizing Antibody Responses
- Function Is More Reliable than Quantity to Follow Up the Humoral Response to the Receptor-Binding Domain of SARS-CoV-2-Spike Protein after Natural Infection or COVID-19 Vaccination.

1	Anti- SARS-CoV-2 Receptor Binding Domain Antibody Evolution after mRNA Vaccination
2	
3	Alice Cho ^{1,*} , Frauke Muecksch ^{2,*} , Dennis Schaefer-Babajew ^{1,*} , Zijun Wang ^{1,*} , Shlomo
4	Finkin ^{1,*} ,Christian Gaebler ¹ , Victor Ramos ¹ , Melissa Cipolla ¹ , Pilar Mendoza ¹ , Marianna
5	Agudelo ¹ , Eva Bednarski ² , Justin DaSilva ² , Irina Shimeliovich ¹ , Juan Dizon ¹ , Mridushi Daga ¹ ,
6	Katrina Millard ¹ , Martina Turroja ¹ , Fabian Schmidt ² , Fengwen Zhang ² , Tarek Ben Tanfous ¹ ,
7	Mila Jankovic ¹ , Thiago Y. Oliveria ¹ , Anna Gazumyan ¹ , Marina Caskey ¹ , Paul D. Bieniasz ^{2,3} ,
8	Theodora Hatziioannou ² , and Michel C. Nussenzweig ^{1,3} .
9	
10	¹ Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065, USA
11	² Laboratory of Retrovirology, The Rockefeller University, New York, NY 10065, USA
12	³ Howard Hughes Medical Institute
13	
14	*equal contribution
15 16 17	Address correspondence to: Paul D. Bieniasz pbieniasz@rockefeller.edu; Marina Caskey mcaskey@rockefeller.edu; Theodora Hatziioannou thatziio@rockefeller.edu; or Michel C. Nussenzweig nussen@rockefeller.edu

19 Summary

20 Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection produces B-cell 21 responses that continue to evolve for at least one year. During that time, memory B cells express increasingly broad and potent antibodies that are resistant to mutations found in 22 23 variants of concern¹. As a result, vaccination of coronavirus disease 2019 (COVID-19) 24 convalescent individuals with currently available mRNA vaccines produces high levels of plasma neutralizing activity against all variants tested^{1,2}. Here, we examine memory B cell 25 26 evolution 5 months after vaccination with either Moderna (mRNA-1273) or Pfizer-27 BioNTech (BNT162b2) mRNA vaccines in a cohort of SARS-CoV-2 naïve individuals. 28 Between prime and boost, memory B cells produce antibodies that evolve increased 29 neutralizing activity, but there is no further increase in potency or breadth thereafter. Instead, memory B cells that emerge 5 months after vaccination of naïve individuals 30 31 express antibodies that are similar to those that dominate the initial response. While 32 individual memory antibodies selected over time by natural infection have greater potency and breadth than antibodies elicited by vaccination, the overall neutralizing potency of 33 34 plasma is greater following vaccination. These results suggest that boosting vaccinated 35 individuals with currently available mRNA vaccines will increase plasma neutralizing 36 activity but may not produce antibodies with breadth equivalent to those obtained by 37 vaccinating convalescent individuals.

38

Between January 21 and July 20, 2021, we recruited 32 volunteers with no history of prior
SARS-CoV-2 infection receiving either Moderna (mRNA-1273; n=8) or Pfizer-BioNTech
(BNT162b2; n=24) mRNA vaccines for sequential blood donation. Matched samples were

42	obtained at 2 or 3 time points. Individuals indicated as "prime" were sampled an average of 2.5
43	weeks after receiving their first vaccine dose. Individuals who completed their vaccination
44	regimen were sampled after an average of 1.3 months after the boost (median=35.5 days) which
45	is not statistically different from the 1.3 month sampling in our naturally infected cohort ³
46	(median=38.5 days, p=0.21). Individuals sampled at 1.3 months were sampled again
47	approximately 5 months after the second vaccine dose. The volunteers ranged in age from 23-78
48	years (median=34.5 years), 53% were male and 47% female (for details see Methods and
49	Supplementary Tables 1 and 2).
50	
51	Plasma binding and neutralization assays
52	Plasma IgM, IgG, and IgA responses to SARS-CoV-2 receptor binding domain (RBD) were
53	measured by enzyme linked immunosorbent assay (ELISA) ³ . As reported by others ^{2,4-6} there was
54	a significant increase in IgG reactivity to RBD between prime and boost (p<0.0001, Fig. 1a).
55	IgM and IgA titers were lower than IgG titers and remained low after the second vaccine dose
56	(Extended data Fig. 1a and b). The magnitude of the response was inversely correlated with age
57	after the prime (r=-0.54, p=0.005), but in this limited sample set the age difference was no longer
58	significant at 1.3 or 5 months after the second vaccine dose (Fig. 1b, Extended data Fig. 1c).
59	Between 1.3 and 5 months after the boost, anti-RBD titers of IgG and IgA decreased
60	significantly. IgG titers decreased by an average of 4.3-fold (range: 1.7- to 10.2-fold) and the
61	loss of activity was directly correlated to the time after vaccination (p<0.0001, Fig. 1a and c and
62	Extended data Fig. 1a and b).
63	

64 Neutralizing activity was measured using HIV-1 pseudotyped with the SARS-CoV-2 spike^{1,3,7,8}. 65 Naïve individuals showed variable responses to the initial vaccine dose with a geometric mean 66 half-maximal neutralizing titer (NT_{50}) of 171 (Fig. 1d, Supplementary Table 2). The magnitude of the neutralizing responses to the initial vaccine dose in naïve volunteers was inversely 67 correlated with age (r=-0.39, p=0.05, Fig. 1e). Both binding and neutralizing responses to the 68 69 second vaccine dose were correlated to the prime (r=0.46, p=0.02, Extended data. Fig. 1d; 70 r=0.54, p=0.003, Extended data Fig. 1e) and produced a nearly 12-fold increase in the geometric 71 mean neutralizing response that was similar in males and females and eliminated the age-related 72 difference in neutralizing activity in the individuals in this cohort (Fig. 1d, Extended data Fig. 1f and Fig. 1e and Extended data Fig. 1g). 1.3 and 5 months after the boost naïve vaccinees had 4.9-73 and 3.6 fold higher neutralizing titers than a cohort of infected individuals measured 1.3^3 - and 74 75 6.2^7 -months after symptom onset, respectively (p<0.0001, Fig. 1d). Neutralizing responses were 76 directly correlated to IgG anti-RBD titers (r=0.96, p<0.0001, Fig. 1f). Thus, the data obtained 77 from this cohort agree with prior observations showing a significant increase in plasma neutralizing activity that are correlated with improved vaccine efficacy in naïve individuals that 78 receive the second dose of mRNA vaccine^{2,6,9,10} and higher neutralizing titers in fully vaccinated 79 than infected individuals^{2,6}. 80

81

The 28 individuals assayed 5 months after vaccination had a 7.1-fold decrease in geometric mean
neutralizing titer from their 1.3-month measurement (p<0.0001, Fig. 1d), with a range of 1.4- to
27-fold. Neutralizing activity was inversely correlated with the time from vaccination (r=-0.82,
p<0.0001, Fig. 1g), and directly correlated to IgG anti-RBD binding titers when assessed 5
months after vaccination (Extended data. Fig. 1h). As reported by others¹¹, the ratio of binding to

neutralizing serum titers was significantly higher in vaccinated than convalescent individuals at
the 1.3-month time point (p<0.0001, Fig. 1h). However, the difference was no longer apparent at
the later time point (Fig. 1h).

90

We and others showed that the neutralizing responses elicited by mRNA vaccination are more 91 92 potent against the original Wuhan Hu-1 strain than for some of the currently circulating variants of concern^{2,12-14}. To confirm these observations, we measured the neutralizing activity of 15 93 94 paired plasmas from naive individuals 1.3 and 5 months after the second vaccine dose against 95 B.1.1.7 (alpha variant), B.1.351 (beta variant), B.1.526 (iota variant), P.1 (gamma variant) and B.1.617.2 (delta variant). Consistent with previous reports^{13,15-17} the neutralizing activity against 96 97 the variants was lower than against the original Wuhan Hu-1 strain (Fig. 1i, Supplementary 98 Table 3). Initial geometric mean neutralizing titers at 1.3 months against B.1.351, B.1.1.7, 99 B.1.526, P.1 and B.1.617.2 were 5.7, 1.8, 1.1, 1.4 and 2.7-fold lower than against Wuhan-Hu 100 respectively (Fig. 1i). In the months following vaccination there was a decrease in neutralizing 101 activity against Wuhan Hu-1 (R683G) and all the variants with geometric mean neutralizing titers for WT, B.1.351, B.1.1.7, B.1.526, P.1 and B.1.617.2 decreasing by 2.9-, 1.8-, 2.3-, 2.9-, 102 103 2.4- and 2.6-fold, respectively (Fig. 1i and Supplementary Table 3). 104

105 Monoclonal Antibodies

106 Circulating antibodies produced by plasma cells can prevent infection if present at sufficiently

107 high concentrations at the time of exposure. In contrast, the memory B cell compartment

108 contains long lived antigen-specific B cells that mediate rapid recall responses that contribute to

109 long term protection¹⁸. To examine the nature of the memory compartment elicited by one or two

110 mRNA vaccine doses and its evolution after 5 months we used flow cytometry to enumerate B 111 cells expressing receptors that bind to Wuhan Hu-1 (wild type, WT) and the B.1.351 112 K417N/E484K/N501Y variant RBDs (Fig. 2a and b, and Extended data Fig. 2). Although neutralizing antibodies develop to other parts of the spike (S) protein we focused on RBD 113 114 because it is the dominant target of the memory antibody neutralizing response^{19,20}. Wuhan-Hu 115 RBD-specific memory B cells developed after the prime in all volunteers examined and their 116 numbers increased for up to 5 months after vaccination (Fig. 2a). Memory B cells binding to the 117 B.1.351 K417N/E484K/N501Y variant RBD were detectable but in lower numbers than wild 118 type RBD-binding B cells in all samples examined (Fig. 2b). Whereas IgG memory cells 119 increased after the boost, IgM-expressing memory B cells that made up 23% of the memory 120 compartment after the prime were nearly absent after boosting (Fig. 2c). Finally, circulating 121 RBD-specific plasmablasts were readily detected after the prime but were infrequent after the 122 boost (Fig. 2d, and Extended data Fig. 2d). 123

The memory compartment continues to evolve up to one year after natural infection with selective enrichment of cells producing broad and potent neutralizing antibodies¹. To determine how the memory compartment evolves after vaccination, we obtained 2328 paired antibody sequences from 11 individuals sampled at the time points described above (Fig. 2e and f, Extended Data Fig 3, Supplementary Table 4). As expected *IGHV3-30* and *IGHV3-53* were over-represented after the first and second vaccine dose and remained over-represented 5 months after vaccination²¹⁻²³ (Extended data Fig. 4).

131

All individuals examined showed expanded clones of memory B cells that expressed closely related *IGHV* and *IGHL* genes (Fig. 2e and f, Extended data Fig. 4). Paired prime and 1.3 month post boost samples showed expanded clones of memory B cells some of which were shared across plasmablasts, IgM and IgG prime, and IgG boost memory cells (Extended data Fig. 3 and 5). Thus, the cell fate decision controlling the germinal center versus plasmablast decision is not entirely affinity dependent since cells with the same initial affinity can enter both compartments to produce clonal relatives²⁴.

139

140 The relative fraction of memory cells found in expanded clones varied between prime and boost 141 and between individuals and decreased over time (Fig. 2e-g). Overall, clones represented 30%, 142 21%, and 9.7% of all sequences after prime, 1.3- and 5-month time points respectively (Fig. 2g). 143 Nevertheless, clones of memory B cells continued to evolve for up to 5 months in vaccinated 144 individuals as evidenced by the appearance of unique clones. Notably, unique clones appearing 145 after 1.3 and 5 months represent a greater or equal fraction of the total memory B cell pool than the persisting clones (Fig. 2e-f, 16% vs 9.6% and 5.1% vs 4.7%, respectively, Extended data Fig. 146 147 3b). Finally, memory B cells emerging after the boost showed significantly higher levels of 148 somatic mutations than plasmablasts or memory B cells isolated after the prime, and they 149 continue to accumulate mutations up to 5 months post-boost (Fig. 2h, and Extended data Fig. 150 3d). In conclusion the memory B cell compartment continues to evolve for up to 5 months after 151 mRNA vaccination.

152

153 Neutralizing Activity of Monoclonal Antibodies

154 We performed ELISAs to confirm that the antibodies isolated from memory B cells bind to RBD 155 (Extended data Fig. 6). 458 antibodies were tested by ELISA including: 88 isolated after the first 156 vaccine dose; 210 isolated after the boost; and 160 isolated from individuals that had been fully vaccinated 5 months earlier. Among the 458 antibodies tested 430 (94%) bound to the Wuhan 157 158 Hu-1 RBD indicating that the method used to isolate RBD-specific memory B cells was highly 159 efficient (Supplementary Table 5-6). The geometric mean ELISA half-maximal concentration 160 (EC₅₀) of the antibodies obtained after prime, and 1.3- and 5-months after the second dose was 161 3.5, 2.9 and 2.7 ng/ml respectively, suggesting no major change in binding over time after 162 vaccination (Extended data Fig. 6 and Supplementary Table 5-6). 163 164 430 RBD-binding antibodies were tested for neutralizing activity using HIV-1 pseudotyped with 165 the SARS-CoV-2 spike^{3,8}. The geometric mean half-maximal inhibitory concentration (IC₅₀) of 166 the RBD-specific memory antibodies improved from 376 ng/ml to 153 ng/ml between the first 167 and second vaccine dose (p=0.0005, Fig. 3a). The improvement was reflected in all clones (IC₅₀) 377 vs. 171 ng/ml, p=0.01 Fig. 3b), persisting clones (IC₅₀ 311 vs. 168, Fig. 3c, Supplementary 168 169 Table 6), unique clones (IC₅₀ 418 vs. 165 ng/ml, p=0.03 Fig. 3d), and single antibodies (IC₅₀ 374 170 vs. 136 ng/ml, Fig. 3e). The increase in neutralizing activity between the first and second vaccine 171 dose was associated with a decrease in the percentage of non-neutralizing antibodies (defined as 172 IC50 > 1000 ng/ml) and increased representation of neutralizing antibodies (p= 0.003, Fig. 3a). In 173 conclusion, memory B cells recruited after the second dose account for most of the improvement 174 in neutralizing activity in this compartment between the 2 vaccine doses. Thus, in addition to the 175 quantitative improvement in serum neutralizing activity there is also an improvement in the 176 neutralizing activity of the antibodies expressed in the memory compartment after boosting.

177

178	In contrast, there was no significant improvement in neutralizing activity of the monoclonal
179	antibodies obtained between 1.3 and 5 months after vaccination (p>0.99, Fig. 3a). Although there
180	was some improvement among B cell clones, which was accounted for by the small minority of
181	persisting clones, neither was significant (p=0.58 and 0.46, Fig. 3b-e, Supplementary table 6). In
182	contrast, memory antibodies obtained from convalescent individuals showed improved
183	neutralizing activity between 1.3^3 and 6.2 months ⁷ with IC ₅₀ of 171 ng/ml to 116 ng/ml (Fig. 3a),
184	which improved further after 1 year ¹ . This improvement was due to increased neutralizing
185	activity among persisting clones (p=0.003, Fig. 3c).
186	
187	Affinity, Epitopes and Neutralization Breadth
188	To examine affinity maturation after vaccination, we performed biolayer interferometry (BLI)
189	experiments using the Wuhan Hu-1 RBD ³ . 147 antibodies were assayed, 30 obtained after the
190	prime, 74 1.3-months after boosting, and 43 5-months after the boost. Geometric mean $IC_{50}s$
191	were comparable for the antibodies obtained from the 1.3- and 5-month time points (Extended
192	data Fig. 7a). Overall, there was a 3- and 7.5 fold increase in affinity between the antibodies
193	obtained between the first 2, and second 2 time points respectively (Fig. 4a). After 5 months the
194	affinity of the antibodies obtained from vaccinated individuals was similar to antibodies obtained
195	from naturally infected voluteers (Fig 4a). However, there was no correlation between affinity
196	and neutralizing activity of the antibodies tested at any of the 3 time points (Extended Data Fig.
197	7b).
100	

199	We also compared the affinities of pairs of antibodies obtained from persisting clones between
200	1.3 and 5 months after vaccination. Persisting clones obtained at 1.3 and 5 months from
201	vaccinated individuals showed a median 4.5-fold increase in affinity (p<0.0001, Fig. 4b). In
202	contrast, a comparable group of persisting clonal antibodies obtained from convalescent
203	individuals 1.3 and 6.2 months after infection showed a median 11.2-fold increase in affinity
204	(p=0.002, Fig. 4b).

205

To determine whether the epitopes targeted by the monoclonal antibodies were changing over time, we performed BLI experiments in which a preformed antibody-RBD complex was exposed to a second monoclonal targeting one of 4 classes of structurally defined epitopes^{1,3} (see schematic in Extended data Fig. 8a). There was no significant change in the distribution of targeted epitopes among 52 randomly selected antibodies with comparable neutralizing activity obtained from the 1.3- and 5-month time points (Extended Data Fig. 8b and c, and Extended Data Fig. 9).

213

214 In addition to the increase in potency, the neutralizing breath of memory antibodies obtained from persisting clones from convalescent individuals increases with time after infection^{1,7,25}. To 215 216 determine whether there is a similar increase in breadth with time after vaccination, we selected 217 20 random antibodies from the prime or 1.3 months after boost, with representative levels of 218 activity against the original Wuhan Hu-1 strain, and measured their neutralization potency 219 against a panel of pseudotypes encoding RBD mutations which were selected for resistance to 220 different RBD antibody classes and/or are associated with circulating variants of concern 221 (Extended data. Fig. 10). There was little change in breadth between prime and 1.3 months after

boost, with only a small increase in resistance to K417N and A475V substitutions (Extendeddata Fig. 10, Supplementary Table 7).

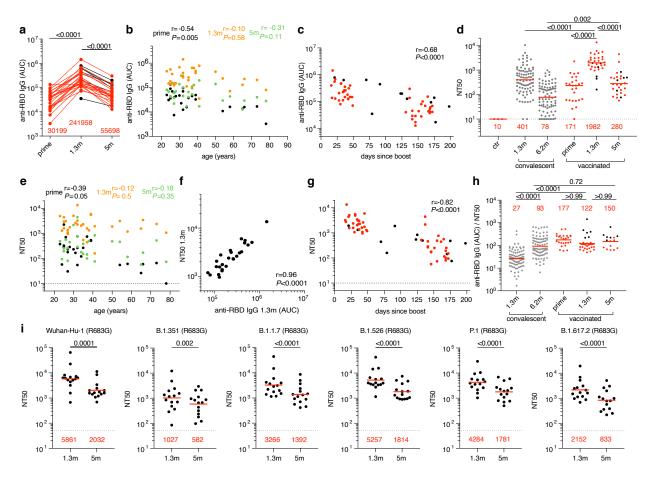
224

225 In addition, we assayed 19 pairs of neutralizing antibodies expressed by persisting clones 226 obtained 1.3 and 5 months after vaccination against the same mutant pseudotype viruses (Fig. 4c 227 and Supplementary Table 8). They were compared to 7 previously reported²⁵, plus 9 additional 228 pairs of antibodies obtained from convalescent individuals at 1.3- and 6.2-month time points 229 (Fig. 4d and Supplementary Table 8). Whereas only 36 of 190 (19%) of the vaccinee antibody-230 mutant combinations showed improved potency, 95 of the 160 (59%) convalescent pairs did so (p<0.0001, Fig. 4c, d and e). Moreover, only 4 of the 19 (21%) vaccine antibody pairs showed 231 232 improved potency against pseudotypes carrying B.1.617.2 (delta variant)-specific RBD amino 233 acid substitutions (L452R/T478K), while 11 out of 16 (69%) of the convalescent antibody pairs 234 showed improved activity against this virus (p=0.007, Fig. 4c, d and e). We conclude that there is 235 less increase in breadth in the months after mRNA vaccination than in a similar interval in 236 naturally infected individuals.

237

Circulating antibodies are produced by an initial burst of short-lived plasmablasts²⁶⁻²⁸, and
maintained by plasma cells with variable longevity²⁹⁻³². SARS-CoV-2 infection or mRNA
vaccination produces an early peak antibody response that decreases by 5-10-fold after 5
months^{7,33-37}. Notably, neutralization titres elicited by vaccination exceed those of COVID-19
recovered individuals at all comparable time points assayed. Nevertheless, neutralizing potency
against variants is significantly lower than against Wuhan Hu-1, with up to 5-10-fold reduced
activity against the B.1.351 variant^{5,6,13,14,38}. Taken together with the overall decay in

245	neutralizing activity there can be 1-2 orders of magnitude decrease in serum neutralizing activity
246	after 5 or 6 months against variants when compared to the peak of neutralizing activity against
247	Wuhan Hu-1. Thus, antibody mediated protection against variants is expected to wane
248	significantly over a period of months, consistent with reports of reinfection in convalescent
249	individuals and breakthrough infection by variants in fully vaccinated individuals ³⁹⁻⁴² .
250	
251	In contrast to circulating antibodies, memory B cells are responsible for rapid recall responses ⁴³⁻
252	⁴⁶ , and the number of cells in this compartment is relatively stable over the first 5-6 months after
253	mRNA vaccination or natural infection ^{7,47} . In both cases memory B cells continue to evolve as
254	evidenced by increasing levels of somatic mutation and emergence of unique clones.
255	
256	The memory response would be expected to protect individuals that suffer breakthrough
257	infection from developing serious disease. Both natural infection and mRNA vaccination
258	produce memory antibodies that evolve increased affinity. However, vaccine-elicited memory
259	monoclonal antibodies show more modest neutralizing potency and breadth than those that
260	developed after natural infection ^{1,7} . Notably, the difference between the memory compartment
261	that develops in response to natural infection vs mRNA vaccination reported above is consistent
262	with the higher level of protection from variants conferred by natural infection ⁴² .
263	
264	There are innumerable differences between natural infection and mRNA vaccination that could
265	account for the differences in antibody evolution over time. These include but are not limited to:
266	1. Route of antigen delivery, respiratory tract vs. intra-muscular injection ^{48,49} ; 2. The physical
267	nature of the antigen, intact virus vs. conformationally stabilized prefusion S protein ⁵⁰ ; 3.


Antigen persistence, weeks in the case of natural infection⁷ vs. hours to days for mRNA⁵¹. Each
of these could impact on B cell evolution and selection directly, and indirectly through
differential T cell recruitment.

271

272 The increase in potency and breadth in the memory compartment that develops after natural 273 infection accounts for the exceptional responses to Wuhan Hu-1 and its variants that convalescent individuals develop when boosted with mRNA vaccines^{1,5}. The expanded memory 274 275 B cell compartment in mRNA vaccinees should also produce high titers of neutralizing 276 antibodies when vaccinees are boosted or when they are re-exposed to the virus⁵². Boosting 277 vaccinated individuals with currently available mRNA vaccines should produce strong responses 278 that mirror or exceed their initial vaccine responses to Wuhan-Hu but with similarly decreased 279 coverage against variants. Whether an additional boost with Wuhan-Hu-based or variant 280 vaccines or re-infection will also elicit development of memory B cells expressing antibodies 281 showing increased breadth remains to be determined. Finally, timing an additional boost for 282 optimal responses depends on whether the objective is to prevent infection or disease⁵³. Given the current rapid emergence of SARS-CoV-2 variants, boosting to prevent infection would likely 283 284 be needed on a time scale of months. The optimal timing for boosting to prevent serious disease 285 will depend on the stability and further evolution of the memory B cell compartment.

286

287 FIGURES

288

289 Fig. 1: Plasma ELISAs and neutralizing activity.

290 a, Graph shows area under the curve (AUC, Y-axis) for plasma IgG antibody binding to SARS-291 CoV-2 RBD after prime, and 1.3 months (m) and 5 months (m) post-second vaccination for n=32 paired samples. Samples without a prime value are shown in black (n=6). b, Graph shows plasma 292 293 IgG antibody binding (AUC, Y-axis) plotted against age (X-axis) after prime (black), and 1.3 294 months (orange) and 5 months (green) post-second vaccination. c, Graph shows AUC values from 295 a (Y-axis) plotted against time after vaccination (X-axis). Samples without a prime value are 296 shown in black. d, NT50 values in pre-pandemic plasma (ctr) as well as plasma from convalescent 297 individuals 1.3m³ and 6.2m⁷ after infection (grey) and in n=32 vaccinated individuals after prime, and 1.3- and 5-months after receiving 2 doses of an mRNA vaccine. Samples without a prime 298

299 value are shown in black. e, NT50 values (Y-axis) vs. age (years, X-axis) in individuals after prime 300 (black), or 1.3 months (1.3m, orange) or 5 months (5m, green) after boosting with an mRNA 301 vaccine. f, NT50 values (Y-axis) vs. IgG antibody binding (AUC, X-axis) 1.3 months after 2 doses 302 of an mRNA vaccine (n=26). g, Graph shows NT50 values (Y-axis) vs. days after boost (X-axis) 303 in individuals receiving two doses of an mRNA vaccine. Samples without a prime value are shown 304 in black. h, Ratio of anti-RBD IgG antibody (AUC) to NT50 values (Y-axis) plotted for convalescent infected individuals (grey) 1.3m³ or 6.2m⁷ after infection, and vaccinated individuals 305 306 after the prime, and 1.3m and 5m after receiving 2 doses of an mRNA vaccine. Samples without a 307 prime value are shown in black. i, Plasma neutralizing activity against indicated SARS-CoV-2 308 variants of interest/concern (n=15 paired samples at 1.3- and 5-months after full vaccination). 309 Refer to Methods for a list of all substitutions/deletions/insertions in the spike variants. All 310 experiments were performed at least in duplicate. Red bars and values in **a**, **d**, **h** and **i** represent 311 geometric mean values. Statistical significance in **a**, **d**, **h** and **i** was determined by Kruskal-Wallis 312 test with subsequent Dunn's multiple comparisons, and in **b**, **c**, **e**, **f**, and **g** by Spearman correlation 313 test.

314

bioRxiv preprint doi: https://doi.org/10.1101/2021.07.29.454333; this version posted August 30, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license.

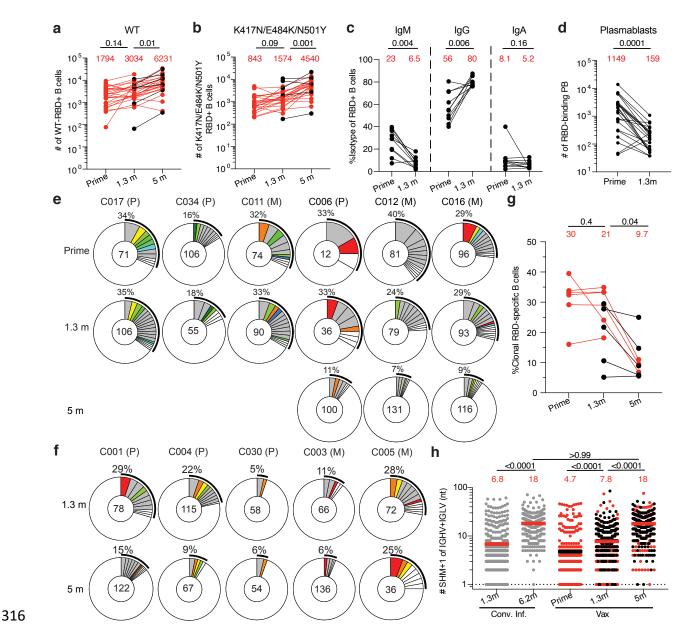
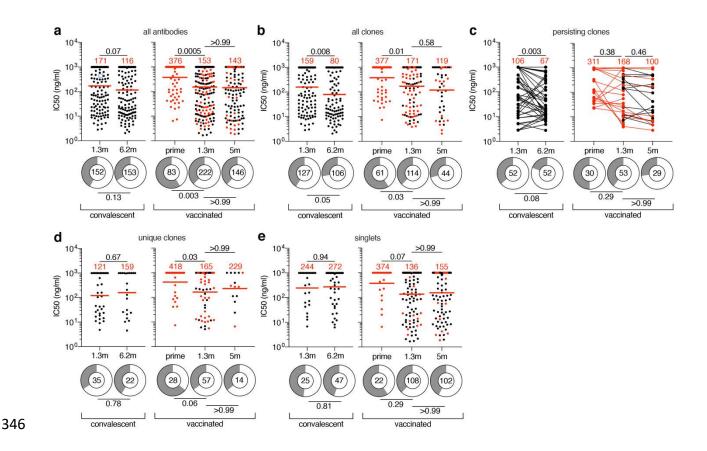
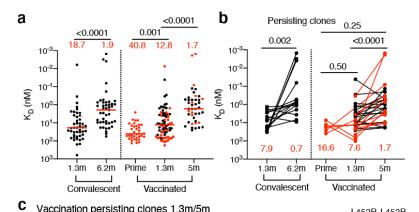
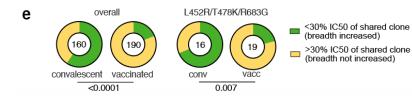



Fig. 2: Anti-SARS-CoV-2 RBD B cells after vaccination. a-d, Graphs summarizing a, the number of Wuhan-Hu RBD (WT)-specific memory B cells per 10 million B cells for vaccinees and b, the number of antigen-specific memory B cells cross-reactive with both WT and K417N/E484K/N501Y RBD mutant per 10 million B cells for n=32 vaccinated individuals after prime, 1.3- and 5-months after 2 doses of vaccination. Samples without a prime value are shown in black. c, the frequency of IgM, IgG, or IgA isotype expression by Wuhan-Hu RBD-specific memory B cells after prime or 1.3 months post-boost (n=10), and d, number of Wuhan-Hu RBD-

324 binding plasmablasts per 10 million B cells (n=26) after prime or 1.3 months post-boost. Red 325 numbers indicate geometric means. Gating strategy is in Extended Data Fig. 2. e, and f, Pie charts 326 show the distribution of IgG antibody sequences obtained from memory B cells from 11 327 individuals after e, prime and 1.3-months or 5-months post-boost and f, 1.3- and 5-months post-328 boost. The number inside the circle indicates the number of sequences analyzed for the individual 329 denoted above the circle, with Pfizer vaccinees indicated by (P) and Moderna by (M). Pie slice 330 size is proportional to the number of clonally related sequences. The black outline and associated 331 numbers indicate the percentage of clonally expanded sequences detected at each time point. 332 Colored slices indicate persisting clones (same *IGHV* and *IGLV* genes, with highly similar CDR3s) 333 found at more than one timepoint within the same individual. Grey slices indicate clones unique 334 to the timepoint. White slices indicate repeating sequences isolated only once per time point. g, 335 Graph shows the relative percentage of clonal sequences at each time point in e and f. The red 336 numbers indicate the geometric means. Samples without a prime value are shown in black. h, Number of nucleotide somatic hypermutations (SHM) in the IGHV and IGLV combined (also 337 338 Supplementary Table 4) in the antibodies illustrated in e and f, compared to the number of mutations obtained after 1.3³ or 6.2⁷ months after infection (grey). Horizontal bars and red numbers 339 340 indicate mean number of nucleotide mutations at each time point. Samples without a prime value are shown in black. Statistical significance in **a**, **b**, **g**, and **h** was determined by Kruskal Wallis test 341 342 with subsequent Dunn's multiple comparisons, and in c and d was determined using Wilcoxon 343 matched-pairs signed rank test.


344

bioRxiv preprint doi: https://doi.org/10.1101/2021.07.29.454333; this version posted August 30, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license.


347 Fig. 3: Anti-SARS-CoV-2 RBD monoclonal antibodies. a-e, Graphs show anti-SARS-CoV-2 neutralizing activity of monoclonal antibodies measured by a SARS-CoV-2 pseudotype virus 348 349 neutralization assay using wild-type (Wuhan Hu-1⁵⁴) SARS-CoV-2 pseudovirus^{3,8}. Half-maximal 350 inhibitory concentration (IC₅₀) values for all antibodies (a), all clones (b), persisting clones (c), unique clones (d) and singlets (e) isolated from COVID-19 convalescent individuals 1.3^3 and 6.2^7 351 352 months after infection or from vaccinated individuals after prime, and 1.3- or 5-months after 2 353 doses of vaccine. Each dot represents one antibody, where 451 total antibodies were tested 354 including the 430 reported herein (Supplementary Table 5), and 21 previously reported antibodies 355 derived from vaccinees within 8 weeks post-vaccination¹³. Antibodies isolated from samples without a prime value are shown in black. Pie charts illustrate the fraction of non-neutralizing 356 357 (IC50 > 1000 ng/ml) antibodies (grey slices), inner circle shows the number of antibodies tested

- per group. Horizontal bars and red numbers indicate geometric mean values. Statistical
 significance was determined by Kruskal Wallis test with subsequent Dunn's multiple comparisons.
 Statistical significance for ring plots was determined using Fisher's exact test with subsequent
 Bonferroni-correction. All experiments were performed at least twice.
- 362

			isting c								L452R	
	wt	R683G	D 0468	K417N	NAAOK		E484K	04028	NE01V	KEN	E484Q	
C1332		4	8	7	6	5	5	6	5	4	4	5
C2464	12	2	20	42	12	12	2	1	7	1	93	1
C2431	14	12	30	100	25	1	8	4	15	100	13	21
C1207	103	68	121	86	125	19	61	58	26	3	61	61
C1189	113	103	129	6	112	78	5	80	77	73	8	76
C2460	153	110	163	4	158	244	321	321	205	15	239	154
C2394	261	58	5	393	256	296	100	220	278	100	100	1
C1213	101	101	14	178	164	148	52	132	133	48	100	100
C1344	77	13	77	96	66	100	93	50	82	78	78	83
C2409	95	71	100	35	47	82	47	72	70	54	78	81
C2471	32	41	84	65	75	54	46	49	55	61	64	103
C1335	48	79	73	54	68	48	86	64	50	61	141	105
C1333	86	99	97	87	89	84	95	109	93	88	92	114
C1330	84	42	100	45	100	80	98	100	100	100	83	100
C2479	95	96	106	89	100	59	88	106	113	97	106	100
C1334	65	107	173	88	109	82	99	95	66	79	112	111
C1211	115	113	165	109	188	142	122	105	126	125	130	128
C1302	85	21	70	588	64	109	77	97	102	529	78	107
C1187	431	196	134	310	480 %IC	126	149 Dared c	1257	574 lated 1	186 3m aff	126 er vacc	151 ination
d	nvales	cent inf	ection	persist	%IC ing clo	50 of sl nes 1.3	nared c 3m/6.2 E484K	lone iso m	blated 1	.3m aft KEN	er vaco L452R E484Q	L452R T478K
d _{Co}	nvales 	cent inf	ection		%IC ing clo N440K	50 of sl nes 1.: A475V	nared c 3m/6.2 E484K	lone iso m Q493F	blated 1	.3m aft KEN R683G	er vaco L452R E484Q	L452R T478K R683G
d _{Co}	nvales wt	cent inf R683G	R346S	persist K417N	%IC ing clo N440K 2	50 of sl nes 1.3 A475V 2	nared c 3m/6.2 E484K R683G	Ione iso m Q493F 2	N501Y	.3m aft KEN R683G 13	er vacc L452R E484Q R683G	L452R T478K R683G 2
d _{C0}	wt 2 3	Cent inf R683G 4	R346S	persist K417N 1 2	%IC ing clo N440K 2 3	50 of sl nes 1.: A475V 2 2	nared c 3m/6.2 E484K R683G 1	Ione iso m Q493F 2 5	N501Y	.3m aft KEN R683G 13 0.4	er vacc L452R E484Q R683G 1 2	L452R T478K R683G 2 1
d _{C0} C542 C099 C513	wt 2 3 16	cent inf R683G 4 1 5	R346S 2 4 19	persist K417N	%IC ing clo N440K 2	50 of sl nes 1.3 A475V 2	nared c 3m/6.2 E484K R683G 1 1 15	Ione iso m Q493F 2	N501Y 1 8 15	.3m aft KEN R683G 13	er vaco L452R E484Q R683G 1 2 4	L452R T478K R683G 2 1 2
d _{C0} C542 C099 C513 C573	wt 2 3 16 1	cent inf R683G 4 1 5 5	R346S	persist K417N 1 2 9	%IC ing clo N440K 2 3 10	50 of sl nes 1.3 A475V 2 2 4	nared c 3m/6.2 E484K R683G 1	Ione iso m Q493R 2 5 15	N501Y	.3m aft KEN R683G 13 0.4 5	er vacc L452R E484Q R683G 1 2	L452R T478K R683G 2 1 2 4
d C542 C099 C513 C573 C043	nvales wt 2 3 16 1 18	cent inf R683G 4 1 5 5 2.9	R346S 2 4 19 100 17	persist K417N 1 2 9 1 51	%IC ing clo N440K 2 3 10 1 13	50 of sl nes 1.4 A475V 2 2 4 1 4	ared c 3m/6.2 E484K R683G 1 1 15 2 1	Ione iso m Q493F 2 5 15 1 1 0.3	N501Y 1 8 15 2 14	.3m aft KEN R683G 13 0.4 5 1	er vaco L452R E484Q R683G 1 2 4 2	L452R T478K R683G 2 1 2 4 3
d C542 C099 C513 C573 C043 C512	wt 2 3 16 1 18 10	cent inf R683G 4 1 5 5	ection R346S 2 4 19 100	persist K417N 1 2 9	%IC ing clo N440K 2 3 10	50 of sl nes 1.3 A475V 2 2 4 1	nared c 3m/6.2 E484K R683G 1 1 15 2	Ione iso m Q493F 2 5 15 15	N501Y	.3m aft KEN R683G 13 0.4 5 1 1 2	er vaco L452R E484Q R683G 1 2 4 2 4 2 1	L452R T478K R683G 2 1 2 4
d C542 C099 C513 C573 C043 C512 C055	wt 2 3 16 1 18 10 2	cent inf R683G 4 1 5 2.9 2 1	ection R346S 2 4 19 100 17 100 2	persist K417N 1 2 9 1 51 2 3	%IC ing clo N440K 2 3 10 1 13 25 2	50 of sl nes 1.4 A475V 2 4 1 4 7 1	nared c 3m/6.2 E484K R683G 1 1 15 2 1 0.3 42	lone iso m Q493F 2 5 15 15 1 0.3 9 9	N501Y 1 8 15 2 14 53 1	.3m aff KEN R683G 13 0.4 5 1 1 2 0.2 30	er vacc L452R E484Q R683G 1 2 4 2 1 1 1 1	ination L452R T478K R683G 2 1 2 4 3 2 2
d C542 C099 C513 C573 C043 C512	wt 2 3 16 1 18 10 2 70	cent inf R683G 4 1 5 5 2.9 2	R346S 2 4 19 100 17 100	persist K417N 9 1 51 2 3 11	%IC ing clo N440K 2 3 10 1 13 25	50 of sl nes 1.3 A475V 2 2 4 1 4 7	nared c 3m/6.2 E484K R683G 1 1 15 2 1 0.3	0ne iso m Q493F 2 5 15 15 1 0.3 9	N501Y 1 8 15 2 14 53 1 7 1	.3m aff KEN R683G 13 0.4 5 1 2 0.2 30 20	er vaco L452R E484Q R683G 1 2 4 2 1 1 1	ination L452R T478K R683G 2 1 2 4 3 2 2 100
d C542 C099 C513 C573 C043 C512 C055 C080	wt 2 3 16 1 18 10 2 70	cent inf R683G 4 1 5 5 2.9 2 1 69	ection R346S 2 4 19 100 17 100 2 3	persist K417N 1 2 9 1 51 2 3	%IC ing clo N440K 2 3 10 10 13 25 2 4	50 of s nes 1.3 A475V 2 2 4 1 4 7 1 35	nared c 3m/6.2 E484K R683G 1 1 15 2 1 0.3 42 10	lone iso m Q493F 2 5 15 15 1 0.3 9 9	N501Y 1 8 15 2 14 53 1	.3m aff KEN R683G 13 0.4 5 1 1 2 0.2 30	er vacc L452R E484Q R683G 1 2 4 2 1 1 1 1 1 1	ination L452R T478K R683G 2 1 2 4 3 2 100 1 1
d C542 C099 C513 C573 C043 C512 C055 C080 C549	wt 2 3 16 1 1 18 10 2 70 29 83	cent inf R683G 4 1 5 5 2.9 2 1 69 6	ection R346S 2 4 19 100 17 100 2 3 62	x417N 1 2 9 1 51 2 3 11 38	%IC ing clo N440K 2 3 10 1 13 25 2 2 4 4 46	50 of sl nes 1.: A475V 2 2 4 1 4 7 1 35 44	nared c 3m/6.2 E484K R683G 1 1 5 2 1 0.3 42 10 4	lone iso m Q493F 2 5 15 15 1 0.3 9 1 68 1	N501Y 1 8 15 2 14 53 1 7 1	.3m aff KEN R683G 13 0.4 5 1 2 0.2 30 20 34	er vacc L452R E484Q R683G 1 2 4 2 1 1 1 1 1 1 1 0.1	ination L452R T478K R683G 2 1 2 4 3 2 100 100 1 1
d _{C0} C542 C099 C513 C573 C043 C512 C055 C080 C549 C511	wt 2 3 16 1 1 18 10 2 70 29 83 47	Cent inf R683G 4 1 5 2.9 2 1 69 6 45	ection R346S 2 4 19 100 17 100 2 3 62 101	x417N 1 2 9 1 51 2 3 11 38 34	%IC ing clo N440K 2 3 10 1 13 25 2 4 4 46 71	50 of sl nes 1.: A475V 2 2 4 1 4 7 1 35 44 3	nared c 3m/6.2 E484K R683G 1 15 2 1 0.3 42 10 4 24	lone iso m Q493F 2 5 15 15 1 0.3 9 1 68 1 10	N501Y 1 8 15 2 14 53 1 71 15 15 1	.3m aff KEN R683G 13 0.4 5 1 2 0.2 30 20 34 0.2	er vacc L452R E484Q R683G 1 2 4 2 1 1 1 1 1 1 1 1 2 5	L452R T478K R683G 2 1 2 4 3 2 100 1 1 1 23
d _{C0} C542 C099 C513 C573 C043 C512 C055 C080 C549 C511 C057	wt 2 3 16 1 1 18 10 29 83 47 88	cent inf R683G 4 1 5 5 2.9 2 1 69 6 45 43	ection R346S 2 4 19 100 17 100 2 3 62 101 38	persist K417N 2 9 1 51 2 3 11 38 34 35	%IC ing clo N440K 2 3 10 1 13 25 2 4 4 46 71 30	50 of sl nes 1.3 A475V 2 2 4 1 4 4 7 1 35 44 3 30	nared c 3m/6.2 E484K R683G 1 1 1 5 2 1 0.3 42 10 42 10 4 24 89	00000 iso 000000000000000000000000000000000000	N501Y 1 8 15 2 14 53 1 71 15 1 22	.3m aff KEN R683G 13 0.4 5 1 2 0.2 30 20 34 0.2 34 0.2 100	er vacc L452R E484Q R683G 1 2 4 2 1 1 1 1 1 1 0.1 25 0.1	L452R T478K R683G 2 1 2 4 3 2 100 1 100 1 1 23 31
d C542 C099 C513 C573 C043 C512 C055 C080 C549 C511 C057 C095	wt 2 3 16 1 18 10 29 83 47 88 154	cent inf R683G 4 1 5 2.9 2 1 69 6 45 43 19	ection R346S 2 4 19 100 17 100 2 3 62 101 38 121	persist K417N 1 2 9 1 51 2 3 11 38 34 35 15	%IC ing clo N440K 2 3 10 1 13 25 2 4 4 46 71 30 44	50 of sl nes 1.: A475V 2 2 4 1 4 7 1 35 44 3 30 57	nared c 3m/6.2 E484K R683G 1 1 1 5 2 1 0.3 42 10 42 10 4 24 89 100	00000 iso 000000000000000000000000000000000000	N501Y 1 8 15 2 14 53 1 71 15 1 15 1 22 81	.3m aff R683G 13 0.4 5 1 1 2 0.2 30 20 30 20 34 0.2 100 100	er vacc L452R E484Q R683G 1 2 4 2 1 1 1 1 1 0.1 25 0.1 100	L452R T478K R683G 2 1 2 4 3 2 100 1 1 23 31 0.2
d C542 C099 C513 C573 C043 C512 C055 C080 C549 C511 C057 C095 C502	wt 2 3 16 1 18 10 29 83 47 88 154	cent inf R683G 4 1 5 2.9 2 1 69 6 45 43 19 61	ection R346S 2 4 19 100 17 100 2 3 62 101 38 121 169	persist K417N 1 2 9 1 51 2 3 11 38 34 35 15 136	%IC ing clo N440K 2 3 10 1 13 25 2 4 4 6 71 30 44 97	50 of sl nes 1.: A475V 2 2 4 1 4 7 1 35 44 3 30 57 124	nared c 3m/6.2 E484K R683G 1 1 15 2 1 0.3 42 10 4 24 89 100 100	00000 iso 00000 iso 000000 iso 00000 iso 0000000 iso 00000 iso 000000 iso 00000 iso 00000 iso 000000 iso 00000 iso 00000 iso 000000000000000000000000000000000000	N501Y 1 8 15 2 14 53 1 71 15 1 15 1 22 81 126	.3m aff KEN R683G 13 0.4 5 1 1 2 0.2 30 20 34 0.2 100 100 100	er vacc L452R E484Q R683G 1 2 4 2 1 1 1 1 0.1 25 0.1 100 100	L452R T478K R683G 2 1 2 4 3 2 100 1 1 23 31 0.2 1 1

%IC50 of shared clone isolated 1.3m after infection

365 Fig. 4: Affinity and Breadth. a-b, Graphs show antibody K_Ds for Wuhan-Hu RBD measured by BLI. a, antibodies isolated from convalescent individuals 1.3^3 - (n=42) and 6.2-months⁷ (n=45) 366 367 after infection or from vaccinees after prime (n=36), and 1.3- (n=74) and 5-months (n=43) postsecond vaccination. **b**, Clonally-paired antibodies isolated from convalescent individuals 1.3³- and 368 369 6.2^{7} -months after infection (n=15) or vaccinated individuals between prime and 1.3 month (n=3), 370 prime and 5 months (n=3), or 1.3- and 5-months after full vaccination (n=26). Antibodies isolated 371 from samples without a prime value are shown in black. Red horizontal bars and numbers indicate 372 median values. Statistical significance was determined using Kruskal Wallis test with subsequent 373 Dunn's multiple comparisons. c-d, Heat-maps show inhibitory concentrations of antibodies 374 isolated 5m after vaccination (c) or $6.2m^7$ after infection (d) normalized to their shared clone 375 isolated 1.3m after vaccination (c) or 1.3m³ after infection (d), expressed as %IC50, against 376 indicated mutant SARS-CoV-2 pseudoviruses (Supplementary Table 8). Antibodies with 377 improved (<30%) IC50 compared to their clonal relative isolated at an earlier timepoint are colored 378 in shades of green with most improved antibodies in darkest green. Antibodies with worse 379 (>300%) IC50 than their clonal relative isolated at an earlier timepoint are colored in red with the most worsened antibodies in dark red. Antibodies that did not change their IC50 by more than ~3-380 381 fold are shown in yellow. e, Pie charts illustrate the fraction of antibodies showing improved 382 (<30%, green) vs. not improved (yellow) IC₅₀ compared to their clonal relative isolated at an earlier 383 timepoint, inner circle shows the number of antibody-mutant combinations analyzed per group. 384 Statistical significance for ring plots was determined using Fisher's exact test.

385

387 METHODS

388

389 Study participants.

390 Participants were healthy volunteers receiving either the Moderna (mRNA-1273) or Pfizer-391 BioNTech (BNT162b2) mRNA vaccines against severe acute respiratory syndrome coronavirus 2 392 (SARS-CoV-2) who were recruited for serial blood donations at Rockefeller University Hospital 393 in New York between January 21 and July 20, 2021. The majority of participants (n=28) were de 394 *novo* recruited for this study, while a subgroup of individuals (n=4) were from a long-term study 395 cohort¹³. Eligible participants were healthy adults with no history of infection with SARS-CoV-2, 396 as determined by clinical history and confirmed through serology testing, receiving one of the two 397 Moderna (mRNA-1273) or Pfizer-BioNTech (BNT162b2), according to current dosing and 398 interval guidelines. Exclusion criteria included incomplete vaccination status, presence of clinical 399 signs and symptoms suggestive of acute infection with or a positive reverse transcription 400 polymerase chain reaction (RT-PCR) results for SARS-CoV-2 in saliva, or a positive (coronavirus disease 2019) COVID-19 serology. Seronegativity for COVID-19 was established through the 401 402 absence of serological activity toward the nucleocapsid protein (N) of SARS-CoV-2. Participants 403 presented to the Rockefeller University Hospital for blood sample collection and were asked to 404 provide details of their vaccination regimen, possible side effects, comorbidities and possible 405 COVID-19 history. All participants provided written informed consent before participation in the 406 study and the study was conducted in accordance with Good Clinical Practice. The study was 407 performed in compliance with all relevant ethical regulations and the protocol (DRO-1006) for 408 studies with human participants was approved by the Institutional Review Board of the Rockefeller 409 University. For detailed participant characteristics see Supplementary Tables 1 and 2.

410

411 Blood samples processing and storage.

412 Peripheral Blood Mononuclear Cells (PBMCs) obtained from samples collected at Rockefeller

- 413 University were purified as previously reported by gradient centrifugation and stored in liquid
- 414 nitrogen in the presence of Fetal Calf Serum (FCS) and Dimethylsulfoxide (DMSO)^{3,7}.
- 415 Heparinized plasma and serum samples were aliquoted and stored at -20°C or less. Prior to
- 416 experiments, aliquots of plasma samples were heat-inactivated (56°C for 1 hour) and then stored
- 417 at 4°C.
- 418
- 419 ELISAs

420 Enzyme-Linked Immunosorbent Assays (ELISAs)^{55,56} to evaluate antibodies binding to SARS-

421 CoV-2 RBD were performed by coating of high-binding 96-half-well plates (Corning 3690) with

422 50 μl per well of a 1μg/ml protein solution in Phosphate-buffered Saline (PBS) overnight at 4°C.

423 Plates were washed 6 times with washing buffer ($1 \times PBS$ with 0.05% Tween-20 (Sigma-

424 Aldrich)) and incubated with 170 μ l per well blocking buffer (1× PBS with 2% BSA and 0.05%

425 Tween-20 (Sigma)) for 1 hour at room temperature. Immediately after blocking, monoclonal

426 antibodies or plasma samples were added in PBS and incubated for 1 hour at room temperature.

427 Plasma samples were assayed at a 1:66 starting dilution and 10 additional threefold serial

428 dilutions. Monoclonal antibodies were tested at 10 µg/ml starting concentration and 10 additional

429 fourfold serial dilutions. Plates were washed 6 times with washing buffer and then incubated

- 430 with anti-human IgG, IgM or IgA secondary antibody conjugated to horseradish peroxidase
- 431 (HRP) (Jackson Immuno Research 109-036-088 109-035-129 and Sigma A0295) in blocking
- 432 buffer at a 1:5,000 dilution (IgM and IgG) or 1:3,000 dilution (IgA). Plates were developed by

433	addition of the HRP substrate, 3,3',5,5'-Tetramethylbenzidine (TMB) (ThermoFisher) for 10
434	minutes (plasma samples) or 4 minutes (monoclonal antibodies). The developing reaction was
435	stopped by adding 50 μ l of 1 M H ₂ SO ₄ and absorbance was measured at 450 nm with an ELISA
436	microplate reader (FluoStar Omega, BMG Labtech) with Omega and Omega MARS software for
437	analysis. For plasma samples, a positive control (plasma from participant COV72, diluted 66.6-
438	fold and ten additional threefold serial dilutions in PBS) was added to every assay plate for
439	normalization. The average of its signal was used for normalization of all the other values on the
440	same plate with Excel software before calculating the area under the curve using Prism
441	V9.1(GraphPad). Negative controls of pre-pandemic plasma samples from healthy donors were
442	used for validation (for more details please see ³). For monoclonal antibodies, the ELISA half-
443	maximal concentration (EC50) was determined using four-parameter nonlinear regression
444	(GraphPad Prism V9.1). EC50s above 2000 ng/mL were considered non-binders.
445	
446	Proteins
447	The mammalian expression vector encoding the Receptor Binding-Domain (RBD) of SARS-
448	CoV-2 (GenBank MN985325.1; Spike (S) protein residues 319-539) was previously described ⁵⁷ .
449	
450	SARS-CoV-2 pseudotyped reporter virus
451	A panel of plasmids expressing RBD-mutant SARS-CoV-2 spike proteins in the context of
452	

- 453 interest/concern B.1.1.7 (first isolated in the UK), B.1.351 (first isolated in South-Africa),
- 454 B.1.526 (first isolated in New York City), P.1 (first isolated in Brazil) and B.1.617.2 (first
- 455 isolated in India) were generated by introduction of substitutions using synthetic gene fragments

- 456 (IDT) or overlap extension PCR mediated mutagenesis and Gibson assembly. Specifically, the
- 457 variant-specific deletions and substitutions introduced were:
- 458 B.1.1.7: ΔH69/V70, ΔY144, N501Y, A470D, D614G, P681H, T761I, S982A, D118H
- 459 B.1.351: D80A, D215G, L242H, R246I, K417N, E484K, N501Y, D614G, A701V
- 460 B.1.526: L5F, T95I, D253G, E484K, D614G, A701V.
- 461 P.1: L18F, T20N, P26S, D138Y, R190S, K417T, E484K, N501Y, D614G, H655Y, T1027I,
- **462** V1167F
- 463 B.1.617.2: T19R, Δ156-158, L452R, T478K, D614G, P681R, D950N
- 464 The E484K, K417N/E484K/N501Y, L452R/E484Q and L452R/T478K substitution, as well as
- the deletions/substitutions corresponding to variants of concern listed above were incorporated
- 466 into a spike protein that also includes the R683G substitution, which disrupts the furin cleaveage
- 467 site and increases particle infectivity. Neutralizing activity against mutant pseudoviruses were
- 468 compared to a wildtype (WT) SARS-CoV-2 spike sequence (NC_045512), carrying R683G
- 469 where appropriate.
- 470
- 471 SARS-CoV-2 pseudotyped particles were generated as previously described^{3,8}. Briefly, 293T
- 472 cells were transfected with pNL4-3 Δ Env-nanoluc and pSARS-CoV-2-S $_{\Delta 19}$, particles were

473 harvested 48 hours post-transfection, filtered and stored at -80°C.

474

475 **Pseudotyped virus neutralization assay**

476 Fourfold serially diluted pre-pandemic negative control plasma from healthy donors, plasma

477 from COVID-19-convalescent individuals or monoclonal antibodies were incubated with SARS-

478 CoV-2 pseudotyped virus for 1 hour at 37 °C. The mixture was subsequently incubated with

479	$293T_{Ace2}$ cells ³ (for all WT neutralization assays) or HT1080Ace2 cl14 (for all mutant panels and
480	variant neutralization assays) cells ¹³ for 48 hours after which cells were washed with PBS and
481	lysed with Luciferase Cell Culture Lysis 5× reagent (Promega). Nanoluc Luciferase activity in
482	lysates was measured using the Nano-Glo Luciferase Assay System (Promega) with the Glomax
483	Navigator (Promega). The relative luminescence units were normalized to those derived from
484	cells infected with SARS-CoV-2 pseudotyped virus in the absence of plasma or monoclonal
485	antibodies. The half-maximal neutralization titers for plasma (NT_{50}) or half-maximal and 90%
486	inhibitory concentrations for monoclonal antibodies (IC50 and IC90) were determined using four-
487	parameter nonlinear regression (least squares regression method without weighting; constraints:
488	top=1, bottom=0) (GraphPad Prism).
489	
490	Biotinylation of viral protein for use in flow cytometry
491	Purified and Avi-tagged SARS-CoV-2 RBD or SARS-CoV-2 RBD K417N/E484K/N501Y
492	mutant was biotinylated using the Biotin-Protein Ligase-BIRA kit according to manufacturer's
493	instructions (Avidity) as described before ³ . Ovalbumin (Sigma, A5503-1G) was biotinylated
494	using the EZ-Link Sulfo-NHS-LC-Biotinylation kit according to the manufacturer's instructions
495	(Thermo Scientific). Biotinylated ovalbumin was conjugated to streptavidin-BV711 (BD
496	biosciences, 563262) and RBD to streptavidin-PE (BD Biosciences, 554061) and streptavidin-
497	AF647 (Biolegend, 405237) ³ .
498	
499	Flow cytometry and single cell sorting

500 Single-cell sorting by flow cytometry was described previously³. Briefly, peripheral blood

501 mononuclear cells were enriched for B cells by negative selection using a pan-B-cell isolation kit

502	according to the manufacturer's instructions (Miltenyi Biotec, 130-101-638). The enriched B
503	cells were incubated in Flourescence-Activated Cell-sorting (FACS) buffer ($1 \times PBS$, $2\% FCS$, 1
504	mM ethylenediaminetetraacetic acid (EDTA)) with the following anti-human antibodies (all at
505	1:200 dilution): anti-CD20-PECy7 (BD Biosciences, 335793), anti-CD3-APC-eFluro 780
506	(Invitrogen, 47-0037-41), anti-CD8-APC-eFluor 780 (Invitrogen, 47-0086-42), anti-CD16-APC-
507	eFluor 780 (Invitrogen, 47-0168-41), anti-CD14-APC-eFluor 780 (Invitrogen, 47-0149-42), as
508	well as Zombie NIR (BioLegend, 423105) and fluorophore-labeled RBD and ovalbumin (Ova)
509	for 30 min on ice. Single CD3-CD8-CD14-CD16-CD20+Ova-RBD-PE+RBD-AF647+ B cells
510	were sorted into individual wells of 96-well plates containing 4 μ l of lysis buffer (0.5× PBS, 10
511	mM Dithiothreitol (DTT), 3,000 units/ml RNasin Ribonuclease Inhibitors (Promega, N2615) per
512	well using a FACS Aria III and FACSDiva software (Becton Dickinson) for acquisition and
513	FlowJo for analysis. The sorted cells were frozen on dry ice, and then stored at -80 °C or
514	immediately used for subsequent RNA reverse transcription. For plasmablast single-cell sorting,
515	in addition to above antibodies, B cells were also stained with anti-CD19-BV605 (Biolegend,
516	302244), and single CD3-CD8-CD14-CD16-CD19+CD20-Ova-RBD-PE+RBD-AF647+
517	plasmablasts were sorted as described above. For B cell phenotype analysis, in addition to above
518	antibodies, B cells were also stained with following anti-human antibodies: anti-IgD-BV421
519	(Biolegend, 348226), anti-CD27-FITC (BD biosciences, 555440), anti-CD19-BV605
520	(Biolegend, 302244), anti-CD71- PerCP-Cy5.5 (Biolegend, 334114), anti- IgG-PECF594 (BD
521	biosciences, 562538), anti-IgM-AF700 (Biolegend, 314538), anti-IgA-Viogreen (Miltenyi
522	Biotec, 130-113-481).
523	

524 Antibody sequencing, cloning and expression

525	Antibodies were identified and sequenced as described previously ^{3,59} . In brief, RNA from single
526	cells was reverse-transcribed (SuperScript III Reverse Transcriptase, Invitrogen, 18080-044) and
527	the cDNA was stored at -20 °C or used for subsequent amplification of the variable IGH, IGL
528	and IGK genes by nested PCR and Sanger sequencing. Sequence analysis was performed using
529	MacVector. Amplicons from the first PCR reaction were used as templates for sequence- and
530	ligation-independent cloning into antibody expression vectors. Recombinant monoclonal
531	antibodies were produced and purified as previously described ³ .
532	

533 **Biolayer interferometry**

534 Biolayer interferometry assays were performed as previously described³. Briefly, we used the 535 Octet Red instrument (ForteBio) at 30 °C with shaking at 1,000 r.p.m. Affinity measurement of 536 anti-SARS-CoV-2 IgGs binding were corrected by subtracting the signal obtained from traces 537 performed with IgGs in the absence of WT RBD. The kinetic analysis using protein A biosensor 538 (ForteBio 18-5010) was performed as follows: (1) baseline: 60sec immersion in buffer. (2) 539 loading: 200sec immersion in a solution with IgGs 10 µg/ml. (3) baseline: 200sec immersion in 540 buffer. (4) Association: 300sec immersion in solution with WT RBD at 20, 10 or 5 μ g/ml (5) 541 dissociation: 600sec immersion in buffer. Curve fitting was performed using a fast 1:1 binding 542 model and the Data analysis software (ForteBio). Mean equilibrium dissociation constant (K_D) 543 values were determined by averaging all binding curves that matched the theoretical fit with an R^2 value ≥ 0.8 . 544

545

546 Computational analyses of antibody sequences

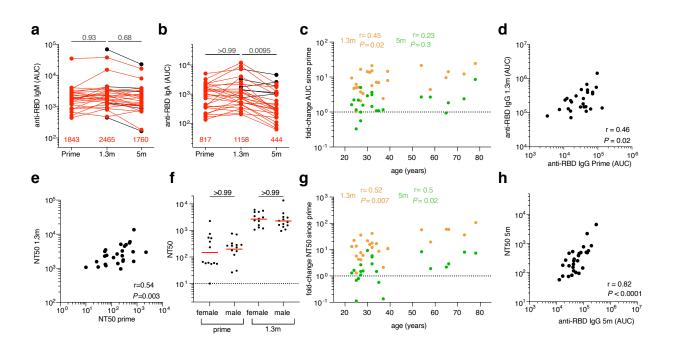
547	Antibody sequences were trimmed based on quality and annotated using Igblastn v.1.14. with
548	IMGT domain delineation system. Annotation was performed systematically using Change-O
549	toolkit v.0.4.540 ⁶⁰ . Heavy and light chains derived from the same cell were paired, and
550	clonotypes were assigned based on their V and J genes using in-house R and Perl scripts. All
551	scripts and the data used to process antibody sequences are publicly available on GitHub
552	(https://github.com/stratust/igpipeline/tree/igpipeline2_timepoint_v2).
553	
554	The frequency distributions of human V genes in anti-SARS-CoV-2 antibodies from this study
555	was compared to 131,284,220 IgH and IgL sequences generated by ⁶¹ and downloaded from cAb-
556	Rep ⁶² , a database of human shared BCR clonotypes available at https://cab-
557	rep.c2b2.columbia.edu/. Based on the 112 distinct V genes that make up the 7936 analyzed
558	sequences from Ig repertoire of the 11 participants present in this study, we selected the IgH and
559	IgL sequences from the database that are partially coded by the same V genes and counted them
560	according to the constant region. The frequencies shown in Extended Data Fig. 4 are relative to
561	the source and isotype analyzed. We used the two-sided binomial test to check whether the
562	number of sequences belonging to a specific IGHV or IGLV gene in the repertoire is different
563	according to the frequency of the same IgV gene in the database. Adjusted p-values were
564	calculated using the false discovery rate (FDR) correction. Significant differences are denoted
565	with stars.
566	
567	Nucleotide somatic hypermutation and Complementarity-Determining Region (CDR3) length

were determined using in-house R and Perl scripts. For somatic hypermutations, *IGHV* and *IGLV*nucleotide sequences were aligned against their closest germlines using Igblastn and the number

570	of differences were considered nucleotide mutations. The average number of mutations for V
571	genes was calculated by dividing the sum of all nucleotide mutations across all participants by
572	the number of sequences used for the analysis.
573	
574	Data availability statement: Data are provided in Supplementary Tables 1-8. The raw
575	sequencing data and computer scripts associated with Figure 2 and Extended Data Fig. 3 have
576	been deposited at Github (https://github.com/stratust/igpipeline/tree/igpipeline2_timepoint_v2).
577	This study also uses data from "A Public Database of Memory and Naive B-Cell Receptor
578	Sequences" (https://doi.org/10.5061/dryad.35ks2), PDB (6VYB and 6NB6) and from "High
579	frequency of shared clonotypes in human B cell receptor repertoires"
580	(https://doi.org/10.1038/s41586-019-0934-8).
581	
582	Code availability statement: Computer code to process the antibody sequences is available at
583	GitHub (https://github.com/stratust/igpipeline/tree/igpipeline2_timepoint_v2).
584 585	
586	Data presentation
587	Figures arranged in Adobe Illustrator 2020.
588	
589	Competing interests: The Rockefeller University has filed a provisional patent application in
590	connection with this work on which M.C.N.is an inventor (US patent 63/021,387). The patent
591	has been licensed by Rockefeller University to Bristol Meyers Squib.
592	

593	Acknowledgments: We thank all study participants who devoted time to our research; The					
594	Rockefeller University Hospital nursing staff and Clinical Research Support Office and nursing					
595	staff. Mayu Okawa Frank, Marissa Bergh, and Robert B. Darnell for SARS-CoV-2 saliva PCR					
596	testing. Charles M. Rice, and all members of the M.C.N. laboratory for helpful discussions, Maš					
597	Jankovic for laboratory support, and Kristie Gordon for technical assistance with cell-sorting					
598	experiments. This work was supported by NIH grant P01-AI138398-S1 (M.C.N.) and					
599	2U19AI111825 (M.C.N.). R37-AI64003 to P.D.B.; R01AI78788 to T.H. F.M. is supported by					
600	the Bulgari Women & Science Fellowship in COVID-19 Research. C.G. was supported by the					
601	Robert S. Wennett Post-Doctoral Fellowship. D.S.B and C.G. were supported in part by the					
602	National Center for Advancing Translational Sciences (National Institutes of Health Clinical and					
603	Translational Science Award program, grant UL1 TR001866), and C.G. by the Shapiro-					
604	Silverberg Fund for the Advancement of Translational Research. P.D.B. and M.C.N. are					
605	Howard Hughes Medical Institute Investigators.					

606

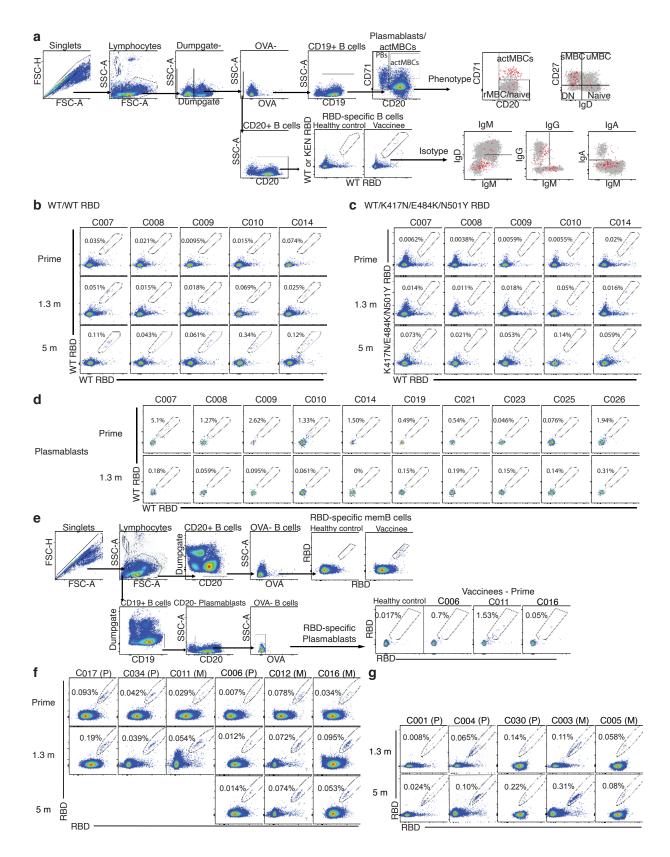

607	Author Contrib	outions: P.D.B.	, T.H., and M.C.N.	conceived, desig	ned and analyzed

the experiments. M. Caskey and C.G. designed clinical protocols. A.C, F.M., D.S.B., Z.W., S.F.,

609 P.M., M.A., E.B., J.D.S., I.S., J.D. F.S., F.Z., and T.B.T. carried out experiments. A.G. and M.

- 610 Cipolla produced antibodies. D.S.B., M.D., M.T., K.G.M., C.G. and M. Caskey recruited
- 611 participants, executed clinical protocols. T.Y.O. and V.R. performed bioinformatic
- analysis. A.C., F.M, D.S.B., Z.W., S.F., and M.C.N. wrote the manuscript with input from allco-authors.

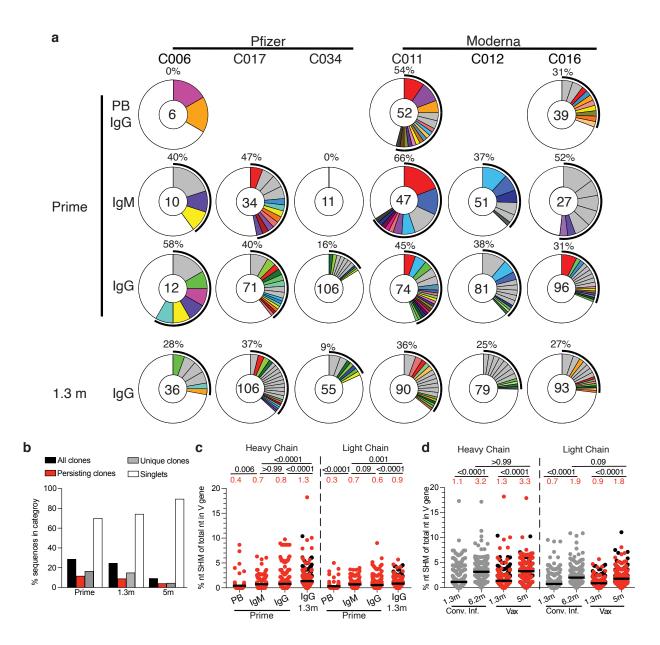
615 EXTENDED FIGURES



616

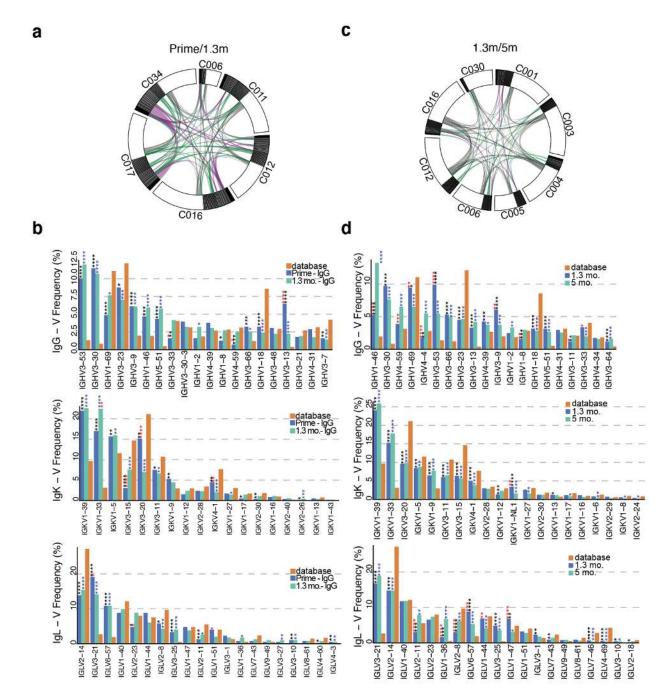
617 Extended Data Fig 1: Plasma ELISA and neutralization.

a,b, Graph shows area under the curve (AUC, Y-axis) for plasma IgM (a) or IgA (b) antibody 618 619 binding to SARS-CoV-2 RBD after prime, and 1.3- and 5-months post-boost for paired samples 620 from n=32 vaccinated individuals. Samples without a prime value are shown in black. c, Graph 621 shows age (years, X-axis) vs. fold-change of IgG-binding titers (AUC, Y-Axis) between prime 622 and 1.3m (orange) or 5m (green) post-boost. d, IgG antibody binding after prime (AUC, X-axis) vs. IgG antibody binding after 1.3 months post-boost (AUC, Y-axis) and e, NT50 values after 623 prime (X-axis) vs. NT50 values after 1.3 months post-boost (Y-axis) in individuals receiving two 624 625 doses of an mRNA vaccine (n=26). f, NT50 values after prime and 1.3 months post-boost in 626 females and males receiving 2 doses of an mRNA vaccine. g, Graph shows age (years, X-axis) vs 627 fold-change of NT50 (X-axis) between prime and 1.3m (orange) or 5m (green) post-boost. h, NT50 628 values (Y-axis) vs. IgG antibody binding (AUC, X-axis) 5 months after boost in individuals


- receiving two doses of an mRNA vaccine (n=28). All experiments were performed at least in
 duplicate. Red values or bar in a, b and f represent geometric mean values. Statistical significance
 in a, b, and f was determined by Kruskal-Wallis test with subsequent Dunn's multiple
 comparisons, or by Spearman correlation test in c, d, e, g, and h.
- 633

636 Extended Data Fig. 2: Flow Cytometry. a, Gating strategy for phenotyping. Gating was on 637 singlets that were CD19⁺ or CD20⁺ and CD3-CD8-CD16-Ova-. Anti-IgG, IgM, IgA, IgD, CD71 638 and CD27 antibodies were used for B cell phenotype analysis. Antigen-specific cells were detected 639 based on binding to RBD WT-PE⁺ and RBD WT/KEN (K417N/E484K/N501Y)-AF647⁺. b-c, 640 Flow cytometry plots showing the frequency of **b**, RBD WT-binding memory B cells, and **c**, RBD-641 binding memory B cells cross-reactive with WT and K417N/E484K/N501Y mutant RBD in 5 642 selected individuals, after prime, 1.3 months, and 5 months post-second vaccination. d, Flow 643 cytometry plots showing frequency of RBD-binding plasmablasts, in 10 selected vaccinees after 644 prime or 1.3 months post-boost. e, Gating strategy for single-cell sorting for CD20+ memory B 645 cells (top panel) or CD19+CD20- plasmablasts (bottom panel) which were double positive for 646 RBD-PE and RBD-AF647. f-g, Representative flow cytometry plots showing dual AlexaFluor-647 647-RBD and PE-RBD-binding, single-cell sorted B cells from f, 6 individuals after prime and 1.3 648 months or 5 months post-boost and g, 5 individuals from 1.3- or 5-months post-boost. Percentage 649 of RBD-specific B cells is indicated.

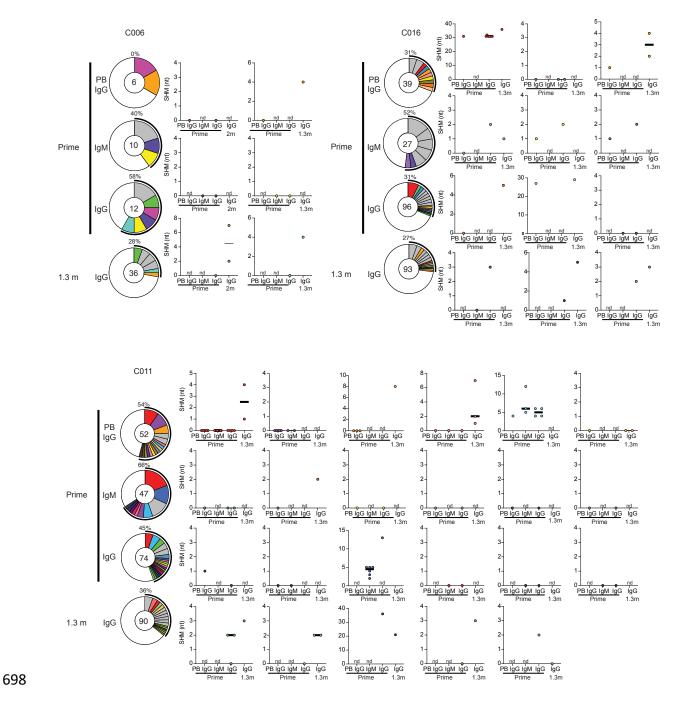
650


651

Extended Data Fig 3: anti-SARS-CoV-2 RBD-specific plasmablast and memory B cells responses after vaccination. a, Pie charts show the distribution of antibody sequences from 6 individuals after prime (upper panel) or 1.3 months post-boost (lower panel). Sequences derived from IgG plasmablast (PB), IgM memory B cells (MBC), and IgG MBC compartments were analyzed after prime, while only IgG MBCs were analyzed at 1.3 months after boost, as indicated to the left of the plots. The number inside the circle indicates the number of sequences analyzed for the individual denoted above the circle. Pie slice size is proportional to the number of clonally

661 related sequences. The black outline indicates the frequency of clonally sequences detected in each 662 patient. Colored slices indicate persisting clones (same *IGHV* and *IGLV* genes, with highly similar 663 CDR3s) found in multiple compartments and/or timepoints within the same patient. Grey slices 664 indicate clones unique to the compartment. White indicates sequences isolated once. **b**, Graph 665 shows the percentage of total paired-sequences analyzed at either prime, 1.3- or 5-months post-666 boost, that can be found as part of all clones (black bars), persisting clones (red bars), unique clones 667 (grey bars), or singlets (white bar). c-d, Ratio of the number of somatic nucleotide mutations over 668 the nucleotide length of the V gene in the Ig heavy and light chains, separately, in antibodies 669 detected in **c**, different B cell compartments after prime or 1.3 months post-boost and **d**, 1.3 or 5 months post-boost compared to convalescent infected (grey) individuals after 1.3³ and 6.2⁷ months 670 671 post-infection (also Supplementary Table 4). Horizontal bars and red numbers indicate mean ratio 672 in each compartment at each time point. Sequences derived from samples without a prime value 673 are shown in black. Statistical significance in c and d was determined using a Kruskal Wallis test 674 with subsequent Dunn's multiple comparisons.

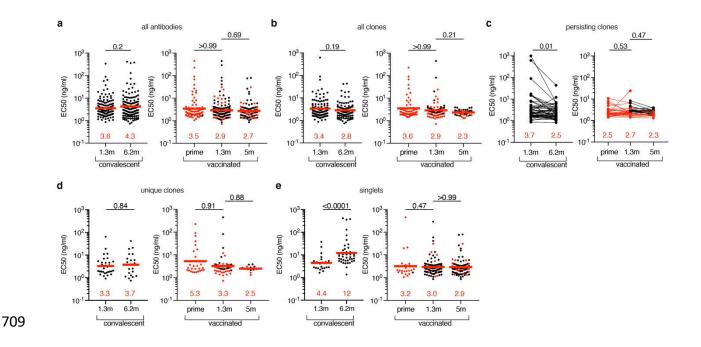
675



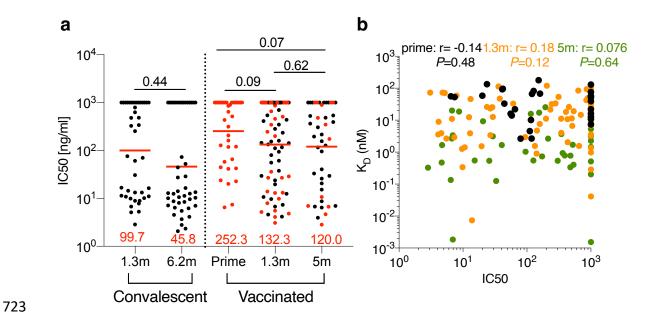
677

Extended Data Fig. 4: Frequency distribution of human V genes. a, Circos plot depicting relationship between antibodies that share V and J gene usage in both IgH and IgL when comparing prime/1.3m IgG MBC sequences. Purple, green, and grey lines connect related clones, clones and singlets, and singlets to each other, respectively. **b**, Graph shows relative abundance of human heavy chain *IGHV* (top), light chain *IGKV* (middle) or *IGLV* (bottom) genes comparing Sequence

683 Read Archive accession SRP010970 (orange), and IgG MBCs after prime (blue) or 1.3 months post-boost (green). Statistical significance was determined by two-sided binomial test. $* = p \le 0.05$, 684 ** = $p \le 0.01$, *** = $p \le 0.001$, **** = $p \le 0.0001$. Color of stars indicates: black - comparing 685 Database versus Prime; blue - comparing Database versus 1.3m; red - comparing Prime versus 686 687 1.3m. c, Circos plot depicting relationship between antibodies that share V and J gene usage in 688 both IgH and IgL when comparing 1.3 m/5 m IgG MBC sequences. Purple, green, and grey lines 689 connect related clones, clones and singlets, and singlets to each other, respectively. d, Graph shows 690 relative abundance of human heavy chain IGHV (top), light chain IGKV (middle) or IGLV (bottom) 691 genes comparing Sequence Read Archive accession SRP010970 (orange), and IgG MBCs after 692 1.3 months (blue) or 5 months (green) post-vaccination. Statistical significance was determined by two-sided binomial test. $* = p \le 0.05$, $** = p \le 0.01$, $*** = p \le 0.001$, $**** = p \le 0.0001$. Color of stars 693 694 indicates: black - comparing Database versus 1.3 months; blue - comparing Database versus 5 695 months; red - comparing 1.3 months versus 5 months.

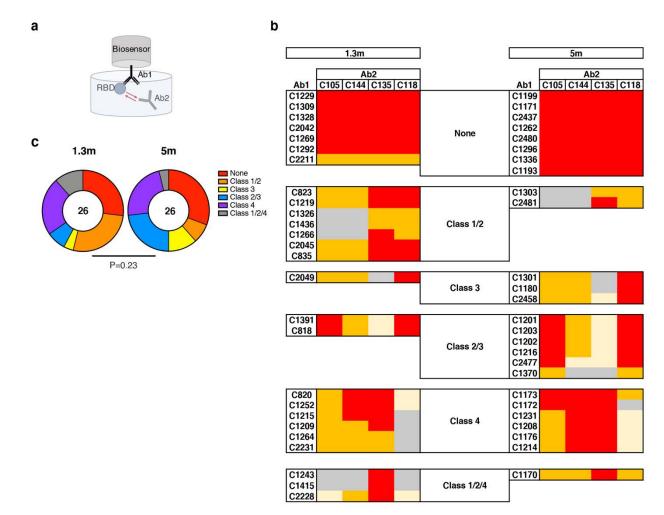

696

Extended Data Fig. 5: Somatic hypermutation of anti-SARS-CoV-2 RBD antibody clones after prime or boost. Clonal evolution of RBD-binding B cells from 3 individuals for which plasmablasts, IgM memory B cells, and IgG memory B cells were analyzed after prime, and IgG memory B cells were analyzed after 1.3 months post-boost (as described in Extended Data Fig. 3). The number of somatic nucleotide mutations found in shared clonal families found in at least 2

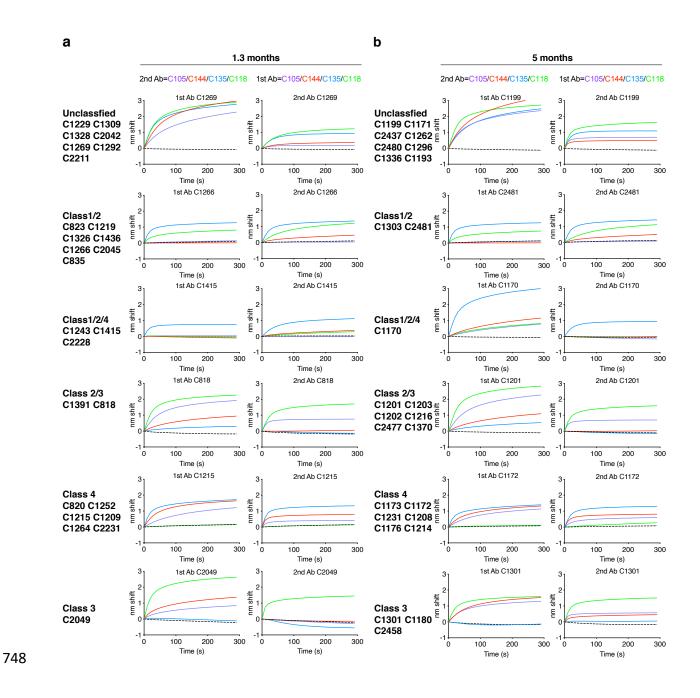

704	different compartments is graphed to the right of each donut plot. Color of dot plots match the
705	color of pie slices within the donut plot, which indicate persisting clones. nd - clone was Not
706	Detected in the indicated compartment. Black horizontal line indicates median number of SHM.
707	
708	

bioRxiv preprint doi: https://doi.org/10.1101/2021.07.29.454333; this version posted August 30, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license.

Extended Data Fig. 6: Anti-SARS-CoV-2 RBD monoclonal antibodies ELISAs. a-e, Graphs 710 show anti-SARS-CoV-2 binding activity of monoclonal antibodies measured by ELISA against 711 RBD. ELISA half-maximal concentration (EC_{50}) values for all antibodies (a), all clones (b), 712 713 persisting clones (c), unique clones (d) and singlets (e) isolated from COVID-19 convalescent individuals 1.3^3 and 6.2^7 months after infection (left panel) or from vaccinated individuals after 714 715 prime, or 1.3m or 5m after receiving the second dose of mRNA vaccination (right panel). Each dot 716 represents one antibody. Antibodies isolated from samples without a prime value are shown in black. Red horizontal bars and numbers indicate geometric mean values. Statistical significance 717 was determined by Mann-Whitney test (left panels of a, b, d and e), Kruskal-Wallis test with 718 719 subsequent Dunn's multiple comparisons (right panels of **a-e**) or by Wilcoxon test (left panel of c). All experiments were performed at least twice. 720


721

Extended Data Fig. 7. Affinity. Biolayer interferometry measurements. a, IC₅₀ values for 724 randomly selected antibodies isolated from convalescents 1.3m³ (n=42) and 6.2m⁷ (n=45) after 725 726 infection or from vaccinees after prime (n=36), and 1.3m (n=74) and 5m (n=43). Red horizontal 727 lines and numbers indicate geometric mean. Antibodies isolated from samples without a prime 728 value are shown in black. **b**, Graphs show affinities (K_D, Y-axis) plotted against neutralization 729 activity (IC₅₀, X-axis) for antibodies isolated after prime (black), or 1.3m (orange) or 5m (green) 730 post-boost vaccination. Statistical significance was determined using Kruskal Wallis test with 731 subsequent Dunn's multiple comparisons in **a** and Spearman correlation test in **b**.


732

733

736 Extended Data Fig. 8. Epitope targeting of anti-SARS-CoV-2 RBD antibodies. a, Schematic representation of the BLI experiment for randomly selected antibodies isolated from vaccinees 737 738 1.3- and 5 months after full vaccination (each presented group shows n=26 antibodies). b. Heat-739 map of relative inhibition of Ab2 binding to the preformed Ab1-RBD complexes (grey=no 740 binding, yellow=low binding, orange=intermediate binding, red=high binding). Values are 741 normalized through the subtraction of the autologous antibody control. BLI traces can be found in 742 Extended Data Fig. 9. c. Pie charts indicate the fraction of antibodies that are assigned to different 743 classes according to their binding pattern as shown in **b** and Extended data Fig. 9. Number in inner

- rt4 circle shows number of antibodies tested. Statistical significance was determined using the Chi-
- square test in **c**.
- 746

Extended Data Fig. 9. BLI traces from epitope mapping of anti-SARS-CoV-2 RBD
antibodies. a-b, BLI traces from competition experiments used to determine epitope targets of
anti-SARS-CoV-2 RBD antibodies isolated from vaccinees at 1.3m (a) or 5m (b) post-boost, as
illustrated in Extended data Fig. 8.

а								E484K			KEN	L452R E484Q
		wt	R683G	R346S	K417N	N440K	A475V	R683G	Q493R	N501Y	R683G	R683G
1	C2159	12.2	6.2	9.1	3.3	11.2	8.8	627.1	17.1	20.6	212.0	36.9
	C2029	25.1	7.6	>1000	5.9	23.0	19.5	1.8	14.6	57.7	1.6	>1000
	C2139	46.0	25.4	33.0	>1000	48.7	>1000	153.6	>1000	>1000	>1000	105.1
	C2033	46.2	25.8	32.0	>1000	41.4	868.4	79.5	183.4	668.2	>1000	52.1
	C2209	52.6	26.7	40.7	12.5	48.2	214.0	107.3	341.9	214.9	58.8	44.0
	C2020	65.8	37.8	164.0	>1000	53.5	71.5	131.3	>1000	119.0	>1000	83.7
	C2221	69.3	26.4	47.6	>1000	58.8	>1000	355.2	>1000	46.3	>1000	124.0
	C2019	88.5	96.3	>1000	25.5	90.8	70.1	726.4	92.3	125.5	380.3	>1000
	C2110	118.4	106.6	92.6	>1000	109.9	797.4	254.9	198.0	301.5	>1000	218.3
Prime	C2018	118.9	37.2	55.4	33.4	110.8	98.0	284.5	123.8	135.8	140.0	>1000
	C2022	153.4	61.6	114.5	>1000	130.5	>1000	247.7	358.7	162.8	>1000	139.2
	C2113	348.4	127.8	242.4	166.8	267.1	347.9	>1000	922.3	339.4	>1000	>1000
	C2149	376.8	178.6	259.3	>1000	331.2	>1000	724.8	>1000	>1000	>1000	608.0
	C2026	433.1	25.6	258.1	400.1	350.5	925.7	188.0	368.0	387.1	190.1	147.3
	C2150	591.0	57.5	672.9	496.9	413.7	783.8	240.8	406.4	543.2	202.1	199.1
	C2013	593.3	204.6	391.0	>1000	484.3	117.9	>1000	>1000	>1000	>1000	>1000
	C2185	670.6	116.1	440.0	239.1	494.6	818.2	412.8	759.7	485.4	246.7	251.1
	C2004	722.5	117.4	529.5	521.1	468.7	>1000	400.1	496.2	928.0	318.2	345.1
	C2140	840.9	124.4	706.9	839.5	778.2	>1000	648.7	866.7	815.5	481.7	497.8
	C2109	1000.0	198.7	572.6	825.0	336.9	>1000	960.0	762.2	620.2	691.7	464.7
											I	C50 (ng/ml)

b								E484K			KEN	L452R E484Q
		wt	R683G	R346S	K417N	N440K	A475V	R683G	Q493R	N501Y	R683G	R683G
	C2039	1.9	0.5	1.0	0.7	1.2	1.0	>1000	1.4	2.3	>1000	>1000
	C2237	6.7	0.7	3.8	2.3	4.7	3.8	342.4	9.1	4.5	815.8	>1000
	C2049	10.0	5.2	7.1	319.9	9.6	65.5	10.9	17.5	12.8	>1000	7.2
	C2065	11.6	9.8	>1000	4.0	11.1	6.4	387.7	9.6	11.1	123.4	>1000
	C2319	13.3	6.3	8.7	>1000	10.2	131.2	7.7	28.4	297.3	>1000	8.5
1.3 mo.	C2175	17.6	4.9	12.1	5.1	14.2	8.0	506.1	>1000	17.5	347.0	23.5
	C2219	20.7	9.8	13.0	5.2	19.4	35.1	>1000	369.6	13.7	>1000	>1000
	C2227	48.3	28.5	94.8	20.6	45.0	36.8	>1000	8.7	>1000	>1000	14.3
	C2047	49.1	40.4	145.2	>1000	48.8	53.2	168.6	>1000	96.8	>1000	123.4
	C2045	52.0	41.2	46.4	>1000	61.1	375.8	62.9	>1000	60.3	>1000	76.4
	C2188	90.8	45.7	64.3	>1000	56.6	743.4	134.8	>1000	>1000	>1000	119.6
	C2037	148.1	74.1	53.1	32.7	88.0	103.4	378.3	147.5	157.4	246.4	>1000
	C2228	178.4	145.9	124.1	70.2	132.2	>1000	770.5	>1000	197.9	886.3	785.3
	C2167	200.4	140.1	156.4	13.6	144.2	143.0	287.9	233.5	183.3	28.4	243.6
	C2318	351.9	126.5	262.1	113.7	241.7	335.9	286.4	311.0	477.8	244.8	231.4
	C2210	366.2	145.7	236.9	188.6	270.5	297.1	382.6	333.2	276.1	381.7	363.0
	C2317	429.2	549.9	>1000	105.5	296.6	282.1	>1000	305.6	387.5	>1000	>1000
	C2172	451.6	246.0	324.0	214.0	257.3	>1000	363.5	>1000	486.9	>1000	199.7
	C2070	584.0	532.7	856.2	260.7	529.0	709.6	884.3	629.7	802.5	838.8	578.2
	C2321	843.9	254.3	>1000	648.9	>1000	627.1	400.1	316.5	693.4	445.2	>1000
											I	C50 (ng/ml)

754

Extended Data Fig. 10: Breadth of anti-SARS-CoV-2 RBD antibodies elicited after prime
and 2 doses of vaccination. a-b, IC₅₀ values for n=40 neutralizing antibodies isolated after prime
(a) or 1.3 months post-boost (b) against indicated mutant SARS-CoV-2 pseudoviruses. Color
gradient indicates IC₅₀ values ranging from 0 (white) to 1000 ng/ml (red).

759

761 **REFERENCES**

- 762 Wang, Z. et al. Naturally enhanced neutralizing breadth against SARS-CoV-2 one year 1 after infection. Nature, doi:10.1038/s41586-021-03696-9 (2021). 763 764 2 Goel, R. R. et al. Distinct antibody and memory B cell responses in SARS-CoV-2 naive and 765 recovered individuals following mRNA vaccination. Sci Immunol 6, 766 doi:10.1126/sciimmunol.abi6950 (2021). 767 3 Robbiani, D. F. et al. Convergent antibody responses to SARS-CoV-2 in convalescent 768 individuals. Nature 584, 437-442, doi:10.1038/s41586-020-2456-9 (2020). 769 4 Apostolidis, S. A. et al. Altered cellular and humoral immune responses following SARS-770 CoV-2 mRNA vaccination in patients with multiple sclerosis on anti-CD20 therapy. 771 medRxiv, 2021.2006.2023.21259389, doi:10.1101/2021.06.23.21259389 (2021).
- Sokal, A. *et al.* Memory B cells control SARS-CoV-2 variants upon mRNA vaccination of
 naive and COVID-19 recovered individuals. *bioRxiv*, 2021.2006.2017.448459,
 doi:10.1101/2021.06.17.448459 (2021).
- 7756Turner, J. S. *et al.* SARS-CoV-2 mRNA vaccines induce persistent human germinal centre776responses. *Nature*, doi:10.1038/s41586-021-03738-2 (2021).
- 777 7 Gaebler, C. *et al.* Evolution of antibody immunity to SARS-CoV-2. *Nature* 591, 639-644,
 778 doi:10.1038/s41586-021-03207-w (2021).
- Schmidt, F. *et al.* Measuring SARS-CoV-2 neutralizing antibody activity using
 pseudotyped and chimeric viruses. *J Exp Med* **217**, doi:10.1084/jem.20201181 (2020).
- Pilishvili, T. *et al.* Interim Estimates of Vaccine Effectiveness of Pfizer-BioNTech and
 Moderna COVID-19 Vaccines Among Health Care Personnel 33 U.S. Sites, JanuaryMarch 2021. *MMWR Morb Mortal Wkly Rep* **70**, 753-758,
- 784 doi:10.15585/mmwr.mm7020e2 (2021).
- 10 Lopez Bernal, J. *et al.* Effectiveness of Covid-19 Vaccines against the B.1.617.2 (Delta)
 Variant. *N Engl J Med*, doi:10.1056/NEJMoa2108891 (2021).
- Amanat, F. *et al.* SARS-CoV-2 mRNA vaccination induces functionally diverse antibodies
 to NTD, RBD, and S2. *Cell* **184**, 3936-3948 e3910, doi:10.1016/j.cell.2021.06.005 (2021).
- 78912Reynolds, C. J. *et al.* Prior SARS-CoV-2 infection rescues B and T cell responses to790variants after first vaccine dose. *Science*, doi:10.1126/science.abh1282 (2021).
- Wang, Z. *et al.* mRNA vaccine-elicited antibodies to SARS-CoV-2 and circulating variants.
 Nature 592, 616-622, doi:10.1038/s41586-021-03324-6 (2021).
- 79314Stamatatos, L. *et al.* mRNA vaccination boosts cross-variant neutralizing antibodies794elicited by SARS-CoV-2 infection. *Science*, doi:10.1126/science.abg9175 (2021).
- West, A. P. *et al.* Detection and characterization of the SARS-CoV-2 lineage B.1.526 in
 New York. *bioRxiv*, doi:10.1101/2021.02.14.431043 (2021).
- 79716Edara, V. V. *et al.* Infection and Vaccine-Induced Neutralizing-Antibody Responses to the798SARS-CoV-2 B.1.617 Variants. N Engl J Med, doi:10.1056/NEJMc2107799 (2021).
- 79917Planas, D. *et al.* Reduced sensitivity of SARS-CoV-2 variant Delta to antibody800neutralization. *Nature*, doi:10.1038/s41586-021-03777-9 (2021).
- 18 Victora, G. D. & Nussenzweig, M. C. Germinal centers. *Annu Rev Immunol* **30**, 429-457,
 802 doi:10.1146/annurev-immunol-020711-075032 (2012).

803	19	Dugan, H. L. et al. Profiling B cell immunodominance after SARS-CoV-2 infection reveals
804	20	antibody evolution to non-neutralizing viral targets. <i>Immunity</i> 54 , 1290-1303 e1297,
805		doi:10.1016/j.immuni.2021.05.001 (2021).
806	20	Li, D. et al. In vitro and in vivo functions of SARS-CoV-2 infection-enhancing and
807		neutralizing antibodies. <i>Cell</i> 184 , 4203-4219 e4232, doi:10.1016/j.cell.2021.06.021
808		(2021).
809	21	Brouwer, P. J. M. <i>et al.</i> Potent neutralizing antibodies from COVID-19 patients define
810		multiple targets of vulnerability. <i>Science</i> 369 , 643-650, doi:10.1126/science.abc5902
811		(2020).
812	22	Kreer, C. <i>et al.</i> Longitudinal Isolation of Potent Near-Germline SARS-CoV-2-Neutralizing
813		Antibodies from COVID-19 Patients. <i>Cell</i> 182 , 843-854 e812,
814		doi:10.1016/j.cell.2020.06.044 (2020).
815	23	Seydoux, E. <i>et al.</i> Analysis of a SARS-CoV-2-Infected Individual Reveals Development of
816	20	Potent Neutralizing Antibodies with Limited Somatic Mutation. <i>Immunity</i> 53 , 98-105
817		e105, doi:10.1016/j.immuni.2020.06.001 (2020).
818	24	Taylor, J. J., Pape, K. A., Steach, H. R. & Jenkins, M. K. Humoral immunity. Apoptosis and
819	21	antigen affinity limit effector cell differentiation of a single naive B cell. <i>Science</i> 347 ,
820		784-787, doi:10.1126/science.aaa1342 (2015).
821	25	Muecksch, F. <i>et al.</i> Affinity maturation of SARS-CoV-2 neutralizing antibodies confers
822	23	potency, breadth, and resilience to viral escape mutations. <i>Immunity</i> 54 , 1853-1868
823		e1857, doi:10.1016/j.immuni.2021.07.008 (2021).
824	26	Li, G. M. <i>et al.</i> Pandemic H1N1 influenza vaccine induces a recall response in humans
825	20	that favors broadly cross-reactive memory B cells. <i>Proc Natl Acad Sci U S A</i> 109 , 9047-
826		9052, doi:10.1073/pnas.1118979109 (2012).
827	27	Wrammert, J. <i>et al.</i> Rapid and massive virus-specific plasmablast responses during acute
828	_,	dengue virus infection in humans. J Virol 86 , 2911-2918, doi:10.1128/JVI.06075-11
829		(2012).
830	28	Wrammert, J. <i>et al.</i> Rapid cloning of high-affinity human monoclonal antibodies against
831		influenza virus. <i>Nature</i> 453 , 667-671, doi:10.1038/nature06890 (2008).
832	29	Amanna, I. J., Carlson, N. E. & Slifka, M. K. Duration of humoral immunity to common
833		viral and vaccine antigens. <i>N Engl J Med</i> 357 , 1903-1915, doi:10.1056/NEJMoa066092
834		(2007).
835	30	Davis, C. W. <i>et al.</i> Influenza vaccine-induced human bone marrow plasma cells decline
836		within a year after vaccination. <i>Science</i> 370 , 237-241, doi:10.1126/science.aaz8432
837		(2020).
838	31	Halliley, J. L. <i>et al.</i> Long-Lived Plasma Cells Are Contained within the CD19(-
839)CD38(hi)CD138(+) Subset in Human Bone Marrow. <i>Immunity</i> 43 , 132-145,
840		doi:10.1016/j.immuni.2015.06.016 (2015).
841	32	Slifka, M. K., Antia, R., Whitmire, J. K. & Ahmed, R. Humoral immunity due to long-lived
842		plasma cells. <i>Immunity</i> 8 , 363-372, doi:10.1016/s1074-7613(00)80541-5 (1998).
843	33	Dan, J. M. <i>et al.</i> Immunological memory to SARS-CoV-2 assessed for up to 8 months
844		after infection. <i>Science</i> 371 , doi:10.1126/science.abf4063 (2021).
845	34	Sakharkar, M. <i>et al.</i> Prolonged evolution of the human B cell response to SARS-CoV-2
846		infection. <i>Sci Immunol</i> 6 , doi:10.1126/sciimmunol.abg6916 (2021).

847	35	Widge, A. T. <i>et al.</i> Durability of Responses after SARS-CoV-2 mRNA-1273 Vaccination. N
848	55	Engl J Med 384 , 80-82, doi:10.1056/NEJMc2032195 (2021).
849	36	Wajnberg, A. <i>et al.</i> Robust neutralizing antibodies to SARS-CoV-2 infection persist for
850	50	months. Science 370 , 1227-1230, doi:10.1126/science.abd7728 (2020).
850 851	37	Pegu, A. <i>et al.</i> Durability of mRNA-1273-induced antibodies against SARS-CoV-2 variants.
852	37	<i>bioRxiv</i> , doi:10.1101/2021.05.13.444010 (2021).
853	38	Chen, R. E. <i>et al.</i> Resistance of SARS-CoV-2 variants to neutralization by monoclonal and
855	50	serum-derived polyclonal antibodies. <i>Nat Med</i> 27 , 717-726, doi:10.1038/s41591-021-
855		01294-w (2021).
856	39	Abu-Raddad, L. J., Chemaitelly, H., Butt, A. A. & National Study Group for, CV.
850	39	Effectiveness of the BNT162b2 Covid-19 Vaccine against the B.1.1.7 and B.1.351
858		Variants. <i>N Engl J Med</i> 385 , 187-189, doi:10.1056/NEJMc2104974 (2021).
859	40	Hacisuleyman, E. <i>et al.</i> Vaccine Breakthrough Infections with SARS-CoV-2 Variants. <i>N</i>
860	40	Engl J Med 384 , 2212-2218, doi:10.1056/NEJMoa2105000 (2021).
861	41	Lumley, S. F. <i>et al.</i> Antibody Status and Incidence of SARS-CoV-2 Infection in Health Care
862	41	Workers. <i>N Engl J Med</i> 384 , 533-540, doi:10.1056/NEJMoa2034545 (2021).
863	42	Gazit, S. <i>et al.</i> Comparing SARS-CoV-2 natural immunity to vaccine-induced immunity:
863 864	42	reinfections versus breakthrough infections. <i>medRxiv</i> , 2021.2008.2024.21262415,
865		doi:10.1101/2021.08.24.21262415 (2021).
866	43	McHeyzer-Williams, L. J., Milpied, P. J., Okitsu, S. L. & McHeyzer-Williams, M. G. Class-
867	45	switched memory B cells remodel BCRs within secondary germinal centers. Nat Immunol
868		16 , 296-305, doi:10.1038/ni.3095 (2015).
869	44	Mesin, L. <i>et al.</i> Restricted Clonality and Limited Germinal Center Reentry Characterize
870	44	Memory B Cell Reactivation by Boosting. <i>Cell</i> 180 , 92-106 e111,
870		doi:10.1016/j.cell.2019.11.032 (2020).
872	45	Pape, K. A., Taylor, J. J., Maul, R. W., Gearhart, P. J. & Jenkins, M. K. Different B cell
873	45	populations mediate early and late memory during an endogenous immune response.
874		<i>Science</i> 331 , 1203-1207, doi:10.1126/science.1201730 (2011).
875	46	Viant, C. <i>et al.</i> Antibody Affinity Shapes the Choice between Memory and Germinal
876	40	Center B Cell Fates. <i>Cell</i> 183 , 1298-1311 e1211, doi:10.1016/j.cell.2020.09.063 (2020).
877	47	Sokal, A. <i>et al.</i> Maturation and persistence of the anti-SARS-CoV-2 memory B cell
878	77	response. <i>Cell</i> 184 , 1201-1213 e1214, doi:10.1016/j.cell.2021.01.050 (2021).
879	48	Feng, L. <i>et al.</i> An adenovirus-vectored COVID-19 vaccine confers protection from SARS-
880	10	COV-2 challenge in rhesus macaques. <i>Nat Commun</i> 11 , 4207, doi:10.1038/s41467-020-
881		18077-5 (2020).
882	49	Hassan, A. O. <i>et al.</i> A Single-Dose Intranasal ChAd Vaccine Protects Upper and Lower
883	75	Respiratory Tracts against SARS-CoV-2. <i>Cell</i> 183 , 169-184 e113,
884		doi:10.1016/j.cell.2020.08.026 (2020).
885	50	Greaney, A. J. <i>et al.</i> Antibodies elicited by mRNA-1273 vaccination bind more broadly to
886	50	the receptor binding domain than do those from SARS-CoV-2 infection. <i>Sci Transl Med</i>
887		13 , doi:10.1126/scitranslmed.abi9915 (2021).
888	51	Pardi, N. <i>et al.</i> Expression kinetics of nucleoside-modified mRNA delivered in lipid
889	<u>.</u> .	nanoparticles to mice by various routes. J Control Release 217 , 345-351,
890		doi:10.1016/j.jconrel.2015.08.007 (2015).
550		

891	52	Wu, K. et al. Preliminary Analysis of Safety and Immunogenicity of a SARS-CoV-2 Variant
892	52	Vaccine Booster. <i>medRxiv</i> , 2021.2005.2005.21256716,
893		doi:10.1101/2021.05.05.21256716 (2021).
894	53	Khoury, D. S. <i>et al.</i> Neutralizing antibody levels are highly predictive of immune
895	50	protection from symptomatic SARS-CoV-2 infection. <i>Nat Med</i> 27 , 1205-1211,
896		doi:10.1038/s41591-021-01377-8 (2021).
897	54	Wu, F. <i>et al.</i> A new coronavirus associated with human respiratory disease in China.
898	51	Nature 579 , 265-269, doi:10.1038/s41586-020-2008-3 (2020).
899	55	Amanat, F. <i>et al.</i> A serological assay to detect SARS-CoV-2 seroconversion in humans.
900	33	Nat Med 26 , 1033-1036, doi:10.1038/s41591-020-0913-5 (2020).
901	56	Grifoni, A. <i>et al.</i> Targets of T Cell Responses to SARS-CoV-2 Coronavirus in Humans with
902		COVID-19 Disease and Unexposed Individuals. <i>Cell</i> 181 , 1489-1501 e1415,
903		doi:10.1016/j.cell.2020.05.015 (2020).
904	57	Barnes, C. O. et al. Structures of Human Antibodies Bound to SARS-CoV-2 Spike Reveal
905		Common Epitopes and Recurrent Features of Antibodies. Cell 182, 828-842 e816,
906		doi:10.1016/j.cell.2020.06.025 (2020).
907	58	Weisblum, Y. et al. Escape from neutralizing antibodies by SARS-CoV-2 spike protein
908		variants. <i>Elife</i> 9 , doi:10.7554/eLife.61312 (2020).
909	59	Wang, Z. et al. Enhanced SARS-CoV-2 neutralization by dimeric IgA. Sci Transl Med 13,
910		doi:10.1126/scitranslmed.abf1555 (2021).
911	60	Gupta, N. T. <i>et al.</i> Change-O: a toolkit for analyzing large-scale B cell immunoglobulin
912		repertoire sequencing data. Bioinformatics 31 , 3356-3358,
913		doi:10.1093/bioinformatics/btv359 (2015).
914	61	Soto, C. et al. High frequency of shared clonotypes in human B cell receptor repertoires.
915		Nature 566 , 398-402, doi:10.1038/s41586-019-0934-8 (2019).
916	62	Guo, Y., Chen, K., Kwong, P. D., Shapiro, L. & Sheng, Z. cAb-Rep: A Database of Curated
917		Antibody Repertoires for Exploring Antibody Diversity and Predicting Antibody
918		Prevalence. <i>Front Immunol</i> 10 , 2365, doi:10.3389/fimmu.2019.02365 (2019).
919		