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Abstract 

Novel broadly neutralizing antibodies targeting HIV-1 hold promise for their use in the prevention and treatment of 

HIV-1 infection. Pre-clinical results have encouraged the evaluation of these antibodies in healthy and HIV-1-infected 

humans. In first clinical trials, highly potent broadly neutralizing antibodies have demonstrated their safety and signifi-

cant antiviral activity by reducing viremia and delaying the time to viral rebound in individuals interrupting antiret-

roviral therapy. While emerging antibody-resistant viral variants have indicated limitations of antibody monotherapy, 

strategies to enhance the efficacy of broadly neutralizing antibodies in humans are under investigation. These include 

the use of antibody combinations to prevent viral escape, antibody modifications to increase the half-life and the 

co-administration of latency-reversing agents to target the cellular reservoir of HIV-1. We provide an overview of the 

results of pre-clinical and clinical studies of broadly HIV-1 neutralizing antibodies, discuss their implications and high-

light approaches for the ongoing advancement into humans.
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Background

Pathogen-specific antibodies are a hallmark of an effec-

tive immune response following infection or vaccina-

tion [1, 2]. �eir development is the result of a cascade 

of events ranging from antigen uptake and presentation 

to B cell induction and antibody production [3]. Pas-

sive immunization, i.e., the administration of immuno-

globulins, bypasses these steps. As such, it is an effective 

concept for immediate but transient protection from 

infections including hepatitis A, hepatitis B and rabies 

[4]. Moreover, the principle of antibody-mediated immu-

notherapy of infectious diseases has long been estab-

lished by the use of toxin-specific antibodies to treat 

diphtheria or tetanus [5].

Advances in antibody production technology have ena-

bled the development of highly active and specific clini-

cal products. Antibodies have gained widespread medical 

use at an accelerating pace, with more than half of the 

> 70 available monoclonal antibodies and derived con-

structs having been approved over the span of the past 

5 years [6]. Most of these antibodies are used in the treat-

ment of malignant or autoimmune diseases. In contrast, 

approval of monoclonal antibodies that target infectious 

pathogens or pathogen-derived substances has been lim-

ited to antibodies against the respiratory syncytial virus 

and toxins produced by Clostridium difficile or Bacillus 

anthracis. Recently, the antibody ibalizumab has been 

approved for the treatment of multidrug-resistant HIV-1 

infection [7]. While ibalizumab does not directly interact 

with the circulating virus or HIV-1-infected cells, it tar-

gets an extracellular CD4 domain and therefore interferes 

with the binding of HIV-1 to its primary receptor on tar-

get cells [7].

Despite being proposed early on [8], the idea of neu-

tralizing antibody-mediated immunotherapy of HIV-1 

infection was long abandoned because of limited activity 

in animal models and early clinical trials [9–14]. How-

ever, the isolation of highly potent broadly neutralizing 

anti-HIV-1 antibodies (bNAbs) has renewed enthusiasm 

about the potential application of these antibodies and 
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resulted in numerous clinical trials investigating different 

concepts of bNAbs for HIV-1 infection.

Main text

First monoclonal HIV‑1 neutralizing antibodies

Most HIV-1-infected individuals develop limited neutral-

izing serum activity. Accordingly, facing the enormous 

diversity of HIV-1, passive transfer of plasma or purified 

immunoglobulins from HIV-1-infected donors resulted 

in inconsistent or no detectable treatment effects in 

humans [15–18]. Similarly, the first monoclonal anti-

HIV-1 antibodies failed to demonstrate significant anti-

viral effects in early clinical trials [19–23]. Limitations in 

potency and breadth remained for the first generation of 

broadly neutralizing antibodies [24–26]. However, proof-

of-concept studies in non-human primates (NHPs) and 

humanized mice demonstrated that monoclonal anti-

bodies can protect from infection with chimeric simian/

human immunodeficiency virus (SHIV) and HIV-1 [27–

41]. Nevertheless, these antibodies were not generally 

considered applicable for clinical use in HIV-1 preven-

tion mainly because of an overall low neutralizing activity 

against the majority of viral strains. �e bar for treatment 

of established infection proved even higher, as combina-

tions of these early antibodies failed to significantly sup-

press viremia or prevent the development of resistance 

in animals and humans [9–14]. �us, the results of these 

experiments reinforced the need for more potent anti-

bodies that cover a wide spectrum of viral strains to facil-

itate bNAb-mediated prevention and treatment of HIV-1 

infection.

A new generation of antibodies targeting HIV‑1

Advances in antibody isolation and cloning methods, 

combined with the identification of subjects with excep-

tional neutralizing serum activity, resulted in the isola-

tion of a new generation of anti-HIV-1 bNAbs [42–47]. 

�ese antibodies are orders of magnitude more potent 

than those isolated before and neutralize the majority of 

viral strains [48]. All bNAbs recognize the HIV-1 enve-

lope glycoprotein (Env) by targeting defined vulnerable 

epitopes on its surface [49, 50]. Among them, antibod-

ies against the CD4 binding site (3BNC117, VRC01) and 

the V3 loop (10-1074) have progressed beyond first-in-

human trials to studies focusing on potential strategies 

for treatment and prevention of HIV-1 infection (Fig. 1). 

Additional antibodies targeting the CD4 binding site 

(N6-LS and VRC07-LS), the V3 loop (PGT121) or other 

epitopes (V1/V2 loop, PGDM1400; membrane proximal 

external region (MPER) of gp41, 10E8V-LS) are being 

investigated in early phase studies (Fig. 1). Indeed, more 

than 30 clinical trials have been initiated and will result in 

the enrollment of over 4000 study participants receiving 

one or a combination of novel broadly neutralizing anti-

bodies (Fig. 1).

Paving the way for prevention

Members of the new generation of highly potent bNAbs 

can protect from infection in parenteral, vaginal, rec-

tal and/or oral viral challenge models [51–71]. In fact, 

bNAbs have been shown to prevent (S)HIV infection by 

high titer virus mucosal challenge across a number of 

animal studies investigating different bNAbs, viral strains 

and/or routes of transmission [55–67]. While mucosal 

application of high titer virus ensures robust infec-

tion after a single challenge, this model does not reflect 

the limited frequency of transmission seen for a single 

sexual contact or breastfeeding [72, 73]. �us, it may 

underestimate the efficacy of bNAbs to prevent HIV-1 

transmission in humans. Low-dose repeated mucosal 

challenge mimics clinical scenarios more closely. In such 

models, the administration of a single bNAb can signifi-

cantly delay the time to infection [68–71]. For example, 

macaques intrarectally challenged with  SHIVAD8 were 

protected from infection after a single administration of 

10-1074, 3BNC117 or VRC01 until the median serum 

antibody concentrations declined to 0.17–1.83  µg/ml 

[70]. �ese levels were approximately 3-fold higher than 

the  IC50s determined against the challenge virus in vitro 

[70]. Higher ratios of protective serum antibody con-

centrations and in  vitro  IC50s were observed for first-

generation bNAbs in low-dose challenge models [68, 

69]. However, these differences might be accounted for 

by the use of different virus strains, challenge routes and 

other conditions including the experimental thinning of 

epithelia in vaginal transmission models. Nevertheless, 

if the results from low-dose rectal challenge in NHPs 

hold true in humans, bNAb serum levels of 10 µg/ml are 

likely to be sufficient to prevent infection from a large 

fraction of circulating viruses [74]. When infused intra-

venously (i.v.), 3BNC117, VRC01 and 10-1074 showed 

mean half-lives of 11–24 days in healthy individuals [75–

79]. Following an infusion of either antibody at a dose of 

20–30 mg/kg, bNAb levels of > 10 µg/ml were measured 

for approximately 8–16 weeks [75–77]. Importantly, this 

period can be substantially extended by antibody modifi-

cations discussed below.

In contrast to the challenge with selected monoclo-

nal viruses in animal models, humans are exposed to a 

wide range of viral strains with different antibody sen-

sitivities. �us, whether bNAbs can afford a meaningful 

degree of protection from HIV-1 infection in humans 

can only be demonstrated in clinical trials. Two large 

placebo-controlled studies aim to answer this question 

using the CD4 binding site antibody VRC01. To this 

end, VRC01 is given at 10 or 30 mg/kg every 2 months 
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to individuals at high risk of acquiring HIV-1 infection 

(NCT02568215, women living in sub-Saharan Africa; 

NCT02716675, men and transgender persons who have 

sex with men) [78, 80]. �ese are critical proof-of-con-

cept studies, however, more potent antibodies or bNAb 

combinations may provide more effective options for 

prevention.

Passively administered bNAbs need to be applied 

repeatedly to maintain levels above a threshold con-

centration required for effective protection. Transgenic 
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bNAb expression could be a feasible approach to over-

come this limitation. For example, administration of 

adeno-associated viruses (AAVs) can result in sustained 

transgene expression, and their safety has been demon-

strated throughout a number of clinical trials [81]. In 

humanized mice, AAV-mediated bNAb expression can 

protect from HIV-1 infection by repeated mucosal viral 

challenge [82, 83]. To investigate this concept of vectored 

immunoprophylaxis in humans, phase I studies of AAVs 

encoding for the anti-V1/V2 loop antibody PG9 or the 

CD4 binding site antibody VRC07 have been initiated 

(NCT01937455, NCT03374202).

Gaining traction for treatment

�e identification of novel highly potent bNAbs 

prompted the re-assessment of antibody-mediated 

therapy of established infection in humanized mice and 

non-human primates [67, 84–91]. Treatment of HIV-

1-infected mice with single bNAbs resulted in the rapid 

emergence of mutations at antibody target sites that were 

associated with viral rebound [84–86, 88, 89]. However, 

in contrast to earlier bNAbs, combinations of new-gen-

eration bNAbs targeting non-overlapping epitopes effec-

tively maintained suppression of viremia [84, 85, 87]. 

Sequence analyses of viruses obtained during and after 

treatment demonstrated the lack of concurrent escape 

mutations at all antibody target residues [84, 87]. �us, 

similar to combinations of classical antiretroviral drugs, 

combination antibody therapy can prevent the develop-

ment of viral resistance in humanized mice.

In SHIV-infected non-human primates, the dura-

tion and magnitude of viral suppression during bNAb 

monotherapy appeared to be more pronounced than in 

humanized mice [67, 90, 91]. �ese differences might be 

explained by the fully functional immune system that is 

present in non-human primates but absent in humanized 

mice. Indeed, host immunity does play a critical role for 

the antiviral activity of HIV-1 neutralizing antibodies as 

demonstrated for Fc-mediated effector functions in both 

animal models [51, 52, 92, 93]. Underlining the impact 

on bNAb-mediated antiviral activity, the combination of 

bNAbs in NHPs prolonged suppression of sensitive SHIV 

strains and limited the development of viral resistance 

compared to single bNAbs [67].

bNAb monotherapy in humans

Early phase clinical trials started translating these find-

ings to HIV-1-infected humans, beginning with the 

CD4 binding site antibodies 3BNC117 [75] and VRC01 

[94], and  followed by the V3 loop antibody 10-1074 

[76]. Importantly, the administration of these antibod-

ies was found to be safe and very well tolerated across 

all trials completed to date [75–78, 94–98]. Moreover, 

infusion of either 3BNC117, VRC01 or 10-1074 at a dose 

of 30–40 mg/kg to sensitive viremic individuals resulted 

in rapid reduction of viremia by an average of 1.5, 1.1 

and 1.5  log10, respectively [75, 76, 94]. However, suppres-

sion of viral load below the limit of detection was only 

rarely achieved, and viral rebound generally occurred 

within 4 weeks. Rebound was associated with increased 

resistance against the administered bNAbs in most cases, 

although the extent differed between antibodies. Follow-

ing the administration of the V3 loop antibody 10-1074, 

a rapid selection of fully resistant escape variants was 

observed in all study participants [76]. In contrast, infu-

sion of the CD4 binding site antibodies 3BNC117 or 

VRC01 resulted in a general trend of reduced viral sensi-

tivity, but was not consistently associated with the devel-

opment of full resistance [75, 94]. For example, in six 

sensitive viremic individuals receiving 3BNC117 at a sin-

gle dose of 10 or 30 mg/kg, autologous culture outgrowth 

viruses remained partially sensitive to 3BNC117 with an 

increase of the geometric mean  IC50 against 3BNC117 

from 0.2  µg/ml to only 1.7  µg/ml [75]. �ese findings 

might indicate that antibodies with similar effects on the 

viral load differ in their capacity to restrict viral escape. 

Importantly, the envelope protein targeted by broadly 

neutralizing antibodies has a critical function in the viral 

replication cycle, and escape from some bNAbs has been 

associated with reductions in viral fitness [76, 99, 100]. 

For example, in vitro studies of naturally occurring muta-

tions that confer resistance against the CD4 binding site 

antibody VRC01 showed a negative impact on the viral 

replicative capacity that could, however, be restored 

through compensatory mutations [99].

Compared to active viral replication in viremic indi-

viduals, ART-mediated suppression at the onset of 

bNAb therapy may impede the development of escape 

mutations. In agreement with this idea, single antibod-

ies were more effective in maintaining viral suppression 

in HIV-1-infected humanized mice following an initial 

period of antiretroviral therapy [85]. To test this con-

cept in humans, monotherapy with the bNAb 3BNC117 

or VRC01 was administered to HIV-1-infected indi-

viduals undergoing analytical treatment interruption 

(ATI) of antiretroviral therapy [95, 96]. While 3BNC117 

or VRC01 delayed the time to viral rebound to 10 or 

4 weeks, respectively, rebound did occur in the presence 

of high bNAb serum levels in most cases and was associ-

ated with increased antibody resistance [95, 96].

Taken together, first clinical trials demonstrated the 

safety and significant antiviral activity of novel broadly 

neutralizing antibodies targeting HIV-1. However, the 

emergence of viral escape variants has highlighted the 

limitations of antibody monotherapy.
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Combining antibodies for HIV‑1 therapy

Based on the well-established concept of preventing viral 

escape through combinations of antiretroviral drugs 

and similar results for bNAbs in pre-clinical studies, 

clinical trials that combine new-generation bNAbs were 

initiated  (Fig.  1). In the first study, the combination of 

3BNC117 and 10-1074 showed similar safety and phar-

macokinetic profiles to either antibody alone [97, 98]. In 

four viremic individuals determined to be infected with 

viruses sensitive to both antibodies, treatment with up 

to three infusions of 3BNC117 and 10-1074 resulted in 

an average drop in viremia of 2.0  log10 copies/ml [97]. In 

most of these individuals, reduced viral loads were main-

tained for as long as both of the administered antibodies 

were detectable in the serum (8–12 weeks after the last 

antibody infusion) [97]. Moreover, in contrast to 10-1074 

monotherapy [76], antibody escape did not develop in all 

instances [97]. However, despite the significant reduc-

tion of the viral load, full suppression was only achieved 

in study participants with relatively low levels of viremia 

(below 3000 copies/ml) [97].

More pronounced effects were observed in individuals 

infected with antibody-sensitive viruses undergoing ATI. 

�ese participants received the antibody combination at 

0, 3 and 6  weeks after stopping ART. In contrast to the 

time to rebound without intervention (2.4 weeks, histori-

cal controls) or 3BNC117 monotherapy (9.9 weeks) [96], 

the combination of 3BNC117 and 10-1074 maintained 

viral suppression for a median of 21  weeks or nearly 

4 months after the last antibody infusion [98].

Of note, 12 out of 13 individuals (4 viremic, 9 undergo-

ing ART interruption) with viruses sensitive to 3BNC117 

and 10-1074 did not experience viral rebound as long as 

both antibodies had serum concentrations above 10 µg/

ml [97, 98]. �us, combinations of new generation 

bNAbs at sufficient antibody concentrations are effective 

in maintaining viral suppression in humans infected with 

sensitive viruses.

Preparing for practice

Antiretroviral drugs are highly effective in treating HIV-1 

infection and reducing the risk of infection when used 

as pre-exposure prophylaxis. Moreover, they are well-

established, easily distributable, increasingly available in 

generic form and long-acting injectable drugs are at the 

final stages of development [101]. Clinical implementa-

tion of broadly neutralizing antibodies will therefore not 

only require safe and highly active products, but also 

depend on the ease of administration, cost-effectiveness 

and well-designed strategies for their use.

Neutralizing potency and breadth are the most obvi-

ous prerequisites for the activity of bNAbs in  vivo. In 

addition, the capacity to restrict viral escape is likely 

to be an equally critical parameter  for the efficacy of 

bNAbs. Results from bNAb monotherapy  trials indicate 

that combinations of antibodies are required to reduce 

the development of viral resistance. All current combina-

tion studies target two non-overlapping epitopes (CD4 

binding site and V3 loop; V1/V2 loop and V3 loop; CD4 

binding site and MPER of gp41) (Fig.  1). Strategies that 

target more than two epitopes may further impede the 

development of viral resistance as well as increase the 

probability of capturing partially resistant variants. As an 

alternative to antibody combinations, bi- or tri-specific 

antibody-like molecules have been demonstrated to have 

similar or enhanced antiviral activity and clinical trials 

are about to be initiated [53, 64, 102, 103]. Finally, com-

binations of antibodies that bind to overlapping epitopes 

may restrict escape pathways for the given  target [87]. 

�is may be particularly effective for antibody target 

sites that are limited in their capacity to accommodate 

mutations.

Viral strains differ in their sensitivity to antibod-

ies. Moreover, the HIV-1 envelope protein diversifies in 

response to the autologous immune response and dif-

ferent viral variants co-exist within one person. �us, 

the selection of bNAbs needs to be tailored to an indi-

vidual’s viral quasispecies to prevent treatment failure. 

Phenotypic sensitivity assays of viruses derived from 

bulk T cell outgrowth cultures fail to detect pre-existing 

resistant variants in a relevant number of cases [75, 76, 

96–98]. Limiting dilution outgrowth assays increase the 

sensitivity, however, they are time-consuming and costly 

[98, 104]. In contrast to phenotypic testing, antiretrovi-

ral therapy is mostly guided by prediction models based 

on viral sequences [105]. Similar approaches based on 

env sequences are under development but will need to be 

confirmed in prospective settings [106, 107].

While terminal elimination half-lives of most antiretro-

viral drugs range between a few hours to 2 days, the half-

lives of bNAbs are measured in weeks and result in long 

periods of effective plasma concentrations after a single 

administration. Notably, these periods can be further 

extended by modifications of the antibody Fc domains 

that enhance the affinity to the neonatal Fc receptor 

[108]. For example, the M428L and N434S (“LS”) muta-

tions prolong antibody half-life without compromis-

ing antigen-binding or other Fc-mediated functions 

[109]. Indeed, the LS variant of VRC01 demonstrated 

a half-life of ≈ 70  days in healthy individuals, which is 

a nearly 5-fold increase compared to the unmodified 

VRC01 [110]. �e extended half-life of LS variants is also 

reflected in prolonged protective activity in pre-clinical 

studies [70, 71]. �us, LS-modified bNAbs may facilitate 

dosing every few weeks to several months for treatment 

or even less frequently for prevention.
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Compared to the ease of oral application of most regu-

lar antiretroviral drugs, the intravenous route employed 

in most clinical trials of bNAbs can be impractical. Sub-

cutaneous (s.c.) injection, however, allows for easy (self-)

administration and bNAbs have shown similar half-lives 

when given s.c. or i.v. [77, 78, 94, 110]. While antibody 

peak concentrations are lower after s.c. application and 

injection volumes pose restrictions, these limitations can 

be compensated by advances in antibody formulations 

and extended half-lives. Finally, antibodies can be admin-

istered topically and vaginal application of anti-HIV-1 

bNAbs was generally safe in clinical trials [111, 112]. In 

proof-of-concept studies, this strategy protected animals 

from infection [113–115]. While these findings would 

need to be confirmed in humans, adherence to repeated 

and timely administration is a critical and potentially lim-

iting factor for the efficacy of topically applied antibodies 

[116].

Going forward and beyond neutralization

Despite substantial differences in their modes of action, 

both antiretroviral drugs and bNAbs suppress viremia. 

�us, bNAbs may provide a treatment option for indi-

viduals infected with ART-resistant viruses as well as for 

individuals suffering from side effects or toxicities caused 

by ART. Effective ART with three active drugs leads to 

rapid reduction of high viral loads to levels undetectable 

by standard clinical assays. Whether this can be equally 

achieved by bNAb combinations remains to be deter-

mined. However, first results suggest that bNAb-medi-

ated therapy is particularly effective in individuals with 

low or suppressed starting viral loads [95, 96, 98]. �ere-

fore, an initial phase of ART followed by bNAb-mediated 

therapy is a promising strategy for long-term control of 

the virus. For all of these approaches, as well as for the 

potential application of bNAbs for pre-exposure prophy-

laxis, the long half-life of bNAbs can significantly reduce 

the burden of daily medication and the need for meticu-

lous adherence.

Broadly neutralizing antibodies differ from classical 

antiretroviral drugs in that they directly target the cir-

culating virus, recognize HIV-1-infected cells expressing 

HIV-1 Env and can engage with the host immune sys-

tem. Indeed, Fc-mediated interactions have been dem-

onstrated to be important for effective bNAb-mediated 

(S)HIV control and prevention in animal models [51, 52, 

92, 93]. In addition, passively administered bNAbs can 

influence the extent of the autologous antiviral immune 

response. For example, a single infusion of 3BNC117 was 

associated with the development of enhanced host neu-

tralizing antibody activity in HIV-1-infected individu-

als [117], corroborating similar observations made in 

SHIV-infected animals [118–121]. Moreover, bNAb 

therapy has been associated with enhancement of cellular 

immune responses [93, 122, 123]. Notably, administra-

tion of bNAbs 3BNC117 and 10-1074 during early SHIV-

infection resulted in long-term viral suppression. As 

demonstrated by rapid viral rebound after  CD8+ T cell 

depletion, viral suppression was effectively mediated by 

T cells when the antibodies were no longer detectable in 

the serum [123]. Whether these effects can be exploited 

for an improvement of clinical outcomes in humans 

remains to be determined. In particular, the potential 

effects of bNAbs given during acute or early infection will 

be important to investigate in clinical trials.

Additionally, bNAbs contribute to the elimination of 

HIV-1-infected cells [93]. �is activity may also extend 

to the clearance of viral foci established early after expo-

sure [58, 66]. �e capacity of antibodies to mediate the 

elimination of HIV-1-infected cells will become particu-

larly relevant in strategies that target the HIV-1 reser-

voir. However, no significant changes in the size of the 

circulating latent reservoir were observed after the infu-

sion of 3BNC117 or VRC01 to individuals on ongoing 

suppressive ART, or after the combined administration 

of 3BNC117 and 10-1074 during interruption of ART 

[94, 98, 124]. However, these studies had relatively short 

observation periods (up to a few months), involved only 

a low number of antibody infusions and mainly included 

individuals with chronic HIV-1 infection. All of these fac-

tors may have limited bNAb-mediated effects on the viral 

reservoir or their detection.

Stimulation and induction of HIV-1 Env expression 

on the surface of latently infected cells make them an 

approachable target for bNAbs that can mediate their 

clearance by engaging the host immune system (so-

called shock and kill approach). Indeed, when bNAbs 

were combined with latency-reversing agents (LRAs), 

long-term viral suppression was observed in a fraction of  

(S)HIV-infected humanized mice and macaques [52, 

125]. To investigate this concept in humans, the histone 

deacetylase inhibitor romidepsin is being studied in com-

bination with 3BNC117 (NCT02850016, NCT03041012) 

as well as in combination with 10-1074 and experimen-

tal therapeutic vaccines (NCT03619278). When given 

to ART-treated individuals, romidepsin has been shown 

to result in transient viremia [126]. While the effects of 

romidepsin given in combination with bNAbs will be 

important to determine, latency-reversing strategies will 

likely require further optimization such as combinations 

of LRAs or use of additional drugs (e.g., interferon alpha 

[127]).
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Conclusions

Newly identified highly potent broadly neutralizing 

anti-HIV-1 antibodies have rapidly advanced from pre-

clinical experiments to clinical trials that have dem-

onstrated their safety and significant antiviral activity. 

Moreover, these studies have improved our under-

standing on how to establish bNAb interventions for 

clinical practice.

Preventing the development of viral resistance is 

a key factor for effective bNAb-mediated therapy 

and, similar to antiretroviral drugs, combinations of 

antibodies or poly-specific antibody variants will be 

required to increase the barrier for HIV-1 escape. In 

determining optimal combination partners, factors 

beyond mere HIV-1 coverage will be relevant and are 

likely to include the efficacy in restricting viral escape 

pathways. Equally important, improved and reliable 

screening methods are needed to guide clinicians in 

bNAb selection and the identification of candidates for 

effective bNAb therapy.

Ongoing and planned trials will aid in the development 

of effective treatment and prevention strategies. In par-

ticular, bNAbs appear to be especially useful in maintain-

ing viral suppression in a setting of ART interruption. 

Moreover, antibodies may contribute to a reduction in 

the reservoir of HIV-1-infected cells as part of future 

cure strategies. Finally, modified antibody variants with 

substantially increased half-lives facilitate infrequent 

dosing of antibodies, and improved formulations will 

allow for alternatives to i.v. application that will be of par-

ticular interest for the use of bNAbs in prevention.

By limiting disease progression and reducing viral 

transmission, antiretroviral drugs have profoundly 

affected the course of the HIV-1 pandemic. With highly 

potent broadly neutralizing antibodies now demonstrat-

ing their impressive potential in pre-clinical and clinical 

settings, novel agents for the treatment and prevention of 

HIV-1 infection have come into the reach of clinical real-

ity. Delineating the critical factors for successful appli-

cation of bNAbs will be essential to exploit the unique 

capabilities of antibodies to benefit HIV-1-infected 

patients and those at risk of acquiring HIV-1 infection.
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