Antibody Responses to Fusobacterium nucleatum **Proteins in Prediagnostic Blood Samples are not** Associated with Risk of Developing Colorectal Cancer

Julia Butt^{1,2}, Mazda Jenab³, Michael Pawlita¹, Kim Overvad⁴, Anne Tjonneland⁵, Anja Olsen⁵, Marie-Christine Boutron-Ruault^{6,7}, Franck Carbonnel^{6,7,8}, Francesca Romana Mancini^{6,7}, Rudolf Kaaks⁹, Tilman Kühn⁹, Heiner Boeing¹⁰, Antonia Trichopoulou^{11,12}, Anna Karakatsani^{11,13}, Domenico Palli¹⁴, Valeria Maria Pala¹⁵, Rosario Tumino¹⁶, Carlotta Sacerdote¹⁷, Salvatore Panico¹⁸, Bas Bueno-de-Mesquita^{19,20,21,22}, Carla H. van Gils²³, Roel C.H. Vermeulen^{23,24}, Elisabete Weiderpass^{25,26,27,28}, José Ramón Quirós²⁹, Eric Jeffrey Duell³⁰, Maria-Jose Sánchez^{31,32}, Miren Dorronsoro³³, José María Huerta^{32,34}, Eva Ardanaz^{32,35,36}, Bethany Van Guelpen³⁷, Sophia Harlid³⁷, Aurora Perez-Cornago³⁸, Marc J. Gunter³, Neil Muraha³, José France Cortago³⁸, Marc J. Gunter³,

Neil Murphy³, Heinz Freisling³, Dagfinn Aune²¹, Tim Waterboer¹, and David J. Hughes³⁹

Abstract

Background: There is a lack of prospective data on the potential association of Fusobacterium nucleatum (F. nucleatum) and colorectal cancer risk. In this study, we assessed whether antibody responses to F. nucleatum are associated with colorectal cancer risk in prediagnostic serum samples in the European Prospective Investigation into Nutrition and Cancer (EPIC) cohort.

Methods: We applied a multiplex serology assay to simultaneously measure antibody responses to 11 F. nucleatum antigens in prediagnostic serum samples from 485 colorectal cancer cases and 485 matched controls. Conditional logistic regression models were used to estimate odds ratios (ORs) and 95% confidence intervals (CI).

Results: We observed neither a statistically significant colorectal cancer risk association for antibodies to individual F. nucleatum proteins nor for combined positivity to any of the 11 proteins (OR, 0.81; 95% CI, 0.62-1.06).

Conclusions: Antibody responses to F. nucleatum proteins in prediagnostic serum samples from a subset of colorectal cancer cases and matched controls within the EPIC study were not associated with colorectal cancer risk.

Impact: Our findings in prospectively ascertained serum samples contradict the existing literature on the association of F. nucleatum with colorectal cancer risk. Future prospective studies, specifically detecting F. nucleatum in stool or tissue biopsies, are needed to complement our findings.

Medicine, Fondazione Istituto Nazionale dei Tumori, Milan, Italy. ¹⁶Cancer Registry and Histopathology Department, "Civic - M.P. Arezzo" Hospital, ASP Ragusa, Italy. ¹⁷Unit of Cancer Epidemiology, Città della Salute e della Scienza University-Hospital and Center for Cancer Prevention (CPO), Turin, Italy. ¹⁸Dipartimento die Medicina Clinica e Chirurgia, Federico II University, Naples, ¹⁹Department for Determinants of Chronic Diseases (DCD), Italv. National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands. ²⁰Department of Gastroenterology and Hepatology, University Medical Centre, Utrecht, the Netherlands. ²¹Department of Epidemiology and Biostatistics, The School of Public Health, Imperial College London, London, United Kingdom. ²²Department of Social & Preventive Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia. ²³Julius Center for Health Sciences and Primary Care, Cancer Epidemiology, University Medical Center Utrecht, the Netherlands. ²⁴Environmental Epidemiology Division, Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands. ²⁵Department of Research, Cancer Registry of Norway, Institute of Population-Based Cancer Research, Oslo, Norway. ²⁶Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden. ²⁷Genetic Epidemiology Group, Folkhälsan Research Center, and Faculty of Medicine, Helsinki University, Helsinki, Finland. ²⁸Department of Community Medicine, University of Tromsø, The Arctic University of Norway, Tromsø, Norway. ²⁹EPIC Asturias, Public Health Directorate Asturias, Oviedo, Spain. ³⁰Catalan Institute of

¹⁵Epidemiology and Prevention Unit, Department of Preventive & Predictive

Cancer

Epidemiology, **Biomarkers** & Prevention

¹Infection and Cancer Epidemiology, Division of Molecular Diagnostics of Oncogenic Infections, German Cancer Research Center (DKFZ), Heidelberg, Germany, ²Faculty of Biosciences, University of Heidelberg, Germany, ³Section of Nutrition and Metabolism, International Agency for Research on Cancer (IARC-WHO), Lyon, France. ⁴Department of Cardiology and Department of Clinical Epidemiology, Aarhus Hospital, Aalborg, Denmark. ⁵Danish Cancer Society Research Center, Copenhagen, Denmark. ⁶CESP, Fac. de médecine -Univ. Paris-Sud, Fac. de médecine - UVSQ, INSERM, Université Paris-Saclay, Villejuif, France. ⁷Gustave Roussy, Villejuif, France. ⁸Department of Gastroenterology, Bicêtre University Hospital, Assistance Publique des Hôpitaux de Paris. Le Kremlin Bicêtre, France, ⁹Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany. ¹⁰Department of Epidemiology, German Institute of Human Nutrition, Potsdam-Rehbrücke, Germany. ¹¹Hellenic Health Foundation, Athens, Greece. ¹²WHO Collaborating Center for Nutrition and Health. Unit of Nutritional Epidemiology and Nutrition in Public Health, Department of Hygiene, Epidemiology and Medical Statistics, School of Medicine, National and Kapodistrian University of Athens, Greece. ¹³2nd Pulmonary Medicine Department, School of Medicine, National and Kapodistrian University of Athens, "ATTIKON" University Hospital, Haidari, Greece. ¹⁴Cancer Risk Factors and Life-Style Epidemiology Unit, Institute for Cancer Research, Prevention and Clinical Network - ISPRO, Florence, Italy.

Introduction

Several studies reported an overabundance of *Fusobacterium nucleatum* (*F. nucleatum*) in stool and tumor tissue of patients with colorectal cancer (1, 2). Although mechanistic studies suggest an etiologic role of the bacterium in colorectal carcinogenesis, it remains possible that it is simply an opportunistic passenger within developing tumors (1). To our knowledge, *F. nucleatum* has never been studied in relation to colorectal cancer risk using prediagnostic biological samples.

Multiplex serology provides an easy-to-apply tool to assess potential infection-associated cancers in large prospective epidemiologic studies that provide sufficient statistical power (3).

In this study, we assessed whether antibody responses to *F. nucleatum* proteins are associated with colorectal cancer risk in prediagnostic serum samples from 485 colorectal cancer cases and 485 controls in the European Prospective Investigation into Nutrition and Cancer (EPIC) cohort.

Materials and Methods

Study population

The colorectal cancer cases and controls in this nested casecontrol study are participants within the EPIC study (4). The study was approved by the International Agency for Research on Cancer Ethics Committee (Lyon, France) and the ethics committees of all local EPIC centers, and performed in accordance with the Helsinki Declaration.

This study included prediagnostic serum samples from 485 colorectal cancer cases with a median time between blood draw and diagnosis of 3.4 years (range 0.4–8.5 years; primary tumors coded C18-C20 according to the 10th revision of the International Statistical Classification of Diseases, Injury and Causes of Death). Controls were selected by incidence density sampling from all cohort members alive and cancer-free at the time of matching to cases (1:1) as described previously, including age and sex (5).

F. nucleatum multiplex serology

Serum samples were analyzed for antibodies against *F. nucleatum* proteins in a 1:1,000 dilution using the previously described multiplex serology method (3). We selected 11 *F. nucleatum* (strain ATCC25586) proteins as antigens (Table 1). Antigen-specific cut-off values were defined arbitrarily by visual inspection of percentile plots at the approximate inflection point of the curve. Antibody responses to *F. nucleatum* proteins were combined to overall *F. nucleatum* sero-positivity by assessing positivity to at least one, and to increase specificity, to at least two or three proteins.

Oncology (ICO-IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain. ³¹Escuela Andaluza de Salud pública, Instituto de Investigacíon ibs.Granada, Hospitales Universitarios de Granada/Universidad de Granada, Granada, Spain. ³²CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain. ³³Public Health Direction and Biodonostia-Ciberesp, Basque Regional Health Department, San Sebastian, Spain. ³⁴Department of Epidemiology, Murcia Regional Health Council, IMIB-Arrixaca, Murcia, Spain. ³⁵Navarra Public Health Institute, Pamplona, Spain. ³⁶IdiSNA, Navarra Institute for Health Research, Pamplona, Spain. ³⁷Department of Radiation Sciences, Oncology, Umeå University, Umeå, Sweden. ³⁸Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, United Kingdom. ³⁹Cancer Biology and

Statistical analysis

Conditional logistic regression models were applied to compute odds ratios (ORs) and 95% confidence intervals (CI) for the association of antibody responses to *F. nucleatum* proteins with colorectal cancer risk, overall and by time between blood draw and diagnosis. The following variables were considered as potential confounders and included in the model for adjustment: body mass index (BMI), smoking status, alcohol consumption, and highest education attained at baseline.

All statistical analyses were performed with SAS version 9.4 (SAS Institute). A *P* value below 0.05 was considered statistically significant.

Availability of data and materials

For information on how to submit an application for gaining access to EPIC data and/or biospecimens, please follow the instructions at http://epic.iarc.fr/access/index.php.

Results

Sero-prevalence to individual *F. nucleatum* proteins ranged between 3% and 10% among controls (Table 2). Fifty-three percent of controls were positive to any of the proteins; this number was reduced for positivity to at least two (21%) or three proteins (9%). We did not identify a higher sero-prevalence among colorectal cancer cases, neither to individual proteins (range 2%–11%), nor positivity to any (47%) or several proteins (\geq 2 proteins: 17%; \geq 3 proteins: 9%). Thus, there was no significant positive association of antibodies to *F. nucleatum* proteins with colorectal cancer risk. Sero-positivity to FN0131 was inversely related with colorectal cancer risk (OR, 0.61; 95% CI, 0.38– 0.98; *P* = 0.042; Table 2). However, this result is not significant after Bonferroni multiple-testing correction. Results did not vary for individuals diagnosed within or after more than 2 years of diagnosis (Table 2).

Discussion

In this multi-center prospective study, we found that antibody responses to *F. nucleatum* proteins were not associated with colorectal cancer risk.

Our findings are discordant to the published literature that suggests a role for *F. nucleatum* in colorectal cancer development. Our study design varies from previous literature in two important ways. First, previous human studies mostly measured *F. nucleatum* abundance at the site of interest, that is, in stool or tumor tissue (1), while we apply serology, which is limited by being a systemic measure of past and/or current infection. Thus, it remains possible that the antibody responses resulted from other

Therapeutics Group, UCD Conway Institute, University College Dublin, Dublin, Ireland.

J. Butt, M. Jenab, T. Waterboer, and D.J. Hughes contributed equally to this article.

Corresponding Author: David J. Hughes, University College Dublin, School of Biomolecular and Biomedical Science, Conway Institute, Dublin D04 V1W8, Ireland. Phone: 353-1716-6988; Fax: 353-1716-6701; E-mail: david.hughes@ucd.ie Cancer Epidemiol Biomarkers Prev 2019;28:1552-5

doi: 10.1158/1055-9965.EPI-19-0313

©2019 American Association for Cancer Research.

Table 1. F. nucleatum (strain ATCC25586) antigens and antigen-specific cut-off values (MFI)

Name	(Predicted) function	Protein accession no. ^a	Selected region (aa)	Antigen-specific cutoff (MFI)	
Fn0131	Type Vb secretion system (TpsB)	NP_603038	17-566	86	
Fn0253	Outer membrane protein	NP_603160	37-132	30	
Fn0264	Adhesin (FadA)	NP_603171	19–129	30	
Fn0387	Type Va secretion system	NP_603291	1442-1714	30	
Fn1426	Type Va secretion system	NP_604320	25-374	86	
Fn1449	Type Va secretion system (Fap2)	NP_604343	2884-3155	33	
Fn1526	Type Va secretion system (RadD)	NP_602353	1857-2135	30	
Fn1817_1	Type Vb secretion system (TpsA)	NP_602617	205-276	42	
Fn1817_2	Type Vb secretion system (TpsA)	NP_602617	839-909	112	
Fn1859	Porin (FomA)	NP_602659	21-368	31	
Fn1893	Type Va secretion system	NP_602692	1079-1351	30	

Abbreviations: aa, amino acid; F. nucleatum, Fusobacterium nucleatum; MFI, median fluorescence intensity. ^aNCBI reference sequence.

Table 2. Antibody responses to F. nucleatum proteins and colorectal cancer risk, overall and by time between blood draw and diagnosis; the EPIC study, 1992-2003

	All				\leq 2 years follow-up time			>2-8.5 years follow-up time				
Positive n (%)		en (%)	%)		Positive n (%)				Positive n (%)			
	Controls	Cases			Controls	Cases			Controls	Cases		
Antigen	<i>n</i> = 485	<i>n</i> = 485	OR ^a (95% CI)	P	<i>n</i> = 130	<i>n</i> = 130	OR ^a (95% CI)	P	<i>n</i> = 355	<i>n</i> = 355	OR ^a (95% CI)	P
Fn0131	46 (9)	31 (6)	0.61 (0.38-0.98)	0.042	13 (10)	10 (8)	0.66 (0.26-1.68)	0.387	33 (9)	21 (6)	0.61 (0.34-1.09)	0.096
Fn0253	15 (3)	10 (2)	0.64 (0.28-1.45)	0.283	3 (2)	2 (2)	0.73 (0.11-4.74)	0.741	12 (3)	8 (2)	0.67 (0.27-1.68)	0.393
Fn0264	24 (5)	32 (7)	1.33 (0.75-2.34)	0.331	5 (4)	7 (5)	1.08 (0.26-4.51)	0.921	19 (5)	25 (7)	1.37 (0.73-2.56)	0.334
Fn0387	38 (8)	42 (9)	1.05 (0.66-1.67)	0.847	10 (8)	17 (13)	1.39 (0.56-3.45)	0.480	28 (8)	25 (7)	0.89 (0.50-1.58)	0.688
Fn1426	49 (10)	53 (11)	1.06 (0.69-1.63)	0.777	15 (12)	11 (8)	0.79 (0.32-1.94)	0.601	34 (10)	42 (12)	1.33 (0.80-2.20)	0.273
Fn1449	47 (10)	41 (8)	0.80 (0.51-1.27)	0.347	12 (9)	16 (12)	1.26 (0.51-3.15)	0.617	35 (10)	25 (7)	0.68 (0.39-1.18)	0.165
Fn1526	20 (4)	15 (3)	0.74 (0.37-1.49)	0.401	4 (3)	4 (3)	0.87 (0.18-4.28)	0.868	16 (5)	11 (3)	0.71 (0.32-1.61)	0.414
Fn1817_1	49 (10)	40 (8)	0.82 (0.52-1.29)	0.384	17 (13)	11 (8)	0.63 (0.27-1.51)	0.304	32 (9)	29 (8)	0.97 (0.55-1.70)	0.907
Fn1817_2	48 (10)	46 (9)	1.00 (0.66-1.52)	0.994	14 (11)	12 (9)	0.87 (0.36-2.14)	0.768	34 (10)	34 (10)	1.04 (0.64-1.69)	0.888
Fn1859	46 (9)	34 (7)	0.69 (0.43-1.11)	0.128	8 (6)	7 (5)	0.80 (0.25-2.61)	0.715	38 (11)	27 (8)	0.67 (0.39-1.14)	0.137
Fn1893	47 (10)	45 (9)	0.93 (0.60-1.45)	0.757	11 (8)	15 (12)	1.14 (0.44-2.96)	0.792	36 (10)	30 (8)	0.82 (0.49-1.39)	0.468
Any protein	255 (53)	230 (47)	0.81 (0.62-1.06)	0.130	71 (55)	57 (44)	0.61 (0.35-1.08)	0.090	184 (52)	173 (49)	0.91 (0.66-1.24)	0.546
\geq 2 Proteins	103 (21)	84 (17)	0.73 (0.53-1.02)	0.066	27 (21)	26 (20)	0.85 (0.44-1.64)	0.618	76 (21)	58 (16)	0.72 (0.48-1.08)	0.112
\geq 3 Proteins	44 (9)	46 (9)	0.95 (0.61-1.47)	0.818	10 (8)	17 (13)	1.23 (0.49-3.08)	0.656	34 (10)	29 (8)	0.84 (0.50-1.42)	0.523

NOTE: Control subjects were selected by incidence density sampling from all cohort members alive and free of cancer at the time of matching and matched to cases 1:1 by age at blood collection (± 6 months- ± 2 years), sex, study center, time of the day at blood collection (± 2 -4 hours interval), fasting status at blood collection (<3/3-6 hours); among women by menopausal status, and among premenopausal women by phase of menstrual cycle, and hormone therapy use at time of blood collection.

^aConditional logistic regression model conditioned on the matching factors with multivariable adjustment for BMI, education, smoking, and alcohol intake at baseline; significant associations (*P* < 0.05) are marked in bold font.

infection sites and/or cross-reactive antibody responses from infection with other closely related bacteria. Second and a major strength of our study is that we employed a prospective design, in contrast to the case–control designs of previous studies to assess whether *F. nucleatum* infection increases colorectal cancer risk. However, the natural history of a potential etiologic role of *F. nucleatum* in colorectal cancer development with respect to timing and molecular pathways is unknown. Longitudinal studies and analyses of molecular colorectal cancer subtypes are needed to address this question in more depth.

In conclusion, antibody responses to *F. nucleatum* proteins in prediagnostic serum samples of the EPIC study were not associated with an increased risk of developing colorectal cancer. Future prospective studies, specifically detecting *F. nucleatum* in stool or tissue biopsies, are needed to help clarify whether *F. nucleatum* plays a role in colorectal tumor development.

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

Disclaimer

Where authors are identified as personnel of the International Agency for Research on Cancer/World Health Organization, the authors alone are responsible for the views expressed in this article and they do not necessarily represent the decisions, policy, or views of the International Agency for Research on Cancer/World Health Organization. The funding sources had no influence on the design of the study; the collection, analysis, and interpretation of data; the writing of the article; or the decision to submit the paper for publication.

Authors' Contributions

Conception and design: J. Butt, M. Jenab, D.J. Hughes, M. Pawlita, K. Overvad, A. Tjonneland, H. Boeing, R. Tumino, B. Bueno-de-Mesquita, E. Weiderpass, M.-J. Sánchez, E. Ardanaz

Development of methodology: J. Butt, M. Jenab, D.J. Hughes, M. Pawlita, K. Overvad, B. Bueno-de-Mesquita, E. Ardanaz, T. Waterboer

Acquisition of data (provided animals, acquired and managed patients, provided facilities, etc.): J. Butt, M. Jenab, D.J. Hughes, M. Pawlita, K. Overvad, A. Tjonneland, M.-C. Boutron-Ruault, F. Carbonnel, R. Kaaks, T. Kühn, H. Boeing, A. Trichopoulou, A. Karakatsani, D. Palli, V.M. Pala, R. Tumino, C. Sacerdote, S. Panico, B. Bueno-de-Mesquita, R.C.H. Vermeulen, J.R. Quirós, M.-J. Sánchez, E. Ardanaz, B. Van Guelpen, M.J. Gunter, T. Waterboer

Analysis and interpretation of data (e.g., statistical analysis, biostatistics, computational analysis): J. Butt, M. Jenab, D.J. Hughes, M. Pawlita, R.C.H. Vermeulen, E. Weiderpass, E. Ardanaz, B. Van Guelpen, M.J. Gunter, H. Freisling

Writing, review, and/or revision of the manuscript: J. Butt, M. Jenab, D.J. Hughes, M. Pawlita, K. Overvad, A. Tjonneland, A. Olsen, M.-C. Boutron-Ruault, F.R. Mancini, T. Kühn, H. Boeing, A. Trichopoulou, A. Karakatsani, D. Palli, V.M. Pala, R. Tumino, C. Sacerdote, S. Panico, B. Bueno-de-Mesquita, C.H. van Gils, R.C.H. Vermeulen, E. Weiderpass, J.R. Quirós, E.J. Duell, M.-J. Sánchez, J.M. Huerta, M. Dorronsoro, E. Ardanaz, B. Van Guelpen, S. Harlid, A. Perez-Cornago, M.J. Gunter, N. Murphy, H. Freisling, D. Aune, T. Waterboer

Administrative, technical, or material support (i.e., reporting or organizing data, constructing databases): J. Butt, M. Jenab, D.J. Hughes, R. Kaaks, H. Boeing, R. Tumino, C. Sacerdote, C.H. van Gils, J.R. Quirós, E. Ardanaz Study supervision: J. Butt, M. Jenab, D.J. Hughes, M. Pawlita

Acknowledgments

We thank Ute Koch, Monika Oppenländer, and Claudia Brandel for excellent technical assistance with the serological measurements. D.J. Hughes was supported by the Health Research Board of Ireland project grants HRA_PHS/2013/397 and HRA_PHS/2015/1142. The coordination of EPIC is financially supported by the European Commission (DG-SANCO) and the International Agency for Research on Cancer. The national cohorts are supported by the Danish Cancer Society (Denmark); Ligue Contre le Cancer, Institut Gustave

References

- Brennan CA, Garrett WS. Fusobacterium nucleatum symbiont, opportunist and oncobacterium. Nat Rev Microbiol 2019;17:156–66.
- Hussan H, Clinton SK, Roberts K, Bailey MT. Fusobacterium's link to colorectal neoplasia sequenced: a systematic review and future insights. World J Gastroenterol 2017;23:8626–50.
- Waterboer T, Sehr P, Michael KM, Franceschi S, Nieland JD, Joos TO, et al. Multiplex human papillomavirus serology based on *in situ*-purified glutathione s-transferase fusion proteins. Clin Chem 2005;51:1845–53.

Roussy, Mutuelle Générale de l'Education Nationale, and Institut National de la Santé et de la Recherche Médicale (France); Deutsche Krebshilfe, Deutsches Krebsforschungszentrum, and Federal Ministry of Education and Research (Germany): the Hellenic Health Foundation (Greece): the Sicilian Government. AIRE ONLUS Ragusa, AVIS Ragusa, Associazione Italiana per la Ricerca sul Cancro-AIRC-Italy, and National Research Council (Italy); Dutch Ministry of Public Health, Welfare and Sports (VWS), Netherlands Cancer Registry (NKR), LK Research Funds, Dutch Prevention Funds, Dutch ZON (Zorg Onderzoek Nederland), World Cancer Research Fund (WCRF), and Statistics Netherlands (the Netherlands); Nordic Centre of Excellence programme on Food, Nutrition and Health. (Norway); Health Research Fund (FIS), PI13/00061 to Universidad de Granada (Granada, Spain), Regional Governments of Andalucía, Asturias, Basque Country, Murcia (no. 6236) and Navarra, Regional Government of Asturias (Asturias, Spain), and ISCIII RETIC (RD06/0020; Spain); Swedish Cancer Society, Swedish Scientific Council, and County Councils of Skåne and Västerbotten (Sweden); Cancer Research UK (14136 to EPIC-Norfolk; C570/ A16491 to EPIC-Oxford), Medical Research Council [1000143 to EPIC-Norfolk, MR/M012190/1 to EPIC-Oxford (United Kingdom)].

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked *advertisement* in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

Received March 21, 2019; revised April 17, 2019; accepted June 12, 2019; published first September 3, 2019.

- 4. Riboli E, Hunt KJ, Slimani N, Ferrari P, Norat T, Fahey M, et al. European Prospective Investigation into Cancer and Nutrition (EPIC): study populations and data collection. Public Health Nutr 2002;5: 1113–24.
- Butt J, Jenab M, Willhauck-Fleckenstein M, Michel A, Pawlita M, Kyro C, et al. Prospective evaluation of antibody response to *Streptococcus gallolyticus* and risk of colorectal cancer. Int J Cancer 2018;143:245–52.