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Abstract. Cancer is currently ineffectively treated using 

therapeutic drugs, and is also able to resist drug action, 

resulting in increased side effects following drug treatment. 

A novel therapeutic strategy against cancer cells is the use of 

anticancer peptides (ACPs). The physicochemical properties, 

amino acid composition and the addition of chemical groups 

on the ACP sequence influences their conformation, net 

charge and orientation of the secondary structure, leading to 

an effect on targeting specificity and ACP‑cell interaction, as 
well as peptide penetrating capability, stability and efficacy. 
ACPs have been developed from both naturally occurring and 

modified peptides by substituting neutral or anionic amino 
acid residues with cationic amino acid residues, or by adding 

a chemical group. The modified peptides lead to an increase 
in the effectiveness of cancer therapy. Due to this effective-

ness, ACPs have recently been improved to form drugs and 

vaccines, which have sequentially been evaluated in various 

phases of clinical trials. The development of the ACPs remains 

focused on generating newly modified ACPs for clinical appli-
cation in order to decrease the incidence of new cancer cases 

and decrease the mortality rate. The present review could 

further facilitate the design of ACPs and increase efficacious 
ACP therapy in the near future. 
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1. Introduction

Cancer drug therapy was developed from chemotherapy and 

radiotherapy to molecular targeting therapy combined with 

a ‘guiding missile’, for cancer-targeted delivery to avoid 

healthy tissue damage (1). For example, in genome targeted 

therapy, DNAs and RNAs can interfere with the normal host 

genome, and genetic modification is difficult as the modified 
genes may mutate the original genome or the off-target (2). 

Furthermore, immunotherapy with antibodies against cancer 

cell surface antigens can provide specific delivery, but 

some healthy cells can express the same targeted antigens, 

resulting in limited effectiveness (3). Small molecules can 

also exert antitumor effects on cancer cells, such as C188-9, a 

STAT3 inhibitor, in head and neck squamous cell carcinoma, 

and GNS561, a lysosomotropic molecule, in intrahepatic 

cholangiocarcinoma (4,5). Moreover, these small molecules 

can be used in drug delivery systems (6); however, they are 

difficult to synthesize. Therefore, peptides against cancer 
cells are an alternative therapeutic method in anticancer drug 

development. 

Anticancer peptides (ACPs): What and why? ACPs, as small 

peptides containing amino acid sequences, are selective and 

toxic to cancer cells (7). ACPs are a superior choice of thera-

peutics compared with antibodies and small molecules due 

to their high selectivity, high penetration and easy modifica-

tions (8-10). Ideally, anticancer therapy should destroy a range 

of cancer types, but not all healthy cells. 

Anticancer peptide: Physicochemical property, 

functional aspect and trend in clinical application (Review)

WARARAT CHIANGJONG
1
,  SOMCHAI CHUTIPONGTANATE

1,2
  and  SURADEJ HONGENG

3

1
Pediatric Translational Research Unit, Department of Pediatrics; 

2
Department of Clinical Epidemiology and Biostatistics; 

3
Division of Hematology and Oncology, Department of Pediatrics, Faculty of Medicine, 

Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand

Received February 7, 2020;  Accepted June 26, 2020

DOI: 10.3892/ijo.2020.5099

Correspondence to: Dr Wararat Chiangjong, Pediatric Translational 

Research Unit, Department of Pediatrics, Faculty of Medicine, 

Ramathibodi Hospital, Mahidol University, 270 Rama VI Road, 

Ratchathewi, Bangkok 10400, Thailand

E-mail: wararat_01@yahoo.com

Abbreviations: ACPs, anticancer peptides; AML, acute amyloid 

leukemia; FSH, follicle stimulating hormone; GHRH, growth 

hormone‑releasing hormone; LHRH, luteinizing hormone‑releasing 
hormone; LONp, lanthanide oxyfluoride nanoparticle; LY6K, 

lymphocyte antigen 6 complex locus K; PCNA, proliferating cell 

nuclear antigen; PPV, personalized peptide vaccination; ROS, 
reactive oxygen species; uPAR, urokinase plasminogen activator 

receptors; WT1, Wilms' tumor 1

Key words: therapeutic peptide, anticancer peptide, modified 

peptide, targeting peptide, cancer, clinical application, clinical trial



CHIANGJONG et al:  ANTICANCER PEPTIDE DEVELOPMENT IN CLINICAL APPLICATION 679

A different property between cancerous and healthy cells 

is the cell membrane. Numerous anticancer peptides destroy 

cancer cells via apoptosis and necrosis by membrane lysis 

or pore formation (11-13). The eukaryotic cell membrane 

contains cholesterol to protect lytic action by modifying 

membrane fluidity (14). Moreover, a high level of membrane 
cholesterol can inhibit lytic activity. It has been shown that 

membrane fluidity of cancer cells is higher compared with 
healthy cells (15). Cancer cells also contain more abundant 

microvilli compared with healthy cells, which increases the 

cell surface area (16). Furthermore, healthy cells have elec-

trical neutrality, whereas cancer cells contain a negatively 

charge component on their surface (17), leading to membrane 

destabilization, cytotoxicity and cancer cell lysis when inter-
acting with small molecules, such as ACPs (18,19). In addition, 

the primary driving force for the interactions between peptides 

and the healthy cell membrane is the hydrophobic interactions, 

while that between peptides and the cancer cell membrane is 

the electrostatic interactions (20). 

Anticancer medicines contain molecularly targeted drugs 

with or without ‘guiding missiles’ to interact with specific 

molecular targets on cancer cells (21). Besides molecularly 

targeted drugs, drug-delivery to the cancer cell surface was 

developed using the most important properties, including 

high specificity, high selectivity and the binding capability to 
various targeted drugs, as well as being easy to synthesize and 
produce (21). Peptide properties can be used both in molecularly 

targeted drugs and ‘guiding missiles’ to inhibit cell prolif-

eration or eradicate cancer cells completely, depending on the 

amino acid residue composition, sequence length, isoelectric 

point, molecular weight, net charge, hydrophobicity, amphi-

philicity, secondary structure and structural orientation (22). 

These ideal anticancer peptide characteristics are summarized 
in Fig. 1. Membrane characteristics promote or inhibit drug 

penetration, drug conformation and/or location within the 

membrane and sequentially affect therapeutic targets (23). 

Healthy cell membranes have zwitterion phosphatidylcholine 
and sphingomyelin in an outer leaflet and anionic phospha-

tidylserine and the phosphatidylethanonlamine in the inner 

leaflet with the asymmetric distribution (24). The inner leaflet 
with the asymmetric distribution is primarily maintained by 

flippases (phosphatidylserine and phosphatidylethanonlamine 
from outer to inner membrane), floppases (phosphatidylcholine 
and cholesterol from inner to outer membrane) and scramblases 

(facilitated the flip‑flop of lipids) (24,25). In contrast, the cancer 
cell membrane loses this asymmetric distribution and altera-

tions in membrane fluidity, resulting in exposure of negative 
charge of phosphatidylserine on the surface of the membrane, 

as well as the locating of phosphatidylethanonlamine on the 

outer leaflet (26‑28). Furthermore, sphingomyelin is decreased 
in the cancer cell membrane and is associated with tumorigen-

esis (29). Different lipid composition affects membrane fluidity, 
influencing drug penetration and biological action (30,31). 

Extracellular acidity with or without exosome release affects 

the pH, changing from 7.4 to 6.5 (typical pH of cancer), forming 

the malignant tumor phenotype (32). The surrounding environ-

ment in the acidic extracellular pH (pHe) can promote cancer 

invasiveness (33). Specific interaction between anticancer 

peptides and cell membrane components are mostly bound by 

electrostatic interactions (34). 

Anticancer peptides act as either molecularly targeted 

peptides, which can penetrate and directly bind to the specific 
cancer cell or organelle membranes, or binding peptides linking 

to the anticancer drugs (35-37). In cancer cells, anticancer 

peptides, as molecular targeting peptides, particularly in the 

α-helical form, penetrate the plasma membrane, the nuclear 

membrane and/or the mitochondrial membrane exerting phar-

macological activity via different mechanisms (such as the 

inhibition of DNA synthesis or cell division), thus promoting 

cancer cell apoptosis (38-41). However, binding peptides, also 

referred to as cancer-targeting peptides or cell-penetrating 

peptides, that have no anticancer property, can recognize and 
penetrate the cancer cell membrane (42). Binding peptides can 

also be used for drug delivery by binding to the anticancer 

drugs, such as those that are non-penetrable (43). 

Amino acid composition and derivatives in peptides also 

convey anticancer properties. Amino acid residues containing 

peptides can drive cell permeability (44-46). The amino acid 

residues that are predominant in peptides with anticancer 

abilities include glycine, lysine and leucine (47). For example, 

hydrophobic positively charged lysine- and arginine-rich 

peptides act as cationic peptides that can interact with 

membranes via a snorkeling mechanism, including selecting 

anionic membranes on cancer cells, disrupting cell membrane 

integrity, penetrating into the membrane and potentially 

serving a role in cancer cell toxicity (48). Moreover, proton-

ation of histidine under acidic pH conditions means that 

histidine-containing peptides can induce cancer cytotoxicity 

via membrane permeability under acidic conditions (49,50). 

Glutamic and aspartic acid residues present potential 

anti-proliferative activity on the tumor cells (51). Cysteine resi-

dues in ACPs do not serve a role in the selectivity and toxicity 

for cancer cells, but cysteine-rich domains on a number of 

cell surface receptors can stabilize and maintain extracellular 
motif or domain structures (52). 

Internal prolines in peptides are crucial for membrane 

interaction and conformational flexibility, which is the same 
as glycine residues (53). It has been reported that serine 

and glycine-free diets can slow tumor growth and enhance 

antiproliferative effects (54). Methionine, a moderately 

hydrophobic amino acid, does not serve a major role in 

ACPs, but its elevated levels can be consumed by cancer 

cells. Furthermore, a methionine-deficient diet causes a 

metabolic defect in cancer cells by arresting cancer cell 

proliferation (55). Phenylalanine, a strongly hydrophobic 

residue, is highly present in primary tumors and acts as a 

protective amino acid (56). Phenylalanine-containing peptides 

can also enhance the affinity for targeting the cancer cell 

membrane (57). Tyrosine and tryptophan are weakly hydro-

phobic amino acids; tyrosine does not serve a role in toxicity 

of ACPs, whereas tryptophan may exert a role in the toxicity 

of some ACPs against cancer cells such as indolicidin and 

trans-activator of transportation (TAT)-Ras GTPase-activating 

protein‑326 peptides (19,58,59). However, synthesized peptides 
containing tryptophan and histidine may decrease cytotox-

icity, while those containing tyrosine, phenylalanine or proline 

may be able to increase cytotoxic activity (60). The tryptophan 

position on the cell-penetrating peptides serves an important 

role in entering cancer cells, which subsequently involves an 
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endocytic pathway and binding at the major groove of nuclear 

DNA (61). The role of amino acid residues on ACPs and on 

cancer cells is summarized in Table I. Collectively, these find-

ings suggested ACPs should contain cationic and hydrophobic 

amino acid residues to further form secondary structures that 

affect cancer cells. 

ACPs and the structure‑activity relationship (SAR). The 

association between ACPs and SAR has been investigated 

and analyzed using machine learning, and it has been 
demonstrated that the majority of ACPs contained 21-30 

amino acids and were predominately composed of glycine, 

lysine and leucine (47). In addition, amino acid residues on 

a peptide influences its anticancer activity depending on the 
cationic, hydrophobic and amphiphilic properties associated 

with forming helical structure (62-64). Anticancer activity 

is primarily determined by the IC50 value associated with 

cancer cell membrane disruption (62). It has been reported 

that peptides with a higher hydrophobicity can penetrate into 

the hydrophobic core of the cancer cell membrane, resulting 

in cancer cell disruption via necrosis (62). Several studies 

have aimed to substitute low hydrophobic and neutral or 

acidic amino acid residues with positively charged amino 

acid residues, such as lysine and leucine, on the polar and 

non-polar faces of α-helical peptides (63,65). As a result, high 

cationic peptides with moderate hydrophobicity can enhance 

the cytotoxicity of cancer cells (63). Peptides in free-form 

do not fold in solution, but arrange in an α-helix or β-sheet 

via electrostatic interaction on the membrane surface of the 

cells (11). 

As well as the physicochemical properties, the secondary 

structure of the peptides is important in cell surface interac-

tion, such as peptide structural orientation (57). The orientation 

of peptides can enhance the surface-activity for targeted inter-

action with the cancer cell membrane (66). The angle of the 

interaction leads to destabilized lipid packing on the cancer 
cell membrane, thus resulting in membrane penetration (67). 

Furthermore, modifying peptides by adding chemical 

groups, including methylation, acetylation or phosphorylation 

(particularly phosphorylation at tyrosine), can inhibit STAT3 

phosphorylation, leading to cancer cell death (68). The poten-

tial modification of natural peptides is presented in Fig. 2. 
Therefore, the results indicated that the secondary structure 

of ACPs serves a crucial role in peptide-cancer cell membrane 

interaction, leading to cancer cell disruption and cell death.

2. Classification of ACPs

Anticancer peptide creation should consider the peptide 

structure, mode of action, selectivity and efficacy to specific 
cancer cells (69,70). In the present review, active peptides 

were classified into three types depending on their actions, 
including: i) Molecularly targeted peptides, which directly act 

on cancer cells via cytotoxic, anti-proliferative and apoptotic 

activities; ii) ‘guiding missile’ peptides or binding peptides, 

which are drug binding peptides used for transporting drugs 

Figure 1. Comparisons of membrane characteristics and anticancer peptides action on healthy cells (left) and cancer cells (right). The outer leaflet of the healthy 
cell membrane presents a neutral net charge leading to non-interaction of anticancer peptides on the healthy cell surface (left), whereas negative net charge 

on the outer leaflet of the cancer cell membrane could interact with the cationic anticancer peptides (right). In cancer cells, anticancer peptides, particularly 
in the α‑helical form, act as molecularly targeted peptides that can penetrate and directly bind to the specific cancer cell or organelle membranes promoting 
cancer cell apoptosis. While, binding peptides linking to the anticancer drugs that have no anticancer property, can recognize and penetrate the cancer cell 
membrane. pHe, extracellular pH.
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into the cancer cell targets; and iii) cell-stimulating peptides 

that indirectly effect other stimulating cells to kill cancer 

cells, such as via immunomodulatory activities and hormone 

receptors (71-73). 

Molecularly targeted peptides. Molecularly targeted peptides, 

which are specific to the cancer cell targets, can penetrate, bind 
and then inhibit or kill cancer cells that are in an important stage 

of carcinogenesis or proliferation (74). The peptides concerning 

target cells can be classified into two major groups, including: 

i) Peptides against only cancer cells, and not against healthy 

cells (75,76) and, ii) peptides against both cancerous and healthy 

cells (77). Numerous peptides have selectivity for cancer cells 

but not healthy cells, such as peptides derived from defensins, 

lactoferricin B, cecropins, magainin-2 and chrysophsin-1 (22). 

The majority of ACPs are collected using the CancerPPD 

resource for predicting peptide structure and identifying the 

best ACP for further study (7). In addition, ACPs are identified 
via computational methods that consider amino acid composi-

tion, binary profiles and sequence-based methods (78-80). 

Figure 2. Modification of natural peptides. The natural peptide conformations included the extended, the coiled and/or the α-helical forms with neutral, anionic 

or cationic properties. These natural peptides are modified by adding the chemical groups (such as acyl and methyl groups) or the positive amino acid residues 
(such as lysine and arginine) to increase positive net charge and specificity for cancer cell targets. Moreover, the addition, deletion or substitution of the amino 
acid residues changes the conformation from the extended or coiled peptides to the α‑helix form for higher cancer cell penetration. After modification, the 
cationic α‑helix modified peptide exhibits higher efficacy and specificity to the cancer cells.

Table I. Role of amino acid residues on ACP effects in cancer cells, based on previous reports.

Amino acid residue Amino acid properties Action on cancer cells (Refs.)

Charged residues on ACPs   

  Lysine Positively charged Disrupt cell membrane integrity and penetrate cell (48)

  Arginine (basic amino acids), membrane, leading to cancer cell cytotoxicity

  Histidine polar, hydrophilic Induce cancer cytotoxicity via membrane permeability (49,50)

  under acidic condition  

  Glutamic acid Negatively charged Antiproliferative activity on tumor cells  (51)

  Aspartic acid  (acidic amino acids),

 polar, hydrophilic

Effect on cancer cell structure 

  Cysteine Polar, non‑charged On numerous cell surface receptors for stabilizing and (52)
  maintaining extracellular motif/domain structure

  Proline  Non‑polar, aliphatic Membrane interaction and conformational flexibility, (53,60)
 residues may be able to increase cytotoxic activity

  Glycine  Membrane interaction and conformational flexibility (53)
  Phenylalanine Aromatic  Enhance the affinity for target cancer cell membrane, (57,60)
  act as protective amino acids of primary tumors and

  may be able to increase cytotoxic activity

Effect on cancer cell metabolism   

  Methionine Polar, non-charged Reduced methionine will arrest cancer cell proliferation (55)

  Tyrosine Aromatic May be able to increase cytotoxic activity  (60)

  Tryptophan  Serve a role in the toxicity of some ACPs to cancer cells, (19,61)

  entering cancer cells following an endocytic pathway

  and then binding at the major groove of nuclear DNA

ACP, anticancer peptides.
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Membranolytic ACPs are generated de novo using automated 

designs based on α-helical cationic amphipathic peptide 

sequences against the cancer cells (81). Anionic molecules 

in the malignant cells conferring a net negative charge are 

different from the normal mammalian cell membrane, which 

have a neutral net charge (17). High cholesterol contents in 

healthy cells can obstruct the cationic peptide entry via cell 

fluidity; healthy cells are less fluid compared with cancer 

cells (15,82). Furthermore, peptides can permeate into the 

cells, causing mitochondrial swelling with cytochrome c 

release, followed by apoptosis (83). For example, Mastoparan I, 

a peptide with a α-helical structure, can act on the negative 

charge of prostate and liver cancer cell surfaces causing cell 

injury, cell swelling, cell bursting and then necrosis (84). 

Moreover, SVS-1 (KVKVKVKVDPLPTKVKVKVK-NH2), 

as a β-sheet structure, disrupts cell membranes via pore 

formation in lung-, epidermal- and breast-cancer cells (85,86). 

Peptides extracted from marine organisms, such as sponges, 

mollusks, tunicates, bryozoans, algae, fish, soft corals and sea 
slugs, can act against human cancer cells via, for example, 

anti-proliferative, cytotoxicity and anti-tubulin activities, as 

well as suppressing microtubule depolymerization (87). 
Amino acid composition of the peptides can act directly 

against various cancer cell types. For example, highly cationic 

peptides can enhance cancer cell specificity, while an increase 
in hydrophobic peptides can decrease the degree of speci-

ficity (63). Moreover, polycationic peptides have selectivity 
against human acute T-cell leukemia via a higher membrane 

potential compared with healthy cells (88). Lysine and argi-

nine-rich peptides with an intact amphipathic helical interface 

can also enhance cell lysis via membrane lysis mechanisms 

by penetrating and inducing caspase-3-dependent apoptotic 

cell death (89). The methods of peptide designing, such as 

cyclization, hybridization, fragmentation and modification, 
have potential advantages in increasing drug half-life time 

in plasma, enhancing stability and activity and decreasing 

toxicity of ACPS, for improving their therapeutic efficacy (90). 
Therapeutic peptides are classified into three classes based 

on the mechanism of peptide entry into cancer cells, including: 

i) Pore-forming peptides, which bind to negatively charged 

molecules on the cancer cell membrane for inducing apoptosis 

or necrosis; ii) cell-penetrating peptides, which translocate 

across the plasma membrane and transporting small molecules 

to oligonucleotides or proteins, known as internalization; and 
iii) tumor-targeting peptides, which bind to receptors on the 

cancer cell surface for cell internalization (91). Based on the 
mechanism of entry, therapeutic peptides are also classified 
into three groups based on their biological targets, including: 

i) Signal transduction pathways; ii) cell cycle regulation; and 

iii) cell death pathways (92,93). For instance, a tumor-penetrating 

peptide, KLA, exerts pro-apoptotic activity, which disrupts the 

mitochondrial membrane, leading to programmed cell death 

in tumors (40). In a tumor suppressor mechanism, kisspeptin-1 

metastasis suppressor, a precursor for several shorter peptides, 

which regularly exhibits decreased expression in metastatic 

tumors, can suppress colonization of disseminated cancer 
cells in distant organs and is involved in mechanisms of tumor 

angiogenesis, autophagy and apoptosis regulation in breast 

cancer (94). Furthermore, the tubulysin analogue KEMTUB10 

can inhibit tubulin polymerization during mammalian cancer 

cell proliferation, block the G2/M phase of the cell cycle and 

stimulate apoptosis or cell death via p53, Bcl-2-interacting 

mediator of cell death and Bcl-2 (95). Although ACPs can induce 

cancer cell death and specify an expressed molecule to cellular 

targets, such as a cationic anticancer peptide, temporin-1CEa 

and melanoma cell surface-expressed phosphatidylserine (96), 

ACPs have limitations, including drug binding peptide delivery 

to cancer cell targets (97). Thus, ACPs could be developed for 

their high penetration into the tumor tissue and tumor cells, as 

well as high antitumor activity (40). While ACPs can progress 

from binding to killing cancer cells, in terms of molecular 

targeting peptides, ACPs cannot be specific or penetrated 

all cancer cell types, leading to the need for an addition of a 

binding cancer cell target, such as ‘guiding missile’ peptides or 

binding peptides.

‘Guiding missile’ peptides or binding peptides. Optimizing 
anticancer drug delivery requires the safety of healthy cells, 

as well as cancer cell elimination (98). ‘Guiding missile’ 

peptides or binding peptides, used as delivery carriers, 

should hold the poorly stable, non-soluble drugs and control 

drug-release inside the tumor environments (99). Furthermore, 

these peptides require specificity, affinity and dose effective-

ness (98). Anticancer drug concentration is continually diluted 

during transport until reaching the target areas. However, 

drug binding adjuvant and nanoparticles can retain drug 

concentration during transport to target areas and induce the 

slow-release of the drug at these target areas (100,101). 

Drug concentration and cell and tissue barriers are an 

obstacle for therapeutic efficacy. Medical application for drug 
delivery requires biologically active conjugates (cargoes) and/or 

binding peptides (‘guiding missile’) to reach specific intracel-
lular targets (102-104). Minimal amino acid sequences of various 

cell-penetrating peptides, typically comprising 5-30 amino acid 

residues, especially cationic residues, can pass through tissue 

and cell membranes using energy-dependent or -independent 

mechanisms without the interaction of specific receptors (36). 
Binding peptides can bind to the cargoes with either covalent 

(mainly disulfide and thioester bonds) or non‑covalent bonds 
(electrostatic and/or hydrophobic interactions between nega-

tively charged cargoes and positively charged peptides) to 

protect the cargoes from enzymatic degradation (105).
The physical and chemical properties of binding peptides 

can be categorized into three main classes: Cationic, amphipa-

thic and hydrophobic peptides (42). Firstly, cationic peptides 

contain highly positive net charges comprising lysines and 

arginines. Arginine contains a guanidine head group, which 

is used to form bidentate hydrogen bonds with the negatively 

charged carboxylic, sulfate and phosphate groups on the 

cell membrane, resulting in binding peptide internalization 
into the cells; however, lysine does not contain the guani-

dine head group, leading to lower penetration into the cell 

membrane (106). Secondly, amphipathic peptides, which 

contain both hydrophilic and hydrophobic amino acids, 

are classified into primary (covalent binding hydrophobic 

domain targeting to cell membrane and nuclear localization 
signal), secondary (α-helical structure with hydrophilic and 

hydrophobic residues on different sides of the helix or β-sheet 

for cellular internalization) and proline‑rich (pyrolidine ring 
without hydrogen bonds on α-amino group able to allow 
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cell permeability) peptides (107,108). Hydrophobic peptides 

contain non-polar amino acids with a low net charge and have a 

high affinity for the hydrophobic domain of the cell membrane, 
leading to cellular internalization and translocation across the 
membrane via energy-independent mechanisms (107,109). 

Binding peptides enter target cells via cell penetration (pore 

formation and membrane destabilization) and endocytosis 
(macropinocytosis, clathrin or caveolin-mediated endocytosis, 

and clathrin/caveolin-independent endocytosis with enhanced 

endosomal escape from a lysosome) depending on physico-

chemical properties, size and concentration of the peptides (110). 
There are various mechanistic studies examining binding 

peptides depending on their targets. For example, D-form octa-

arginines stimulates the intestinal epithelial transport of drugs, 

such as insulin, via energy-independent unsaturable internal-

ization (111). Furthermore, a specific peptide derived from 
nuclear localization signal (NLS) and epidermal growth factor 
receptor pathway substrate 8 (EPS8), called CP-EPS8-NLS, 

can cross the cellular membrane and interfere with the nuclear 

translocation of EPS8, leading to inhibited cell viability and 

proliferation in acute myeloid leukemia (AML) (112). It has also 

been revealed that cell-penetrating peptide TAT-conjugated 

gambogic acid promotes tumor apoptosis via reactive oxygen 

species (ROS)-mediated apoptosis by increasing the ROS level 

in bladder cancer cells (113). 

Development of cell-permeable therapeutic peptides with 

polar side chains has used advantage of adding methyl groups, 

asparagine residues and D-amino acids (45). Similarly, another 

drug delivery system, known as nanoparticles, can carry 

ACPs to tumor sites without enzymatic degradation and can 
then enter inaccessible tumor sites (114). However, anticancer 

drug‑carrying nanoparticles should be optimized for syner-
gistic effect, drug release control, circulating stability and 

drug combination (115). Moreover, binding peptides could be 

modified to protect enzymatic digestion, penetrate cancer cell 
or organelle membranes, specifically bind to cancer targets and 
stimulate biological cells around tumor environments (116).

Cell stimulating peptides

Immune system stimulating peptides. Host defense mecha-

nisms against pathogens or transformed cells, such as the 

cancer cells, is a novel therapeutic approach that involves 

recruiting the immune cells into the tumors (117). Antigenic 

peptide-human leukocyte antigen class I complex respond to 

cytotoxic CD8+ T-cells against malignant diseases and brain 

tumors (118). However, ACP-produced vaccines exhibit poor 

immunogenicity, and thus require adjuvants to increase specific 
immune responses (119). For example, E75 peptide breast 

cancer vaccine (Her2 p369-p377) containing polyactin A can 

increase CD4+ and CD8+ T lymphocytes, enhance proliferation 

of splenocytes and increase levels of interferon-γ in spleno-

cytes (120). Furthermore, a melittin-RADA32 hybrid peptide 

hydrogel-linked doxorubicin can recruit activated natural killer 

cells in the primary melanoma tumor, resulting in growth 

retardation, as well as activation of dendritic cells of draining 

lymph nodes and production of cytotoxic T-cells against the 

remaining tumors (121). Tyrosinase-related protein 2 melanoma 

antigen peptide nanovaccine combined with CpG adjuvant 

could slowly result in growth of the melanoma tumor (122). 

Moreover, the 5-mer peptide, A-P-D-T-R, is a potential target 

for immunotherapy against breast cancer due to its highly 

immunogenic property that exists within the variable number 

of tandem repeats found in all mucins, particularly mucin1, 

which is increased by 10-fold in adenocarcinomas (123). 

Some peptide vaccines have been studied in phase I/II clinical 

trials (124-126). For instance, an adjuvant multi-peptide vaccine 

(UroRCC) was administered in patients with metastatic renal 

cell carcinoma following metastasectomy (127). Furthermore, 

a multipeptide vaccine (IMA950) containing 11 tumor-associ-

ated peptides, which targets IMA950 antigens, has been used 

as a tumor-targeting vaccine involving the T-cell response in 

grade II and III glioma (128). In metastatic hormone-naïve 

prostate cancer, the novel human telomerase reverse transcrip-

tase (hTERT) peptide vaccine UV1 can induce an immune 

response, affecting the prostate‑specific antigen level (129). 
A vaccine containing peptides can also be an adjuvant for 

activating the immune system. For instance, Hp91 peptide has 

formed the adjuvant for a protein vaccine against human papil-

lomavirus to control cervical cancer (130). Therefore, immune 

system stimulating peptides are an alternative cancer therapy to 

control metastasis and eradicate cancer cells by activating host 

immunity with the specific tumor antigens. 

Hormone stimulating peptides. The therapeutic peptides 

can inhibit cancer cell proliferation by controlling hormone 

release via their receptors (131). Cancer cells can produce 

hormones, such as growth hormone-releasing hormone 

(GHRH), to stimulate the pituitary gland and then the release 

of growth hormone (132,133). In a previous study, a GHRH 

antagonist was synthesized to inhibit proliferation in AML 
cell lines, including K562, THP-1 and KG-1a cells (134). 

Follicle stimulating hormone (FSH), for which the circu-

lating level is increased by leptin, serves an important role 

in the initiation and the proliferation of the ovarian cancer 

cells (135). Moreover, the obese OB3 peptide, a derivative 

of leptin, may prevent leptin-induced ovarian cancer cells 

by disrupting leptin-induced ovarian cancer cell prolif-

eration signal via stimulation of STAT3 phosphorylation 

and estrogen receptor α-activation (135). Furthermore, 

nanoparticle drug vehicles containing 21-amino acid peptides 

[YTRDLVYGDPARPGIQGTGTF (D-FP21)] conjugated to 

polyethylenimine and methoxy polyethylene glycol target the 

FSH receptor, leading to anti-proliferative effects on ovarian 

cancer (136). For chemotherapeutic improvement of metastatic 

hormone-refractory prostate cancer, it was found that the 

AlkB homolog 2 proliferating cell nuclear antigen (PCNA) 

interacting motif peptide targeting PCNA, an essential scaf-

fold protein, in combination with docetaxel could decrease 

prostate volume and inhibit cancer cell regrowth in vivo (137). 

3. Development of therapeutic ACPs 

The issues with conventional therapeutic agents associated with 

the majority of cancer drugs, include poor water solubility, lack 

of target specificity and capability, non‑specific distribution, 
system cytotoxicity and low therapeutic index, can be solved by 

creating a water-soluble form, targeting the delivery of ACPs, 

non‑systemic side effects and specific treatment efficacy (138). 
Numerous natural peptides derived from natural products, 

such as bioactive peptides, are applied in cancer therapy (139). 
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Although naturally bioactive peptides exhibited beneficial 

biocompatibility and low cytotoxicity, a number of bioactive 

peptides cannot provide the active targeting, cell uptake, cancer 

cell cytotoxicity and targeted delivery (140). The natural active 

peptides can be modified to novel peptides with special proper-
ties, including specificity, higher cell penetration, cancer cell 
cytotoxicity and therapeutic efficacy with no side effect. The 
present review focused on the therapeutic peptide develop-

ment from natural peptides to modified peptides and targeting 
peptides for increasing the specific cancer cell targets.

Natural peptides. Anticancer peptides have been discovered 

and modified from antimicrobial peptides, and these resources 
produce natural peptides from various organisms, such as 

marine, plant, yeast, fungi, bacteria and bovine (141,142). 

Antimicrobial and anticancer peptides, especially cationic 

peptides, can kill both bacteria and cancer cells due to the 

similar negative net charge on their membranes (143). Proteins 

from nutrients can release bioactive peptides via enzymatic 
hydrolysis, gastrointestinal digestion or during fermenta-

tion (144). Bioactive peptides discovered from natural peptides 

have an electrostatic interaction between the peptides and cell 

membrane, leading to cancer cell or mitochondrial membrane 

disruption and then necrosis or apoptosis (145). For example, 

bioactive milk-derived peptides released during digestion have 

a vital role in cancer prevention (146). Moreover, germinated 

soybean protein‑derived peptides from enzymatic hydrolysis 
exert antiproliferative activity against human colorectal cancer 

cells (147). It has also been shown that the extracted peptides 

from Lentinus squarrosulus mushrooms can mediate human 

lung cancer cells via apoptosis (148). Cyclic peptides isolated 

from marine cyanobacteria, such as Urumamide, exhibited low 

proliferative inhibitory activity on human cancer cells (149). 

Additional examples of natural peptides that have anticancer 

properties are presented in Table II and Fig. 3A. The majority 

of natural peptides that exert effects against cancer cell survival 

are α-helical folding peptides that have cationic proper-

ties (150,151). However, a minority of peptides, including other 

folding with neutral or anionic peptides, are able to disrupt 

cancer cell survival (152). Recently, a number of anionic anti-

microbial peptides that originate from amphibians, including 

frogs, toads, newts and salamanders across Africa, South 

America and China, demonstrated anticancer activity (153). 

Thus, natural ACPs can exhibit both cationic and anionic or 

neutral properties; also, the majority of cationic peptides are 

found to have a significant cytotoxic effect against cancer cells 
compared with anionic or neutral peptides. In the future, these 

natural ACPs can be modified to further ACP development.

Modified peptides. Highly cationic and amphipathic peptide 

properties can be synthesized and designed via in silico 

creations. For example, some chemical groups, such as 

acetylation or amidation, are added into the natural peptides to 

increase the cationic properties and target cell specificity (162). 
Replacement of D-amino acids in an amphipathic peptide, 

KLALKLALKALKAAKLA-NH2, and a hydrophobic interac-

tion can increase the membrane-disrupting effect on high negative 

surface charge bilayers, which then promotes peptide penetration 

into the inner membrane regions (163). Moreover, the folding and 

formation of peptides, such as the α‑helix or cyclization, results 

in an increase in anticancer properties and stability (164,165). It 

has also been revealed that fewer helical peptides can decrease 

the bilayer disruption activity (163), and that cyclic peptides can 

act on cell permeability (45). Furthermore, substitution, dele-

tion or addition of positively charged or polar and non-polar 

amino acids on natural peptides could modify their properties 

to improve therapeutic application (164,165). Some modified 
peptides are displayed in Table III and Fig. 3B. 

Besides the aforementioned modifications, ACPs have been 
constructed via genetic engineering, including anticancer fusion 

peptides; for example, the structure of bovine lactoferricin and 

hexapeptide derived from bovine milk protein for ovarian 

cancer treatment (166). NT4 peptides bound to GAG chains of 

heparan sulfate proteoglycans have a modulatory effect on the 

cancer cell migration and invasion ability (167). A recombi-

nant protein consisting of iRGD (CRGDKGPDC)-conjugated 

KLA peptide (KLAKLAKKLAKLAK) exerts a pro-apoptotic 

activity and high penetration to tumor tissue and cells for 

gastric cancer treatment (40). Collectively, modified peptides 
can be developed to improve anticancer properties and the 

effect on the cancer targets directly. 

Targeting peptides. The discovery of cancer cell targets can 

promote cell target specificity to avoid healthy cell damage 
(172). Targeting peptides on various cancer cell types should 

bind to cancer cell targets and eliminate cancer cells at the same 

time (173). Molecular targets in cancer cells are important for 

clinical therapy, including vascular endothelial growth factor, 

RAS/mitogen-activated protein kinase pathway inhibitors, aurora 

kinase inhibitors or endothelin receptor antagonists (174,175). 

Some molecular targets can induce an immune response, such 

as cytokines, while others directly bind to specific cancer cell 
biomarkers (175,176). Upregulation of specific cancer proteins 
or peptides has been used as cancer targets (139). For instance, 

high expression levels of MDM2 proto-oncogene (MDM2) 

and MDM4 regulator of p53 (MDMX), as negative regulators 

of tumor suppressor protein p53, and upregulated expression 

of the cell surface receptor CD33 have been targeted for AML 

therapy (177). Lanthanide oxyfluoride nanoparticle (LONp) 

bound dual-specific peptide antagonists of MDM2 and 

MDMX (PMI) and antiCD33-LONp-PMI can activate the p53 

pathway, thus inducing AML cell apoptosis (177). Furthermore, 

upregulated urokinase plasminogen activator receptors (uPAR) 

on cancer cells are targeted to uptake a specific peptide, 

68Ga-labeled AE105 peptide, as uPAR PET-probes, into 

U87MG tumor cells (178). Examples of the targeting peptides 

are presented in Table IV and Fig. 3C. Besides disturbing cancer 

cell survival, targeting peptides for cancer cell labeling was an 

advantage for cancer cell detection and diagnosis. For example, 

99mTc-(tricine)-HYNIC-Lys-FROP peptides were taken 

up by breast cancer cells for tumor targeting and molecular 

imaging (179). Therefore, targeting peptides can specifically 
and directly bind and destroy cancer cells, but not healthy cells. 

However, their targets are difficult to discover and develop for 
specific cancer cell therapy.

4. Anticancer peptides in clinical trials

Several synthetic peptide-based drugs and vaccines are 

currently undergoing clinical trials. The National Library 
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Figure 3. Conformation of anticancer peptides predicted using PEP-FOLD 3.5 (https://mobyle.rpbs.univ-paris-diderot.fr/cgi-bin/portal.py#forms::PEP-FOLD3). 

(A) Natural, (B) modified and (C) targeting peptides corresponding to Tables II‑IV, respectively, performed in three conformations including extend (black 
alphabet amino acid sequences), coiled (blue alphabet amino acid sequences) and α-helix (red alphabet amino acid sequences).
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of Medicine (NLM) at the National Institutes of Health 

(NIH) provides and updates clinical trial information on the 

ClinicalTrials.gov website. A total of 792 studies between 

1995‑2019 were identified and searched for ‘cancer’, ‘peptide’, 
‘drug’ or ‘biological’ key words, excluding non-anti-cancer 

peptide interventions such as behavior and surgery. The search 

result is presented in Fig. 4. 

For example, CIGB-300, an amidated disulfide cyclic 

undecapeptide fused to the TAT cell-penetrating peptide via 

a β-alanine spacer, inhibits CK-2-mediated phosphorylation 

leading to cancer cell apoptosis in patients with cervical and 

non-small cell lung cancer (185-187). Wilms' tumor 1 (WT1) 

peptide-based vaccination combined with the adjuvant drug 

OK-432 administered to pediatric patients with a solid tumor 

has been demonstrated to be safe for these children (188). 

Furthermore, WT1-pulsed dendritic cell vaccine has been 

used to treat patients with surgically resected pancreatic 

cancer under a phase I study (189). A modified 9‑mer WT1 
peptide vaccine was also used in patients with gynecological 

cancer for inducing myeloid dendritic cells, and was demon-

strated to be associated with cytotoxic T-cell activation (190). 

Subsequently, WT1 peptide vaccine therapy was evaluated 

in patients with gynecological cancer in a phase II clinical 

trial (191). A target of esophageal squamous cell carcinoma 

and lung cancer types is lymphocyte antigen 6 complex 

locus K (LY6K), which is expressed in gastric cancer (192). 

LY6K‑177 peptide vaccine emulsified with Montanide ISA 
51 was evaluated in patients with gastric cancer as a phase I 

clinical trial, and was found to be tolerated by patients with 

advanced gastric cancer (50% of patients with gastric cancer 

had stable disease and 16% patients had a tumor contraction 

effect) (192).

B-cell lymphocytic leukemia and pancreatic cancer 

have demonstrated a high level of telomerase activity (193). 

GV1001, a peptide based-cancer vaccine derived from the 

hTERT (hTERT 616-626; EARPALLTSRLRFIPK), was 

administrated in patients with non-resectable pancreatic cancer 

undergoing a dose-escalating phase I/II study (194); GV1001 

was capable of inducing CD4+ and CD8+ T-cells, interacting 

with professional antigen‑presenting cells and then engulfing 
dead tumor tissue or cells (194). Moreover, GV1001 may be a 

candidate vaccine in patients with B-cell chronic lymphocytic 

leukemia that exhibit telomerase‑specific leukemic cells (195). 
A combination of the ACPs and other drugs have also been 

evaluated in phase I trials, such as cyclodepsipeptide pliti-

depsin and bevacizumab in refractory solid tumors (196). For 
the binding peptide strategy, a carrier peptide, as a luteinizing 
hormone-releasing hormone (LHRH) agonist, is linked to the 

cytotoxic analogs of LHRH for cancer expressing receptors 

for LHRH (197). The LHRH agonist under phase II clinical 

trial exhibits anticancer activity in LHRH receptor-positive 

cancer types, such as human endometrial, ovarian and prostate 

cancer (197). Previously, a personalized peptide vaccination 
(PPV) has been developed as a novel approach for a cancer 

vaccine to boost the immune response using specific peptides 
for each patient (198). The peptides for PPV treatment under a 

randomized phase II trial in patients with bladder cancer were 
selected from the candidate peptides, according to human 

leukocyte antigen types and peptide-reactive IgG titers, to 

observe progression-free survival, overall survival, immune 
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response and toxicity (198). Similarly, 19 mixed peptides 

were selected from 31 PPVs according to the anti-tumor 

immunological effect, and the safety profiles for patients with 
metastatic breast cancer were also assessed in a phase II clin-

ical trial (199). While some peptides, such as gp100:209-217 

(210M)/Montanide™ ISA-51/Imiquimod for high risk mela-

noma and E39 peptide/GM-CSF vaccine plus E39 booster for 

ovarian cancer, have been approved by the Food and Drug 

Administration (FDA), these have been improved in clinical 

therapy, such as peptide boronate bortezomib (200‑202). The 
peptide boronate bortezomib is a reversible 26S proteasome 
inhibitor, degenerating several intracellular proteins, with 

antitumor and antiproliferative activities and can be used in 

multiple myeloma therapy (202). Due to adverse effects, such 

as hematotoxicity and peripheral neuropathy, poor penetration 

into solid tumors and low clinical stability and bioavailability, 

bortezomib was developed for delivery using nanoparticles, 
and treatment for bortezomib resistant multiple myeloma was 
improved using target chemical modification during synthetic 
processes (203,204). Additional ACP examples are presented 

in Table V. As aforementioned, various cancer vaccines have 

been produced using ACPs and ACPs combined with adjuvants 

or drugs, and the effects of carrier peptides on targeting cancer 

cell directly and/or by activating immune response have been 

tested in clinical trials for safety, side effects and effectiveness.

5. Future direction

Although ACPs have a number of disadvantages, such as 

biological instability, low bioavailability, short half-life, 

protease sensitivity, poor pharmacokinetics and first-pass 

metabolism, their most notable advantage is the protein-protein 

interaction with a target, thus overcoming limitations via 

designing peptide modifications and conjugation to improve 
affinity, stability and selectivity (205,206). For example, the 
peptide BBN7-14 (Gln-Trp-Ala-Val-Gly-His-Leu-Met-NH2) 

composed of natural amino acids has a higher binding affinity 
with the CFPAC-1 cell line compared with the modified 

peptide GB-6 (Gln-5-Htp-β-Ala-Nva-Gln-His-NH2) that 

consists of unnatural amino acids (in vitro). However, in vivo, 

BBN7-14 has a reduced tumor-targeting ability compared with 

GB-6, which is stable against protease-mediate degradation 

and has a slightly lower uptake and slow metabolism (207). 

Currently, ACPs have been modified to improve specific 

cancer cell targets and enhance cancer cell elimination. Some 

anticancer peptides as drugs and vaccinations have been tested 

in phase I/II clinical trials (175). For example, dTCApFs, 

a natural hormone peptide for the treatment of advanced or 

metastatic solid tumors, enters the cells via the Toll/inter-

leukin-1 receptor superfamily, suppresses angiogenic factors 

and induces anticancer cytokine production and ER stress, 

leading to cancer cell apoptosis (208). dTCApFs anticancer 

activity in humans was firstly studied in a phase I clinical 
trial by investigating the safety and efficacy with regards to 
both pharmacokinetics and pharmacodynamics, with intra-

venous dTCApFs (6-96 mg/m2; 3 times/week; in consecutive 

28-day cycles) (209). The intravenous dTCApFs is decreased 

at lower limit of detection in serum after 24-h administration 

and its concentration in serum is present in dose-dependent 

manner (209). Furthermore, ACPs have been combined with 

immunogens for clinical therapeutic improvement (210). 

Upregulation of molecular cancer targets, such as Ras protein 

that has been discovered in various cancer cell types (lung, 

colon and pancreatic), could also be direct targets for ACP 

development (211). The aim of ACP therapy should promote 

cancer cell death and intermit tumor regression, without 

contributing to tumorigenesis and resistance in cancer cell 

treatment (212). The first ACP approved by the FDA was the 
peptide boronate bortezomib (Velcade®) for multiple myeloma 

treatment in 2003 and mantle cell lymphoma in 2006 (213). In 

the near future, combination therapy with a drug or vaccine 

containing i) the specific targeting peptides, ii) the ACPs and 

Table IV. Examples of targeting peptides bind to specific cancer cells.

  Net

Name  Sequence chargea Structureb Targeting cancer cell types (Refs.)

CSP-GD GDALFSVPLEVY -2 Extend/coil Human cervical cancer (139)

CSP-TL TLHQPPSSANWI 0 Coil derived cells (SiH)

CSP-FT FTPGGNTYAGQP 0 Coil

CSP-SI SIDDQRDVAEFA -3 Coil/α-helix Human cervical cancer (139)

CSP-KQ KQNLAEG 0 Coil/α-helix derived cells (C-33A)

p160 VPWMEPAYQRFL 0 Coil/α-helix Neuroblastoma and breast (180,181)

    cancer cell lines

Polyarginine (R11) RRRRRRRRRRR +11 α-helix Bladder cancer  (182)

DN-C16orf74 RRRRRRRRRRR-GGG-KHLD +11 α-helix-coli-extend Pancreatic cancer cells (183)

 VPVIVIPPTPT

α-helix HSP70 peptide ACFAEKFKEAVKDYFAKFWD- 0 α-helix-coli-extend Tumor regression on mice (184)

 GSG-TKDNNLLGRFELSG   B16OVA melanoma models

aPredicted using PepDraw (http://www.tulane.edu/~biochem/WW/PepDraw/index.html). bPredicted using PEP-FOLD 3.5 (160,161). 

CSP, cancer‑specific targeting peptide; HSP, heat shock protein.
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iii) the cell-penetrating peptides and/or the conjugated delivery 

materials (such as liposome, nanoparticles or adjuvants) may 

facilitate the development of cancer therapy with cancer 

cell specificity, stability, safety and efficacy, without healthy 

cell eradication (214). ACP construction for specific cancer cell 
targets, and predictive, preventive and personalized medicine 
may be beneficial to the cancer research field due to the different 
complexity of the whole-body system in each individual (215). 

Figure 4. Number of ACP studies for the drug and biological intervention. (A) Frequency of cancer types from 792 ACP studies, which were submitted on 

the ClinicalTrials.gov website, including 36 cancer types and unclassified cancer types. The unclassified cancer types were reported as solid tumors, cancer 
or neoplasms. (B) Number of ACP studies in every 5-year period between 1995-2019 was continuously increased. (C) Furthermore, from 1995-2019, >98% 

of these ACP studies were an intervention study type, including clinical trial in early phase I, phase I, I/II, II, II/III, III, IV and not applicable, while <2% of 

them were an observation study type, which cannot assign a specific intervention or treatment. Source:www.clinicaltrials.gov search on Feb 4, 2020 with drug, 
biological and peptide key words in cancer. ACP, anticancer peptide.
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Besides the aforementioned therapeutic peptides, peptides 

with specific cancer cell targets are applied to bind the cancer 
cell targets for cancer detection and therapy (216,217). For 

example, a sodium pump Na+/K+ ATPase α1-targeted peptide 

Table V. Examples of ACPs in clinical trials (source: www.ClinicalTrials.gov).

Phases Biological peptides Conditions Outcomes

Early phase 1 MUC-1 peptide vaccine, poly ICLC,  Breast cancer A positive anti-MUC1 antibody

 MUC1 peptide-poly-ICLC adjuvant  response

 vaccine

 HER‑2/neu peptide vaccine Breast cancer Peptide‑specific interferon‑γ 

   producing T‑cell and peptide‑specific
   IL-5 producing T-cell responses

 GAA/TT‑peptide vaccine and Astrocytoma, oligoastrocytoma, Induction of GAA‑specific T‑cell
 poly-ICLC glioma response

 Peptide vaccine + poly‑ICLC Astrocytoma, oligoastrocytoma,  Infiltration of GAA‑specific T‑cells
  oligodendroglioma

 Gag:267‑274 peptide vaccine Melanoma Vaccine peptide‑specific CTL response
Phase 1 HPV16 E7 peptide-pulsed Cervical cancer Pulsed autologous DCs immunotherapy

 autologous DCs  

 NY‑ESO‑1b peptide plus CpG Cancer, neoplasm NY‑ESO‑1 specific humoral and cellular
 7909 and Montanide ISA-5  immunity

 Antiangiogenic peptide vaccine Hepatocellular carcinoma Peptide specific CTL response
 RNF43‑721 Colorectal cancer Specific CTL induction in vitro

 LY6K, VEGFR1, VEGFR2 Esophageal cancer Immune responses including LY6K, 

   VEGFR1 and VEGFR2 specific T‑cells
 HLA-A*0201 or HLA-A*0206- Non-small cell lung cancer Immunological responses including

 restricted URLC10 peptides  peptides specific CTL, antigen cascade,
   regulatory T-cells, cancer antigens and 

   HLA levels.

Phase 1/Phase 2 MAGE-3.A1 peptide and CpG 7909 Malignant melanoma Detectable CTL response

 VEGFR1‑1084, VEGFR2‑169 Pancreatic cancer Peptide specific CTL response
 HER‑2/neu peptide vaccine Breast cancer HER2‑specific T‑cell response
 HLA-A*2402 or A*0201 restricted Solid tumors Various immunological responses

 peptides  including peptides specific CTL, antigen
   cascade, regulatory T-cells, cancer

   antigens and HLA levels

 Modified CEA peptide Pancreatic adenocarcinoma T‑cell response with modified CEA
   peptide

Phase 2 synthetic human papillomavirus Cervical cancer Immunological response to HPV

 16 E6 peptide

 gp100:209-217(210M), HPV 16 Melanoma T-cell immunity to gp100 peptide and to

 E7:12-20  E7 12-20 papilloma virus peptide

 WT1 126-134 peptide Acute myeloid leukemia Generation of T-cell response

 G250 peptide Metastatic renal cell carcinoma G250‑specific CTL response
 Melanoma helper peptide vaccine,  Melanoma  CTL response, helper T-cells response

 multi-epitope melanoma peptide  to 6MHP

 vaccine

Phase 3 PR1 leukemia peptide vaccine Leukemia Immune response to PR1-HLA-A2

   tetramer

Phase 4 Degarelix (LHRH antagonist) Prostatic neoplasms Binds to GnRH receptors and blocks 

   interaction with GnRH

From ClinicalTrials.gov searched on January 31, 2020. CTL, cytotoxic T-cell lymphocytes; GnRH, gonadotropin-releasing hormone; CEA, 

carcinoembryonic antigen; HPV, human papillomavirus; HER, human epidermal growth factor receptor; VEGFR, vascular endothelial growth 

factor receptor; MAGE‑3, melanoma‑associated antigen 3; RNF, ring finger protein; NY‑ESO, New York esophageal squamous cell carcinoma; 
MUC, mucin.
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for positron emission tomography imaging of breast cancer, as 

peptide-based platform on dual-targeted molecular imaging, is 

able to more obviously visualize the disease state of a patient, 
leading to improved informed treatment decisions (218,219).

6. Conclusions

ACP therapy affects molecular targets, binds the anticancer 

drugs and stimulates biological systems involving cancer and 

healthy cell environments. Notably, natural and synthetic 

peptides have been developed as novel strategies against 

cancer types. Natural anticancer peptides can be modified to 
enable high penetration, specific cancer cell targets, increase 
efficacy and reduce side effects. A number of ACPs have been 
demonstrated to be anti-proliferative, apoptotic and prolifera-

tion inhibitors in various cancer cell types, both in vitro and 

in vivo, leading to clinical trials for the evaluation of cancer 

treatment. The development of drug or vaccine technology 

could further ACPs in design, synthesis and delivery to 

eliminate cancer cells directly or by affecting the anticancer 

immune responses (220). Collectively, it was suggested ACPs 

may promote cancer drugs or vaccine development to decrease 

emerging cases and mortality rates in the future.
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