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ANTICANONICAL RATIONAL SURFACES

BRIAN HARBOURNE

Abstract. A determination of the fixed components, base points and irregu-
larity is made for arbitrary numerically effective divisors on any smooth projec-
tive rational surface having an effective anticanonical divisor. All of the results
are proven over an algebraically closed field of arbitrary characteristic. Appli-
cations, to be treated in separate papers, include questions involving: points
in good position, birational models of rational surfaces in projective space, and
resolutions for 0-dimensional subschemes of P2 defined by complete ideals.

I. Introduction

This paper is concerned with complete linear systems on smooth projective ra-
tional surfaces, over an algebraically closed field of arbitrary characteristic. The
focus is on anticanonical rational surfaces, i.e., those rational surfaces supporting
an effective anticanonical divisor. Such surfaces include all Del Pezzo surfaces, all
blowings up of relatively minimal models of rational surfaces at 8 or fewer points,
and all smooth complete toric surfaces, but also include surfaces for which there is
an effective but highly nonreduced anticanonical divisor; indeed, there is no bound
to the multiplicities of fixed components of effective anticanonical divisors on anti-
canonical surfaces.

Anticanonical rational surfaces have received attention from numerous authors
[Co], [D], [F], [H1], [H2], [H5], [M], [Sk], [U] for various reasons, and share much
of the behavior of K3 surfaces [H4], [Ma], [PS], [SD], [St]. However, partly be-
cause the rational surfaces need not be relatively minimal, and partly because their
anticanonical classes are nontrivial, the behavior of the rational surfaces is more
complicated. Thus previous work has been carried out under one or another special
hypothesis, to tame this anticanonical refractoriness. For example, [D] considers
blowings up of P2 at 9 or fewer points which are en position presque général, and [F]
assumes that there is a reduced anticanonical divisor, and only considers classes of
effective and numerically effective divisors which have no fixed component in com-
mon with the anticanonical divisor; [H1] handles arbitrary classes, but considers
only blowings up of P2 for which there is a reduced and irreducible anticanonical
divisor. Likewise, [Sk] mainly considers linear systems related to the anticanonical
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1192 BRIAN HARBOURNE

divisor itself. In this paper we make no assumptions beyond the existence of an
effective anticanonical divisor.

The structure of this paper is as follows. Section II gathers results about rational
surfaces generally, without necessarily assuming effectivity of an anticanonical divi-
sor. In Section III we prove our main result, Theorem III.1, which fully determines
the behavior (that is, dimensions, base points and fixed components) of complete
linear systems for numerically effective classes on smooth projective rational sur-
faces, under no special hypotheses beyond effectivity of an anticanonical divisor.
Our approach is partly that of [H1], and partly a modification of [F] using an idea
based on [A] (see Lemma II.9).

As a consequence of results in Section III, we have for example the following
theorem. (Given a divisor class L on a surface X , we recall that a class L is
numerically effective if it meets every effective divisor nonnegatively. We will also
find it convenient to identify an invertible sheaf with its corresponding divisor class,
and employ the additive notation customary for the group of divisor classes. We
will usually reserve ⊗ to denote restriction, as in the restriction OC⊗F of a divisor
class F on a surface X to a curve C ⊂ X .)

Theorem I.1. Let F be a numerically effective divisor class on a smooth projective
rational anticanonical surface X and let D be a general section of −KX . Then
h0(X,F) > 0; moreover, h1(X,F) > 0 if and only if F · KX = 0 and a general
section of F has a connected component disjoint from D. In fact, 1 + h1(X,F) is
the number of connected components of a general section of F −KX .

A proof is given at the end of Section III, but a remark here may be helpful.
Although h0(X,F) > 0 is considered in Section II, the main interest is in h1. That
there be a topological sufficient condition for h1 to be positive is easy to see. If a
section of F has a connected component disjoint from D, then F−KX has a section
C which is not connected, so h0(C,OC) > 1. But h1(X,−(F −KX)) = h1(X,F)
by duality, so from 0 → −(F − KX) → OX → OC → 0, we see h1(X,F) =
−1 + h0(C,OC) is positive.

It is more difficult to see that the question is purely topological, since C need
not be reduced; hence a priori, h0(C,OC) could exceed the number of connected
components of C. That it does not is a consequence of the detailed analysis of
the fixed components of numerically effective divisors on anticanonical rational
surfaces, carried out in Section III, showing, among other things, that the fixed
part N of the linear system of sections of a numerically effective class is reduced
and no components of N can be components of an anticanonical divisor, unless N
contains an entire anticanonical divisor.

Some readers may be interested in classes that are not necessarily numerically
effective; a word to them may be in order. Given an arbitrary class F on a smooth
projective rational anticanonical surface X , to determine h0(X,F), and fixed com-
ponents and base points of the linear system of sections of F when F is the class
of an effective divisor, one essentially needs to know the monoid EFF of classes of
effective divisors. However, this is reasonably accessible and is discussed in more
detail in the remark at the end of Section III.

Applications, to questions involving points in good position, to birational mod-
els of rational surfaces in projective space, and to computing resolutions for 0-
dimensional subschemes of P2 defined by complete ideals will be considered in
separate papers.
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II. Results not assuming −K effective

In this section we consider smooth projective rational surfaces, stating some
results which hold in general, whether the surfaces are anticanonical or not. We
begin with the homomorphism on Picard groups induced by a morphism of schemes.
In the cases of interest here, this homomorphism is well-known to behave very nicely.
(Given a surface X , a curve C ⊂ X , and a divisor class F on X , we may in place
of the more accurate but more complicated hi(C,F ⊗ OC) write hi(C,F) for the

dimension of the ith cohomology group of the restriction of F to C.)

Lemma II.1. Let π : Y → X be a birational morphism of smooth projective sur-
faces, π∗ : Pic(X) → Pic(Y ) the corresponding homomorphism on Picard groups,
and let L be a divisor class on X.

(a) The map π∗ is an injective intersection-form preserving map (of free abelian
groups of finite rank if X is rational).

(b) The map π∗ preserves dimensions of cohomology groups; i.e., hi(X,L) =
hi(Y, π∗L) for every i.

(c) The map π∗ preserves EFF; i.e., L is the class of an effective divisor if and
only if π∗L is.

(d) The map π∗ preserves numerical effectivity; i.e., L · F ≥ 0 for every effective
divisor F on X if and only if (π∗L) · F ′ ≥ 0 for every effective divisor F ′ on
Y .

Proof. (a) See [Ha, V].
(b) Use [Ha, V.3.4] and the Leray spectral sequence.
(c) This follows from (b) with i = 0.
(d) If π∗L is numerically effective, then numerical effectivity for L follows from

(a) and (c). The converse follows from [Ha, V.5] and induction.

Given an appropriate scheme X , we recall that KX denotes its canonical class.

Lemma II.2. Let X be a smooth projective rational surface, and let F be a divisor
class on X.

(a) We have: h0(X,F)− h1(X,F) + h2(X,F) = (F2 −KX · F)/2 + 1.
(b) If F is the class of an effective divisor, then h2(X,F) = 0.
(c) If F is numerically effective, then h2(X,F) = 0 and F2 ≥ 0.

Proof. Item (a) is just the Riemann-Roch formula in the case of a rational surface.
Item (b) follows by duality, while item (c) is elementary.

Corollary II.3. On a smooth projective rational surface, a numerically effective
divisor meeting the anticanonical class nonnegatively is in EFF. In particular, ef-
fectivity of an anticanonical divisor implies effectivity of all numerically effective
divisors.

Proof. This follows from Lemma II.2(a) and (c).

The next lemma is a well-known consequence of the Hodge Index Theorem.

Lemma II.4. Let X be a smooth projective rational surface, and denote by K⊥ the
subspace of Pic(X) perpendicular to the canonical class KX . Then K⊥ is negative
definite if and only if K2

X > 0. Also, K⊥ is negative semidefinite if and only if
K2
X = 0; in this case, if x ∈ K⊥, then x2 = 0 if and only if x is a multiple of KX .
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In spite of the title of this section, the next fact involves anticanonical surfaces,
but it is convenient to state it now.

Lemma II.5. Let X be a smooth projective anticanonical rational surface. Let D
be an effective anticanonical divisor on X and let F be any divisor class on X.
Then h0(D,OD) = h1(D,OD) = 1, and h0(D,F)− h1(D,F) = −KX · F .

Proof. By duality, h2(X,KX) = h0(X,OX) = 1 and h1(X,KX) = h1(X,OX)
vanish, while h0(X,KX) = 0 since X is rational. Thus from 0 → KX → OX →
OD → 0 we see that h0(D,OD) = 1 = h1(D,OD). From 0→ F +KX → F → F ⊗
OD → 0, comparing h0−h1 for F⊗OD against h0−h1+h2 for F and F+KX , using
Riemann-Roch for the latter two and simplifying, we see that h0(D,F)−h1(D,F) =
−KX · F .

We will need a Bertini-type theorem. Recall that a fixed component free linear
system is said to be composed with a pencil, if away from the base points it defines
a morphism whose image has dimension 1.

Lemma II.6. Let X be a smooth projective rational surface, and let F be the class
of a nontrivial effective divisor on X without fixed components.

(a) If the linear system of sections of F is composed with a pencil, then there
is an r > 0 such that every section of F is the divisorial sum of r sections
of some class C whose general section is reduced and irreducible and whose
sections comprise a pencil. Moreover, if F · KX ≤ 0, then either: r = 1,
F2 = 2, F · KX = 0, h1(X,F) = 0 and −KX is not effective; r = F2 =
−KX · F = 1 and h1(X,F) = 0; F2 = 0, −KX · F = 2r and h1(X,F) = 0;
or F2 = KX · F = 0 and h1(X,F) = r.

(b) If the linear system of sections of F is not composed with a pencil, then F2 > 0
and the general section of F is reduced and irreducible.

Proof. We first point out that the general section of the class F of a fixed component
free divisor is always reduced. For if not, then by [J, Corollaire 6.4.2] the morphism
defined by the sections away from the base points factors through Frobenius. This
cannot happen for complete linear systems on rational surfaces, since it would im-
ply that the characteristic p is nonzero, that F = pG for some class G, and (since
X is rational) that h0(X,G) = h0(X, pG). Since the sections of F are fixed com-
ponent free, h0(X,G) = h0(X, pG) > 1; hence h0(X, pG) ≥ dim Symp(H0(X,G)) =(
d− 1 + p

p

)
> d, where d = h0(X,G).

For (b), note that F2 = 0 would imply the linear system of sections of F is
composed with a pencil; for the irreducibility, use [J, Théorème 6.3].

Now consider (a). Since X is rational, the linear system of sections of F is
composed with a rational pencil. By appropriately blowing up the base points of
the sections of F , we obtain a class F ′ on a surface Z whose sections are base
point free, whose general section is the proper transform of a general section of F .
The sections of F ′ define a morphism Z → R, where R is isomorphic to P1 since
the pencil is rational. By Stein factorization [Ha, III.11.5], there is a morphism
Z → P1, with connected fibers, factoring Z → R. If r is the degree of P1 → R and
C′ is the class of a fiber of Z → P1, then F ′ = rC′, where the sections of C′ are
connected. Taking C to be the class of a curve on X whose proper transform is a
general section of C′, we see that F = rC, and hence (comparing sections of F with
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sections of F ′) that every section of F is the divisorial sum of r sections of C. Thus
it is enough to check that a general section of C′ is integral, but this is well-known
to hold (cf. [J, Théorème 4.10] and [J, Théorème 3.11]) since Z → P1 induces a
separable algebraically closed extension of function fields. This proves the first part
of (a).

For the rest, assume F ·KX ≤ 0. Because C gives a pencil, h0(X, C) = 2. Because
the sections of F are composed with this pencil, h0(X,F) = h0(X, rC) = r+ 1. By
Riemann-Roch, r + 1 = h0(X,F) ≥ (r2C2 − rC ·KX)/2 + 1. Now suppose C has
positive self-intersection. If C ·KX = 0, then C2 must be even and thus is at least 2,
so r+ 1 ≥ r2C2/2 + 1 ≥ r2 + 1; hence r = 1 and C2 = 2. Also, from Riemann-Roch
we can now calculate that h1(X,F) = 0. But if −KX were effective, then, since
the sections of C are fixed component free, −KX · C = 0 means D is disjoint from a
general section of C, where D is some effective anticanonical divisor. ThusOD⊗C =
OD. By Lemma II.5, h1(D,OD) = 1. Since h2(X,KX + C) = h0(X,−C) = 0, from
0→ KX + C → C → OD⊗C → 0 we get the contradiction that h1(X, C) > 0. Thus
−KX cannot be effective.

If, on the other hand, C2 > 0 and C ·KX < 0, then 2r ≥ r2 +r by Riemann-Roch
so r = 1 (and F = C) whence 2 = (C2 − C ·KX)/2 + 1 + h1(X, C) = 2 + h1(X, C),
and thus C2 = C · (−KX) = 1 and h1(X, C) = 0.

Finally, say C2 = 0. Then −KX · C is even, but 2r ≥ −rC · KX by Riemann-
Roch, so −KX · C is either 2 or 0. From Riemann-Roch we have in the first case
h0(X,F) = r + 1 + h1(X,F), and we have in the second h0(X,F) = 1 + h1(X,F),
so from r + 1 = h0(X,F) follow h1(X,F) = 0 and h1(X,F) = r, respectively.

Lemma II.7. Let X be a smooth projective rational surface, and let C be the class
of an effective divisor without fixed components. If C ·KX < 0, then h1(X, C) = 0.

Proof. Say C is the class of a reduced and irreducible divisor C on X , with C ·KX <
0. Then h1(C,OX(rC) ⊗ OC) = 0 for all r > 0. (If C is smooth this follows
by duality, since by adjunction OX(−rC) ⊗ KC has negative degree. In general,
h1(C,OC) = h2(X,OX(−C)) = 1 + (C2 + C · KX)/2 follows from checking the
cohomology groups for the sequence 0 → OX(−C) → OX → OC → 0, and,
for the second equality, applying Riemann-Roch. Thus OX(rC) ⊗ OC has degree
greater than 2h1(C,OC)− 2; h1(C,OX(rC)⊗OC) = 0 for all r > 0 now follows by
Proposition 7 on page 59 of [D].) Since X is rational, h1(X,OX) = 0. Induction on r
applied to the cohomology groups of 0→ OX((r−1)C)→ OX(rC)→ OC(rC)→ 0
now gives the result.

In general, if the linear system of sections of C has no reduced and irreducible
member, then, by Lemma II.6, we find that C is the class of a multiple of a reduced
irreducible divisor C′ which moves in a pencil at least. The result now follows as
above for any positive multiple of C′ and hence for any positive multiple of C.

The following lemma, essentially Theorem 1.7 of [A], turns out to be the key to
avoiding special assumptions (such as are assumed in [F]) regarding components in
common with an anticanonical divisor when handling numerically effective classes
on anticanonical surfaces.

Lemma II.8. Let X be a smooth projective surface supporting an effective divisor
N and a divisor class F which meets every component of N nonnegatively. If
h1(N,ON ) = 0, then h0(N,F) > 0 and h1(N,F) = 0.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1196 BRIAN HARBOURNE

Proof. Modifying the proof of [A, Theorem 1.7] gives the result. See Lemma II.6
of [H6] for an explicit proof.

Corollary II.9. Let X be a smooth projective rational surface and let N be the
class of a nontrivial effective divisor N on X. If N + KX is not the class of an
effective divisor and F meets every component of N nonnegatively (in particular,
if F is numerically effective), then h0(N,F) > 0, h1(N,F) = 0, N2 + N ·KX <
−1, and every component M of N is a smooth rational curve (of negative self-
intersection, if M does not move).

Proof. Clearly, h0(X,−N ) = 0, while h2(X,−N ) = h0(X,N + KX) = 0 follows
by duality and by hypothesis. By Riemann-Roch, −2 ≥ −2 − 2h1(X,−N ) =
N2 + N · KX . Next, taking cohomology of 0 → −N → OX → ON → 0, we see
h1(N,ON ) = 0. Since F meets every component of N nonnegatively, applying
Lemma II.8 shows h0(N,F) > 0 and h1(N,F) = 0. To finish, apply the foregoing
to a component M of N . Then M2 +M ·KX = −2, so M is smooth and rational.
Substituting into Riemann-Roch gives h0(X,OX(M)) ≥M2 + 2; hence, if M does
not move, then 1 ≥M2 + 2 so M2 ≤ −1.

III. Results assuming −K effective

We now develop results concerning anticanonical rational surfaces. The results
of this section give a complete determination of h1(X,F), the class N of the fixed
part of the linear system of sections of F and the base points of the linear system
of sections of F (note that F ∈ EFF is automatic by Corollary II.3), for any
numerically effective class F on a smooth projective rational anticanonical surface
X .

Briefly, what we find is this. Behavior of the linear system of sections of a
numerically effective class F is controlled by −KX · F . If this is at least 2, then F
is regular and its linear system has empty base locus.

If −KX · F = 1, F is still regular, but its linear system has a base point, and
possibly a base divisor. (The base divisor is always the class of a reduced but not
necessarily irreducible exceptional curve. The pencil of cubics through eight general
points gives an example of a numerically effective class F on a blow up of P2 at
eight points whose sections have a base point; by blowing up the base point and
pulling back to the blown up surface, the base point converts to a divisorial base
locus consisting of the exceptional curve E of the last blow up. In this example,
F ·E = 0; this example is not completely general, since it is also possible to have a
divisorial base locus E with F ·E > 0, as happens if X is the blow up of P2 at the
base points of a general pencil of cubics and F is −rKX + E , where E is the class
of the exceptional curve E coming from one of the blow ups.)

Regardless of what else happens, if −KX · F = 1, then the sections of F have
a base point at a smooth point of any effective anticanonical divisor D. Blowing
this base point up and considering G = F − E ′ on the blown up surface (where
E ′ is the class of the exceptional divisor of the blow up) shows that numerically
effective classes G can occur with −KX · G = 0, such that h1(X,G) > 0 and either
the sections of G are base point free (which happens if the sections of F are fixed
component free) or the base locus consists of a smooth rational curve N with
N2 = −2 (which happens, for example, if we take F = −rKX + E with r > 1,
as in the preceding paragraph; note that r = 1 does not work since then G is not
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numerically effective). It turns out that the only other possibility that can occur
for a numerically effective class perpendicular to KX is that the base locus of its
linear system of sections can contain an anticanonical divisor, and understanding
that this may happen in essentially only one way (this being that of a numerically
effective class perpendicular to −KX whose restriction to an effective anticanonical
divisor is nontrivial—although a precise description of the base locus in this case
depends on whether or not the numerically effective class has self-intersection 0)
completes our understanding of linear systems of numerically effective classes on
anticanonical surfaces.

The following theorem gives a rigorous statement of the preceding discussion,
summarizing our results in this section:

Theorem III.1. Let X be a smooth projective rational anticanonical surface with
a numerically effective class F and let D be a nonzero section of −KX. Let N be
the class of the fixed part of the linear system of sections of F , and let H = F −N
be the class of the free part.

(a) If −KX · F ≥ 2, then h1(X,F) = 0 and the sections of F are base point (and
thus fixed component) free (i.e., N = 0).

(b) If −KX · F = 1, then h1(X,F) = 0. If the sections of F are fixed component
free, then the sections of F have a unique base point, which is on D. Moreover,
the linear system of sections of F has a fixed component if and only if H = rC
and N = N1 + · · · +Nt, where C ∈ K⊥X is a class with h1(X, C) = 1 whose
general section is reduced and irreducible, r = h1(X,H) with r > 1 only if
C2 = 0, Ni is a smooth rational curve for every i, N 2

i = −2 and Ni ·Ni+1 = 1
for i < t, N 2

t = −1, Ni · Nj = 0 for j > i+ 1, C · N1 = 1, and C · Ni = 0 for
i > 1.

(c) If −KX · F = 0, then either N = 0 (in which case the sections of F are base
point free, F ⊗OD is trivial and either F2 > 0 and h1(X,F) = 1 or F = rC
and h1(X,F) = r, where r > 0 and C is a class of self-intersection 0 whose
general section is reduced and irreducible), or N is a smooth rational curve
of self-intersection −2 (in which case h1(X,F) = 1, N ⊗ OD is trivial, and
H = rC, where r > 1 and C is reduced and irreducible with C2 = 0, C · N = 1
and C ⊗ OD being trivial), or N +KX ∈ EFF.

(d) We have N +KX ∈ EFF if and only if F ·D = 0 but F ⊗OD is nontrivial.
In this case, there exists a birational morphism of X to a smooth projective
rational anticanonical surface Y , and either: K2

Y < 0, there is a numerically
effective class F ′ on Y , F is the pullback of F ′ −KY , and 0 = h1(Y,F ′) =
h1(X,F); or K2

Y = 0, H and N are the pullbacks of −sKY and −rKY for
some integers s ≥ 0 and r > 0 respectively, and h1(X,F) = σ, where σ = 0 if
s = 0, and otherwise r < τ and σ = s/τ , where τ is the least positive integer
such that the restriction of −τKX to D is trivial.

At the end of this section we show how this summary statement follows from the
lemmas we will by then have accumulated.

On a K3 surface, one never needs to worry about a linear system’s having a
fixed component which is also a component of an effective anticanonical divisor.
As a consequence, the analysis of complete linear systems on K3 surfaces is less
complicated than on rational surfaces with an effective anticanonical divisor. That
this analysis can, nevertheless, be carried out for rational surfaces is perhaps partly
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due to the occurrence of such behavior being very restricted, as this next result
shows:

Corollary III.2. Let X be a smooth projective rational anticanonical surface with
a numerically effective class F and let N be the class of the fixed part of the linear
system of sections of F . Then either no fixed component of the linear system of
sections of F is a component of any section of −KX, or N contains an anticanonical
divisor (i.e., N +KX ∈ EFF).

Thus this corollary implies that no numerically effective divisor on X can have a
fixed component in common with the anticanonical linear system if h0(X,−KX) > 1
(and so in particular if K2

X > 0). Note that this corollary can be obtained from
Theorem III.1, but for convenience we put off the proof until the end of this section,
obtaining it as a consequence of other results later in this section.

The next corollary gives some geometrical insight into the occurrence of irregu-
lar numerically effective classes; we give its proof now as an example of applying
Theorem III.1.

Corollary III.3. Let X be a smooth projective rational anticanonical surface with
a numerically effective class F and let D be a nonzero section of −KX.

(a) We have h1(X,F) > 0 if and only if the general section of F has a connected
component disjoint from D.

(b) Say F2 −KX · F > 0; then h1(X,F) > 0 if and only if the general section of
F is disjoint from D.

Proof. Let N denote the class of the fixed part of the linear system of sections of F ,
and H the rest. Suppose h1(X,F) > 0. By Theorem III.1, we see that F ·D = 0.
If N + KX /∈ EFF, then the linear systems of sections of F and −KX have no
common fixed components by Corollary III.2, so F ·D = 0 implies that the general
section of F is disjoint from D. If N + KX ∈ EFF, then by Theorem III.1(d)
h1(X,F) > 0 implies that H and N are the pullbacks of −sKY and −rKY , where
K2
Y = 0, and thus that F2−KX ·F = 0. ButH is numerically effective and its linear

system of sections is without fixed components, so H · N = −sKY · (−rKY ) = 0
and H · (−KX) = −sKY · (−KY ) = 0 imply that H has a section containing a
connected component of a general section of F disjoint from D. This establishes
the forward implications of (a) and (b).

For the converses, note that if a general section of F has a connected component
disjoint fromD, then some section C of F−KX is not connected; hence h1(C,KC) =
h0(C,OC) > 1. Now h1(X,F) > 0 follows from KC = F⊗OC and from 0→ KX →
F → F ⊗OC → 0.

We now begin to develop the tools we will need to prove Theorem III.1. The
following lemma comes from [F], included here for convenience, and in order to
clarify the statement of the lemma.

Lemma III.4. Let L be a divisor class on a smooth projective rational anticanon-
ical surface X with a reduced connected section L no component of which is a fixed
component of the linear system of sections of −KX.

(a) If −KX · L > 0, then h1(X,L) = 0.
(b) If −KX · L = 0, then h1(X,L) = 1.
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Proof. (a) This is essentially [F, 5.2], although the statement there does not make it
clear that it is not enough that L be reduced with each of its connected components
meeting −KX positively. The following proof is taken from [F].

From 0 → OX → L → OL ⊗ L → 0, we obtain h1(X,L) = h1(L,L). By
adjunction, OL ⊗ L = KL ⊗ (−KX), so by duality h1(L,L) = h0(L,KX). But the
restriction of −KX to L is the class of an effective divisor (since no component of
L is a fixed component of the linear system of sections of −KX) and nontrivial
(since −KX meets L positively); since L is reduced and connected, it follows that
h0(L,KX) = 0.

(b) This is [F, 5.3]. The proof is similar to (a), except here the hypotheses imply
that the restriction of −KX to L is trivial, so now OL ⊗L = KL ⊗ (−KX) = KL.
Thus h1(L,L) = h0(L,OL), and h0(L,OL) = 1 since L is reduced and connected.

The next lemma is a modification of Lemma 9 of [F], in which the requirement
there that −KX have a section meeting L2 in just a finite set of points is weakened
here by only assuming that h0(X,L2 + KX) = 0. Thus in the following lemma,
the fixed part of the linear system of sections of L contains a section of L2, and a
priori could contain fixed components of the linear system of sections of −KX , but
merely cannot contain an entire anticanonical divisor.

Lemma III.5. Let X be a smooth projective rational anticanonical surface. Let
L1 and L2 be classes of effective divisors on X such that h0(X,L2 +KX) = 0 and
such that L = L1 +L2 and L1 are numerically effective with h0(X,L) = h0(X,L1)
and L2 6= 0; then L1 · L2 > 0.

Proof. Suppose on the contrary that L1 · L2 = 0. Since L1 is numerically effective,
this means L1 · C = 0 for every component C of the linear system of sections of
L2. Since L = L1 + L2 is numerically effective, it follows that L2 · C ≥ 0 for
every component C of the linear system of sections of L2, and hence that L2 is
numerically effective; thus L2

2 ≥ 0 and −KX · L2 ≥ 0. But L2 is the class of a
unique effective divisor, so from Riemann-Roch we have 1 ≥ (L2

2 −KX · L2)/2 + 1;
hence L2

2 = −KX · L2 = 0, so L2 = 0 by Corollary II.9.

Lemma III.6. Let F be a nontrivial numerically effective class on a smooth pro-
jective rational anticanonical surface X, such that F2 = 0 and the class of the fixed
part of the linear system of sections of F is N . If h0(X,N + KX) = 0, then the
sections of F are base point free and composed with a pencil.

Proof. Let F − N = H; then 0 = F2 = H2 +H · N +N · F ; hence by numerical
effectivity of F and H, we have H · N = 0, so N = 0 by Lemma III.5. Thus the
sections of F are not only fixed component free, but, since F2 = 0, base point free
and composed with a pencil.

Lemma III.7. Let F be a numerically effective class on a smooth projective ra-
tional anticanonical surface X, such that F2 > 0, the class of the fixed part of the
linear system of sections of F is N and F − N = H. Let D be a nonzero section
of −KX. If h0(X,N +KX) = 0 = h1(X,H), then F ·D > 0, F is regular, and the
linear system of sections of F is fixed component free.

Proof. First we show N = 0. Suppose not. Let N be the nontrivial section of N .
Then by Corollary II.9, h1(N,F) = 0 and h0(N,F) > 0. Using regularity of H
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we see 0 → H → F → F ⊗ ON → 0 is exact on global sections, so h0(N,F) > 0
guarantees thatH cannot be all of the class of the nonfixed part of F , contradiction.
Thus N is trivial, and the sections of F = H are fixed component free, and regular
by assumption. To see that F ·D > 0, consider 0→ F +KX → F → F ⊗OD → 0.
By duality, h2(X,F +KX) = 0, so h1(X,F) ≥ h1(D,F ⊗OD). If F ·D = 0, then
the general section of F is disjoint from D, so F ⊗OD = OD, but this contradicts
regularity of F , since h1(D,OD) = 1 by Lemma II.5.

The argument for the next result is essentially that of [F, 10.5], modified to fit
the current more general situation.

Lemma III.8. Let F be a numerically effective class on a smooth projective ratio-
nal anticanonical surface X, with F2 > 0, where N is the class of the fixed part N
of the linear system of sections of F and F −N = H is the class of the free part.
Let D be an arbitrary anticanonical divisor on X. Suppose h0(X,N +KX) = 0 but
h1(X,H) > 0.

(a) If N = 0, then F ·KX = 0 and h1(X,F) = 1.
(b) If N 6= 0, then 0 ≤ −KX ·F ≤ 1, and there is a class C ∈ K⊥X with h1(X, C) =

1 whose general section is reduced and irreducible such that H = rC, where
h1(X,H) = r. Moreover, no component of N is a component of D and either:
h1(X,F) = 1, in which case F ·KX = 0, C2 = 0, r > 1, N · C = 1 and N is
the class of a smooth rational curve of self-intersection −2; or h1(X,F) = 0,
in which case N = N1 + · · · + Nt, where Ni is a smooth rational curve for
every i, N 2

i = −2 and Ni · Ni+1 = 1 for i < t, N 2
t = −1, Ni · Nj = 0 for

j > i+ 1, C · N1 = 1, C · Ni = 0 for i > 1, and either r = 1 or C2 = 0.

Proof. (a) By Lemma II.7, we see F ·KX = 0. By Lemma II.6, F is the class of a
reduced and irreducible divisor F , and the restriction of KX to F is trivial, since
the sections of F are fixed component free, −KX is in EFF and F ·KX = 0. From
adjunction we thus have KF = F ⊗OF , so h1(F,F ⊗OF ) = 1. Now h1(X,F) = 1
follows from 0→ OX → F → F ⊗OF → 0.

(b) By Lemma II.7, we see H ·KX = 0, and by Lemma III.5, H · N > 0.
Also, H = rC and h1(X,H) = r for some positive integer r, where C is the

class of some reduced and irreducible curve C with h1(X, C) = 1, and either r = 1
or C2 = 0. [This follows if the linear system of sections of H is composed with
a pencil by Lemma II.6(a). If not, then H2 > 0, r = 1 by Lemma II.6(b), and
H = C is irregular by Lemma III.7, so h1(X,H) = h1(X, C) = 1 by (a).] Thus
h0(X,H) = r2C2/2 + r + 1 by Riemann-Roch.

By Corollary II.9, the components of N are smooth and rational, of negative
self-intersection, and each component M which is not also a fixed component of
the linear system of sections of −KX has by adjunction either M2 = M ·KX = −1
or M2 = −2 and M ·KX = 0. Moreover, each connected component of N meets
H positively, by Lemma III.5. Note that an irreducible component of N having
positive intersection product withH cannot be a component ofD, since−KX ·H = 0
means D is disjoint from a general section of H. In particular, each connected
component of N is either disjoint from D (and hence each irreducible component
of such a connected component has self-intersection −2) or contains a string of
components N1, . . . , Nt, none being a component of D, with (we may assume)
Ni ·Ni+1 > 0, C ·N1 > 0, −KX ·Ni = 0 for i < t, and −KX ·Nt = 1.
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Consider an irreducible component M of N which meets H, and hence which is
not a component of D. Clearly, M is a fixed component of |rC +M | (so rC +M
and rC move in complete linear systems of the same dimension). Also the general
section of OX(rC +M) is connected (since C ·M > 0), reduced, and has no fixed
components in common with D. Thus h1(X,OX(rC +M)) = 0 by Lemma III.4(a)
if M2 = −1, and h1(X,OX(rC +M)) = 1 by Lemma III.4(b) if M2 = −2. We can
in either case now compute h0(X,OX(rC +M)) by plugging into Riemann-Roch;
setting the result equal to h0(X,H) = r2C2/2 + r + 1 and solving give C ·M = 1.

We now consider two cases. First say the connected components of N are not
all disjoint from D; thus there is a string N1, . . . , Nt, as above, with N1 meeting H
and Nt meeting D. Note that L = rC+N1 + · · ·+Nt is numerically effective, since
it meets each Ni nonnegatively, and regular by Lemma III.4(a). If N1 + · · ·+Nt is
not all of N , then the difference N ′ is nontrivial. Since h0(X,OX(L)) = h0(X,F),
we see from 0 → OX(L) → F → F ⊗ ON ′ → 0 that h0(N ′,F) = 0, contradicting
Corollary II.9. I.e., N ′ must be trivial, N is precisely the class of N1 + · · ·+Nt, and
F is the class of L, hence regular. If t = 1, we are done with this case. If t > 1, to
see that C ·Ni = 0 for i > 1, that Ni ·Nj = 0 for j > i+ 1, and that Ni ·Ni+1 = 1
for each i, note by Lemma III.4 that h1(X,OX(rC + N1 + N2)) is 1 if N2

2 = −2
and 0 if N2

2 = −1. But h0(X,OX(rC +N1 +N2)) = h0(X,H) = r2C2/2 + r + 1.
Using Riemann-Roch and our knowledge of h1 to compute h0(X,OX(rC+N1+N2))
explicitly by setting it equal to r2C2/2+r+1 and simplifying give (rC+N1)·N2 = 1.
Since N1 ·N2 > 0, we see N1 ·N2 = 1 and C ·N2 = 0. This argument can be repeated
with rC +N1 + · · ·+Ni for each i ≤ t, to give the result.

Consider now the case that the connected components of N are all disjoint from
D. This means that F ⊗ OD = OD, and so from 0 → F + KX → F → OD → 0
and Lemma II.5 we see F is irregular. Let M be an irreducible component of N
meeting H. Then M2 = −2, and h1(X,OX(rC + M)) = 1 (as observed above).
If M is not all of N , the difference N ′ is nontrivial. Thus we can consider 0 →
OX(rC + M) → F → F ⊗ ON ′ → 0. Since F is irregular and h1(N ′,F) = 0
(Corollary II.9), the 1-dimensional space H1(X,OX(rC + M)) maps in the long
exact sequence isomorphically to H1(X,F). Thus h0(N ′,F) = 0, contradicting
Corollary II.9. I.e., N ′ must be trivial and N is precisely the class of M . Thus F is
the class of rC+M ; hence h1(X,F) = 1, and r > 1 (since otherwise F ·M < 0).

The following result is needed to deal with cases in which the base locus contains
an anticanonical divisor.

Lemma III.9. Let F be a numerically effective class on a smooth projective ra-
tional anticanonical surface X. Let N be the class of the fixed part of the linear
system of sections of F .

(a) There is a birational morphism X → Y to a smooth surface Y such that F is
the pullback of a numerically effective class L on Y , and L · E > 0 for every
class E of an irreducible exceptional divisor on Y .

(b) Let X → Y be a birational morphism to a smooth surface Y such that F
is the pullback of a class L on Y . Let M be the class of the fixed part of
the linear system of sections of L. Then h0(X,N + KX) > 0 if and only if
h0(Y,M+KY ) > 0.

(c) If h0(X,F + KX) > 0 and if F · E > 0 for every class E of an irreducible
exceptional curve, then F +KX is numerically effective.
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Proof. (a) If E is the class of an irreducible exceptional divisor E with F · E = 0,
let X → Y ′ be the birational morphism contracting E. Then the corresponding
homomorphism Pic(Y ′)→ Pic(X) is an isomorphism of Pic(Y ′) to E⊥. Thus there
is a class F ′ on Y ′ whose pullback to X is F . Note that F ′ is numerically effective
by Lemma II.1. We can repeat this process unless Y ′ has no exceptional classes
perpendicular to F , which must eventually occur since the rank of Pic(Y ′) is less
than the rank of Pic(X).

(b) Since any birational morphism of surfaces factors into a sequence of contrac-
tions of irreducible exceptional divisors [Ha, V.3.2], it is enough by induction to
show h0(X,N +KX) > 0 if and only if h0(Y,M+KY ) > 0 in the case that X → Y
is obtained by contracting a single irreducible exceptional curve E, whose class we
denote E . Thus we have F · E = 0. Also, the pullback of KY is KX −E [Ha, V.3.3].
Thus, by Lemma II.1, h0(X,F+KX−E) = h0(Y,L+KY ) and h0(Y,L) = h0(X,F).

Say h0(X,N +KX) > 0. Since F−N ∈ EFF, so is F+KX . But (F+KX) ·E =
−1 so E is in the fixed part of the linear system of sections of F + KX . Of
course, a section of −KX is in the fixed part of the linear system of sections of
F . Thus h0(X,F) = h0(X,F +KX) = h0(X,F +KX − E) and hence h0(Y,L) =
h0(Y,L+KY ), which means that a section of −KY is in the fixed part of the linear
system of sections of L; i.e., h0(Y,M+KY ) > 0.

Conversely, say h0(Y,M + KY ) > 0. Then h0(Y,L) = h0(Y,L + KY ), so
h0(X,F) = h0(X,F + KX − E). Thus a section of −KX + E is in the fixed part
of the linear system of sections of F so certainly a section of −KX is in the fixed
part, whence h0(X,N +KX) > 0.

(c) Let C be a reduced and irreducible curve on X . If C2 ≥ 0 or C ·KX ≥ 0,
then clearly C · (F +KX) ≥ 0. So say C2 < 0 and C ·KX < 0. By adjunction, C
is an exceptional curve, i.e., a smooth rational curve with C2 = C ·KX = −1. By
assumption, F · C > 0, so again C · (F +KX) ≥ 0.

By the following lemma we see that there are two ways a numerically effective di-
visor can contain an anticanonical divisor in its fixed part. One of these is described
explicitly; the other case reduces (essentially by subtracting off the anticanonical
divisor) to cases previously worked out, in which the fixed part does not contain
an anticanonical divisor. An explicit description could be made in this second case,
too. We chose not to include it here, since the statement of the lemma is already
somewhat complicated and since it is not hard using Theorem III.1 to work out an
explicit description if one chooses.

Lemma III.10. Let F be a numerically effective class on a smooth projective ra-
tional anticanonical surface X, let D be a nonzero section of −KX, let N denote
the class of the fixed part of the linear system of sections of F and let H = F −N .
Then N + KX ∈ EFF if and only if F · D = 0 but F ⊗ OD is nontrivial. In
this case, there exists a birational morphism of X to a smooth projective rational
anticanonical surface Y , and either: K2

Y < 0, there is a numerically effective class
F ′ on Y , F is the pullback of F ′−KY , and 0 = h1(Y,F ′) = h1(X,F); or K2

Y = 0,
H and N are the pullbacks of −sKY and −rKY for some integers s ≥ 0 and r > 0
respectively, and h1(X,F) = σ, where σ = 0 if s = 0, and otherwise r < τ and
σ = s/τ , where τ is the least positive integer such that the restriction of −τKX to
D is trivial.
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Proof. Suppose a section of −KX occurs in the fixed part of the linear system of sec-
tions of F ; i.e., h0(X,N+KX) > 0. In particular, this means that h0(X,−KX) = 1,
and thus that (−KX)2 ≤ 0 (otherwise, by Riemann-Roch, h0(X,−KX) > 1).

We wish to prove that F ·KX = 0. Denote X by X1, F by F1 and N by N1. By
Lemma III.9(a), there is a birational morphism X → Y such that F is the pullback
of a class L1 (numerically effective by Lemma II.1(d)) on Y which meets every
irreducible exceptional class on Y positively; by Lemma III.9(b), h0(X,M1+KY ) >
0, where M1 is the fixed part of the linear system of sections of L1. By Lemma
III.9(c), L1 + KY is numerically effective. Denote Y by X2, L1 + KY by F2 and
the class of the fixed part of the linear system of sections of F2 by N2.

Thus given a numerically effective Fi on Xi such that h0(Xi,Ni + KXi) > 0,
whereNi is the class of the fixed part of the linear system of sections of Fi, we obtain
a numerically effective class Li on a surfaceXi+1 such that h0(Xi+1,Mi+KXi+1) >
0, whereMi is the class of the fixed part of the linear system of sections of Li and
every irreducible exceptional class on Xi+1 meets Li positively, and from Li we
obtain a numerically effective class Fi+1 on Xi+1. Since −KXi ∈ EFF for each i,
it meets Fi nonnegatively. Since this process of going from i to i + 1 reduces the
number of integral divisors in the fixed part, it eventually must stop. I.e., for some
j, Fj is numerically effective but h0(Xj ,Nj + KXj ) = 0. Since for each i ≤ j we

have h0(Xi,Mi−1 +KXi) > 0 (which, as remarked above, is impossible if K2
Xi
> 0),

we see that K2
Xi
≤ 0 for all i ≤ j.

Denote KXi by Ki. Then for i < j, Fi ·Ki = Li ·Ki+1, and Fi+1 = Li +Ki+1

so Fi+1 ·Ki+1 = Fi ·Ki + K2
i+1. But 0 ≥ K2

i+1 ≥ K2
i (with K2

i+1 = K2
i precisely

if Xi = Xi+1, which would just mean that Fi = Li already meets every irreducible
exceptional class on Xi positively); thus 0 ≥ F ·KX > Fj ·Kj unless X2 = Xj and
K2

2 = 0, in which case Fj = L1 + (j − 1)K2. We see it is enough to consider two
cases: either 0 > Fj ·Kj, or 0 = Fj ·Kj. In the latter case, X2 = Xj, K

2
2 = 0 and

by Lemma II.4, Fj = −sK2 for some s ≥ 0, so for r = j − 1, L1 = −sK2 − rK2.
Consider first the contingency 0 > Fj · Kj. Let Dj be a nontrivial section of

−Kj (e.g., take the image of D under X1 → Xj). Consider 0 → Fj → Lj−1 →
Lj−1⊗ODj → 0. From Lemma III.6 and Lemma II.6(a), Lemma III.7, and Lemma
III.8, we see that a numerically effective divisor not containing an anticanonical
divisor in the fixed part of its linear system of sections but meeting the anticanonical
class positively is regular; i.e., Fj is regular, so the sequence is exact on global
sections and on h1. Since Fj and Lj−1 differ only in the fixed components of
their linear systems of sections, they have isomorphic H0’s. From Riemann-Roch,
h0(Xj ,Fj) = (F2

j − Kj · Fj)/2 + 1 and h0(Xj ,Lj−1) = (L2
j−1 − Kj · Lj−1)/2 +

1 + h1(Xj ,Lj−1). Setting these equal and simplifying using Fj = Lj−1 + Kj give
Lj−1 ·Kj = h1(Xj ,Lj−1), but Lj−1 ·Kj ≤ 0 since Lj−1 is numerically effective, so
h1 vanishes for Lj−1. Thus (Fj −Kj) ·Kj = Lj−1 ·Kj = 0, or Fj ·Kj = K2

j . Since

F ·K1 +K2
2 = F2 ·K2 ≥ Fj ·Kj = K2

j , we have F ·KX = F ·K1 ≥ K2
j −K2

2 ≥ 0.
Since F is numerically effective, we see that F ·KX = 0 as desired. We have also
proved that in this case K2

j = K2
2 , hence that Xj = X2, so Fj = L1 + (j − 1)K2.

Substituting into Fj ·Kj = K2
j gives (L1+(j−1)K2)·K2 = K2

2 or L1·K2 = (2−j)K2
2

and so we have 0 = F ·KX = L1 ·K2 = (2 − j)K2
2 ; i.e., either j = 2 or K2

2 = 0.
But K2

2 = 0 implies Fj ·Kj = 0, contradicting the hypothesis 0 > Fj ·Kj. Thus
j = 2, K2

2 < 0, and Y in the statement of Lemma III.10 is X2, while F ′ is F2.
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We note that in the course of the argument above we found that Lj−1 = L1 is
regular; thus F , being a pullback of L1, is regular too. But h2(X,F + KX) = 0
by duality, so h1(D,F) = 0 follows from regularity of F and from 0→ F +KX →
F → F ⊗OD → 0. From Lemma II.5 we therefore see that F ⊗OD is nontrivial.

Now consider the remaining contingency: X2 = Xj , K
2
2 = 0, Fj = −sK2 where

s ≥ 0, and L1 = −sK2 − rK2 for r = j − 1. Since Fj is numerically effective of
self-intersection 0 and the fixed part of its linear system of sections does not contain
a section of −K2, either Lemma III.6 applies or Fj = 0. Either way, Nj = 0, with
h1(X2,Fj) = σ, where σ = 0 if Fj = 0 and otherwise by Lemma II.6(a) Fj = σC
for some positive integer σ, where C is the class of some reduced and irreducible
curve C moving in a pencil.

Clearly, if s = 0, then σ = 0 and L1 = −rK2; i.e., we can take Y = X2, and
then H is the pullback of −sK2 with s = 0, and N is the pullback of −rK2, as
the statement of Lemma III.10 requires. Moreover, in this case h0(X2,L1) = 1, so
h1(X2,L1) = 0 by Riemann-Roch, so h1(X,F) = h1(X2,L1) = σ = 0, as claimed.

If s > 0, then C = −τK2, where στ = s. Thus the sections of Fj = σC = −sK2

are base point free and we have h1(X2,Fj) = σ. But h0(X2,Fj) = h0(X2,L1) and
by Riemann-Roch h0 − h1 is the same for Fj and L1, and hence h1 is the same
too, so h1(X2,L1) = h1(X,Fj) = σ. Moreover, since the pullback of Fj to X has
the same h0 as F , we see that H is the pullback of Fj = −sK2 and hence N is the
pullback of −rK2, and so again Y = X2.

We also have r < τ , since −rK2 is the class of a unique effective divisor but the
sections of C = −τK2 move in a pencil. Let t < τ ; then C+tK2 = −(τ−t)K2 ∈ EFF.
Since the sections of C = −τK2 are fixed component free and hence D2 · C = 0, the
restriction of −K2 to C is trivial, so from 0→ −C−tK2→ −tK2 → −tK2⊗OC → 0
we see h0(X2,−tK2) = 1 and, by Riemann-Roch, h1(X2,−tK2) = 0. But, denoting
the pullback of K2 to X also by K2, we have 0 = h1(X2,−tK2) = h1(X,−tK2), so
from 0→ −tK2+KX → −tK2 → −tK2⊗OD → 0, we see h1(D,−tK2) = 0; i.e., for
t < τ , the restriction of −K2 to D is, by Lemma II.5, nontrivial. But C is disjoint
from D2, and hence the pullback of C has trivial restriction to D; thus τ is the
least positive multiple of −K2 whose restriction to D is trivial. Moreover, it follows
that the restriction of H to D is trivial, and hence that F ⊗OD = −rK2 ⊗OD is
nontrivial.

Conversely, say F ·D = 0. By Lemma III.6, Lemma III.7, and Lemma III.8, if
N + KX /∈ EFF (i.e., if the fixed part of the linear system of sections of F does
not contain an anticanonical divisor), then no fixed component of the linear system
of sections of F is a fixed component of the linear system of sections of −KX . In
this case F · D = 0 means that F has a section which is disjoint from D, and
hence that F ⊗OD is indeed trivial. Thus, if F ⊗OD is nontrivial, it must be that
N +KX ∈ EFF.

Our results on base points depend on the following lemma.

Lemma III.11. Let C be an integral projective curve whose dualizing sheaf KC is
locally free rank 1. If h0(C,KC) > 0 (i.e., C is not smooth and rational), then KC

is generated by global sections.

Proof. This is a special case of Theorem D of [Cn].

The proof in [F] corresponding to the next result assumes that −KX has a
reduced section, but this can be avoided.
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Lemma III.12. Let F be the class of an effective fixed component free divisor on
a smooth projective rational anticanonical surface X. Let D be a nonzero section
of −KX. Then the sections of F have a base point if and only if F · D = 1, in
which case the base point is unique and lies on D.

Proof. First we check that there is no base point if F ·D 6= 1. Since F is numerically
effective, we have F · D ≥ 0. Say F · D = 0; if also F2 = 0 then, being fixed
component free, the sections of F are also obviously base point free (since distinct
sections of F are disjoint). So say F2 > 0. A general section F of F is reduced
and irreducible by Lemma II.6. Thus we may assume F and D are disjoint, and
so OF ⊗ F = KF by adjunction. From 0 → OX → F → F ⊗OF → 0, we see the
sections of F surject to those of F ⊗OF = KF . By Lemma III.11, KF is generated
by global sections (and hence the sections of F are base point free) unless F is
rational, i.e., unless F 2 = −2, contrary to assumption.

Now say F ·D > 1. Thus OF ⊗ F = −KX ⊗KF has degree at least 2g, where
g is the genus of F . By [D, Proposition 7, p. 59], OF ⊗ F is generated by global
sections, and hence as before the sections of F are base point free.

Conversely, suppose F · D = 1. Then F2 is odd by adjunction, so positive, so
a general section F of F is integral by Lemma II.6, and we may assume F and D
have no common components and hence meet at a single point, x, which must be
smooth on both F and D. Let Y → X be the morphism resulting from blowing up
x and let E be the class of the exceptional locus E. Then F ′ = F−E is numerically
effective and its sections fixed component free on Y , and the proper transform D′

of D is anticanonical, but F ′ · D′ = 0. Thus, by our foregoing argument, the
sections of F ′ are base point free. By Lemma II.6(a) (if F ′2 = 0) or Lemma III.7

and Lemma III.8(a) (if F ′2 > 0), we see h1(Y,F ′) = 1. But F ′ + E is numerically
effective (since F ′ is and since it meets E nonnegatively) of positive self-intersection
and meets the anticanonical class, so from Lemma III.7 and Lemma III.8, we see
it must be regular. Thus from 0 → F ′ → F ′ + E → (F ′ + E) ⊗ OE → 0 we see
that h0(Y,F ′) = h0(Y,F ′ + E), so E is the class of a fixed component of the linear
system of sections of F ′ + E . Since F ′ + E is the pullback of F to Y , we see that
the sections of F have a base point at x.

Proof of Theorem III.1. (a) By Lemma III.10, we see that the fixed part of the
linear system of sections of F cannot contain an anticanonical divisor. By Lemma
III.6, Lemma II.6, Lemma III.7 and Lemma III.8, we see that F is regular and its
linear system of sections is fixed component free, and so base point free by Lemma
III.12.

(b) Here F must have positive self-intersection (to satisfy adjunction), so, by
Lemma III.7 and Lemma III.8, F is regular. If its linear system of sections is also
fixed component free, then by Lemma III.12 it has a unique base point, on D. If
the sections of F have a fixed component, then the result follows by Lemma III.7
and Lemma III.8, again.

Conversely, say F = H+N , with H = rC, h1(X,H) = r and N = N1 + · · ·+Nt,
as in the statement of (b). It is easy to check that N 2 = N · KX = −1. Since
F is regular, we have using F = H + N , C · N = 1 and Riemann-Roch that
h0(X,F) = (H2 −H ·KX)/2 + r + 1. But h1(X,H) = r by hypothesis so we now
see h0(X,F) = h0(X,H). Thus N is the class of the fixed part of the linear system
of sections of H+N , as we needed to show.
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(c) If the sections of F are fixed component free, then first they are base point
free by Lemma III.12, and second either Lemma III.8(a) applies and gives the result
or Lemma III.6 applies and, with Lemma II.6, gives the result. If the sections of F
are not fixed component free but the fixed part does not contain an anticanonical
divisor, then only Lemma III.8(b) applies, giving the result.

(d) This is just Lemma III.10.

Proof of Corollary III.2. Let F be a numerically effective class such that the fixed
part of its linear system of sections is nontrivial but does not contain an anti-
canonical divisor. Of Lemma III.6, Lemma III.7 and Lemma III.8, only Lemma
III.8(b) applies, whence no fixed component of the linear system of sections of F is
a component of an arbitrary anticanonical divisor D.

We now prove Theorem I.1, of the Introduction:

Proof. So F is a numerically effective divisor class on a smooth projective rational
surface X with an effective anticanonical divisor D. Then h0(X,F) > 0 by Corol-
lary II.3. Moreover, by Corollary III.3(a), h1(X,F) > 0 if and only if F ·KX = 0
and a general section of F has a connected component disjoint from D. Thus we
only need to show that 1 + h1(X,F) is the number of connected components of a
general section of F −KX .

By Lemma II.5, anticanonical divisors are connected; hence the result follows for
F = OX , so we may assume that F is nontrivial. Suppose that h1(X,F) = 0. Then
h1(X,−(F −KX)) = 0 by duality, so from 0 → −(F − KX) → OX → OC → 0,
where C is a general section of F −KX , we see C is connected, as desired. Suppose
h1(X,F) > 0; then, by Theorem III.1 and Corollary III.2, −KX · F = 0 and
if the general section of F is not disjoint from D then, as we shall first assume,
there is a birational morphism X → Y to a smooth surface Y with K2

Y = 0 and
(regarding pullbacks from Y as classes on X) F = −τσKY − rKY , where 1 ≤ σ,
1 ≤ r < τ , −rKY is the class of the fixed part of the linear system of sections of
F , and −τKY is a pencil with which the linear system of sections of −τσKY is
composed. Suppose X = Y ; if r + 1 < τ then F − KX = −τσKY − (r + 1)KY ,
and h0(Y,−(r + 1)KY ) = 1, so a general section of F −KX has 1 + σ connected
components, while h1(X,F) = σ by Theorem III.1(c), as desired. If r+1 = τ , then
the linear system of sections of F −KX = −τ(σ + 1)KY is fixed component free,
and a general section again has 1 +σ connected components, as desired. If X → Y
is not the identity, then X is a blowing up of points (possibly infinitely near) of Y .
In this case, F −KX = −τσKY − rKY −KX ; hence a general section once more
has 1 + σ connected components, as needed, if we check that h0 of −rKY −KX is
1. Since in any case h0 of −rKY is 1, we have r < τ ; thus h0 of −rKY −KX is
1 if r + 1 < τ , since h0 of −rKY − KX + (−KY + KX) = −rKY − KY is 1 and
−KY +KX , being a sum of classes of exceptional curves, is the class of an effective
divisor. If r + 1 = τ , then the linear system of sections of −rKY −KY is a pencil,
and adding −(−KY +KX), which is the class of an antieffective divisor, we get the
class −rKY −KX , which has a unique effective section.

So now we may assume that the general section of F is disjoint from D. If the
linear system of sections of F is fixed component free, then, by Theorem III.1(c)
and Lemma II.6, h1(X,F) equals the number of components of a general section
F of F , and F is disjoint from D. Thus OF ⊗ (F − KX) = OF ⊗ F , so from
0→ OX → F → OF ⊗F → 0 and 0→ −KX → F −KX → OF ⊗ (F −KX)→ 0
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we see that the sections of F −KX are just sums of sections of F and −KX ; hence
the number of components of a general section of F is one less than the number of
components of a general section of F −KX , as desired. If the fixed part N of the
linear system of sections of F is not trivial but does not contain an anticanonical
divisor, then by Theorem III.1(c) h1(X,F) = 1 and the general section of F is
connected but, by Corollary III.2, disjoint from D. Arguing as in the previous
case shows that the general section of F −KX has two connected components, as
required.

Remark III.13. Our results have mostly concerned numerically effective classes, but
one may be interested in arbitrary classes. In general, to determine dimensions of
complete linear systems, fixed components and base points, given arbitrary divisor
classes on a smooth projective rational anticanonical surface, one essentially needs
to know the monoid EFF of effective classes on X .

Since EFF determines the cone NEF of numerically effective classes, given an
arbitrary class F and knowing EFF one can determine if F ∈ EFF and, if so, find
a decomposition F = L +M, where L is maximal with respect to L ∈ NEF and
L ≤ F (where L ≤ F means F − L ∈ EFF). Then h0(X,F) = h0(X,L), and the
results obtained herein for numerically effective classes apply to L.

To make this discussion concrete, consider the case that X is a blowing up of
P2. (Blowings up of other relatively minimal models can with minor changes be
handled similarly.) In this case the following data suffice to determine EFF: an
exceptional configuration {E0, . . . , En} ⊂ Pic(X) (i.e., a basis E = {E0, . . . , En} of
Pic(X), where E0 is the pullback of the class of a line with respect to some birational
morphism X → P2 and the other classes Ei are the classes of the exceptional loci
corresponding to a factorization ofX → P2 into a sequence of monoidal transforma-
tions); the kernel Λ ⊂ Pic(X) of the functorial homomorphism Pic(X) → Pic(D),
where D is an effective anticanonical divisor; and the fixed components of |D|.

In fact, EFF is generated by: (a) the fixed components of |D|; (b) classes F such
that F2 = F ·KX = −1 and F · E0 ≥ 0; (c) classes F such that F = Ei − Ej where
0 < i < j and F ∈ Λ; (d) classes F such that F2 = −2, F ·KX = 0, F · E0 > 0 and
F ∈ Λ; and (e) classes F such that F2 −F ·KX ≥ 0 and F · E0 ≥ 0.

To see this, we first check that classes of each of these types are in EFF. This
is obvious for classes of type (a). For a class F of one of the remaining types
note that h2(X,F) = h0(X,KX − F) = 0 since E0 is numerically effective but
(KX − F) · E0 < 0. Now effectivity follows in cases (b) and (e) by Lemma II.2.
In cases (c) and (d), by Lemma II.2 we have h0(X,F) = h1(X,F); we also have
h2(X,KX+F) = 0: in case (d) since h2(X,KX+F) = h0(X,−F) and −F ·E0 < 0,
and in case (c) since, if h2(X,KX + F) > 0, then −F ∈ EFF, which is impossible
since 0 < i < j implies Ej − Ei cannot be in EFF (as exceptional divisors, Ej may
be contained in Ei but not vice versa). In either case (c) or (d), since F ∈ Λ, the
restriction of F to D is trivial so we have 0 → F + KX → F → OD → 0; hence
h0(X,F) = h1(X,F) ≥ h1(D,OD) = 1.

Conversely, if F is the class of a reduced irreducible curve of negative self-
intersection, then F · E0 ≥ 0 and either F is a fixed component of |D| (which
is case (a)), or F is not the class of a fixed component of |D| and so meets −KX

nonnegatively. Hence by adjunction either F2 = F · KX = −1 (case (b)), or
F2 = −2, F ·KX = 0 and F is disjoint from D, and thus in Λ (which is case (c)
if F · E0 = 0, and case (d) if F · E0 > 0). In general, if F is in EFF, we can write
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F = L +N , where N is a nonnegative sum of curves of negative self-intersection
(and hence in the monoid generated by types (a) through (d)), and L is numerically
effective (and hence of type (e)).
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