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Abstract: The current trend toward using natural food additives, cosmetics, and medicines has
motivated industries to substitute synthetic compounds for natural products. Essential oils (EOs)
from medicinal plants are a well-known source of chemical compounds that display several interesting
biological activities, including antimicrobial action. In this study, we investigated the antibacterial
activity of EOs extracted from three Piperaceae species collected in the Brazilian Amazon region
against a representative panel of cariogenic bacteria. The minimum inhibitory concentration (MIC) of
the essential oils extracted from Peperomia pellucida (PP-EO), Piper marginatum (PM-EO), and Piper
callosum (PC-EO) was determined against Streptococcus mutans, S. mitis, S. sanguinis, S. salivarius,
S. sobrinus, Enterococcus faecalis, and Lactobacillus casei by using the microplate microdilution method.
PM-EO, PC-EO, and PP-EO displayed antibacterial activity against all the tested cariogenic bacteria.
PM-EO displayed the best inhibitory activity, with MIC values ranging from 50 to 500 µg/mL. The
lowest MIC values were obtained for PM-EO against S. mitis (MIC = 75 µg/mL), Lactobacillus casei
(MIC = 50 µg/mL), and S. mutans (MIC = 50 µg/mL). Gas chromatography mass spectrometry
(GC-MS) analysis allowed the chemical composition of all the EOs to be identified. The main
constituents of PM-EO, PC-EO, and PP-EO were 3,4-(methylenedioxy)propiophenone, α-pinene,
and dillapiole, respectively. Finally, the compounds that were exclusively detected in PM-EO are
highlighted. Our results suggest that PM-EO may be used in products for treating dental caries and
periodontal diseases.

Keywords: antibacterial activity; oral pathogens; Piper callosum; Piper marginatum; Peperomia pellucida

1. Introduction

The current trend toward consuming minimally processed products has encouraged
the development of alternative natural additives that can perform the same functions as
synthetic additives. In this scenario, essential oils (EOs) extracted from medicinal plants
have been screened for their safe and eco-friendly applications in the pharmaceutical,
cosmetic, and food industries [1]. EOs are mixtures of volatile compounds produced by the
specialized metabolism of plants to carry out survival functions [2]. Interesting biological
properties, such as antimicrobial, antioxidant, anti-inflammatory, and anticancer activities,
have been attributed to the complex chemical constitution of EOs [3]. Terpenoids, especially
monoterpenes and sesquiterpenes, are the main chemical constituents of EOs and have been
proven to play a key role in inhibiting pathogens [4]. Specifically, monoterpenoids affect
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microorganism multiplication and development by interfering with their physiological and
biochemical processes [5].

Oral bacteria belonging to the genus Streptococcus can produce adhesive molecules
that allow them to colonize different tissues in the mouth through biofilm formation [6].
The same bacteria can ferment carbohydrates, generating acids as by-products, which
culminates in tooth demineralization and cavitation (dental caries) [7]. Streptococcus mutans
is one of the main agents that cause dental caries: it colonizes the tooth surface and
metabolizes different types of carbohydrates, using them to form biofilms on the tooth
surface under low-pH conditions [8].

Because chlorhexidine exerts bacteriostatic and bactericidal effects against various
microorganisms, it is the gold standard anticariogenic chemical agent [9]. However, syn-
thetic oral biocides, including chlorhexidine, are falling into disuse due to the adverse
effects associated with their frequent application and concerns about the emergence of
microbial resistance to them [10]. Recently, our research group reviewed publications on
the antibacterial activity of EOs extracted from several plants against bacteria that cause
caries and periodontal diseases [11]. EOs are effective antimicrobials that can be employed
as an alternative to traditional anticariogenic products, especially for long-term use.

Piperaceae, a large family of angiosperms, is composed of about 3700 species, with
Piper and Peperomia being the most representative genera. In folk medicine, Piper and
Peperomia species are used for treating many diseases, and numerous bioassays with
essential oils, extracts, fractions, and pure compounds obtained from these plants have
been reported [12,13]. Chemical analysis of EOs extracted from Piperaceae plants revealed
the presence of monoterpenes, sesquiterpenes, and arylpropanoids [14] endowed with
interesting biological properties. Piper species, also known as “pepper”, have well-known
applications in gastronomy, and their secondary metabolites have a wide range of human
health effects [15]. Of particular interest is the antimicrobial potential of the genus Piper,
which has been useful for treating chronic periodontitis [16].

This study aimed to evaluate and compare the antimicrobial activity of the EOs
extracted from fresh leaves of three Brazilian Piperaceae species (Piper marginatum, Piper
callosum, and Peperomia pellucida) against a representative panel of cariogenic bacteria. The
chemical composition of each EO was determined by GC-MS analysis.

2. Results

We obtained essential oils extracted from the leaves of Piper marginatum (PM-EO), Piper
callosum (PC-EO), and Peperomia pellucida (PP-EO) as pale-yellow oils in 0.60%, 0.26%, and
0.04% yield (w/w), respectively. Table 1 shows the chemical constituents of PM-EO, PC-EO,
and PP-EO, as identified by gas chromatography with flame ionization detection (GC-FID)
and gas chromatography mass spectrometry (GC-MS) analysis. PC-EO, PM-EO, and PP-EO
are rich in phenylpropanoids (31.6%, 32.4%, and 41.7%, respectively), but they differ in
content of monoterpenes (18.6%, 48.3%, and 0.7%, respectively) and sesquiterpenes (44.8%,
18.8%, and 52.4%, respectively). Monoterpene hydrocarbons (44.9%) and oxygenated
sesquiterpenes (35.2%) predominate in PC-EO, whereas PM-EO is rich in monoterpene
and sesquiterpene hydrocarbons (18.6% and 36.0%, respectively). The major compounds
identified in PM-EO, PC-EO, and PP-EO were 3,4-(methylenedioxy)propiophenone (11.3%),
α-pinene (19.2%), and dillapiole (40.6%), respectively. 3,4-(methylenedioxy)propiophenone
(11.3%), myristicin (5.3%), croweacin (5.2%), δ-3-carene (4.6%), and (Z)-β-ocimene (4.2%),
which are relatively abundant in PM-EO, were not detected in PC-EO or PP-EO.
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Table 1. Chemical compounds detected in the EOs extracted from Piper callosum (PC-EO), Piper
marginatum (PM-EO), and Peperomia pellucida (PP-EO). The compounds were quantified by GC-FID
and identified by EI-MS.

Compound RIexp RIlit
% RA

PM-EO
% RA

PC-EO
% RA
PP-EO Identification

α-thujene 924 931 - 0.2 ± 0.09 - RL a MS
α-pinene 932 939 0.9 ± 0.09 19.2 ± 0.88 - RL a MS

camphene 948 953 - 0.6 ± 0.27 - RL a MS
sabinene 971 976 - 2.7 ± 0.92 - RL a MS
β-pinene 978 980 0.6 ± 0.05 14.3 ± 0.64 - RL a MS
myrcene 988 991 0.6 ± 0.07 0.9 ± 0.37 - RLa MS

α-phellandrene 1007 1005 - 0.2 ± 0.08 - RL a MS
δ-3-carene 1009 1011 4.6 ± 0.50 - - RL b MS
α-terpinene 1016 1018 - 1.4 ± 0.57 - RL a MS
p-cymene 1024 1026 - 0.3 ± 0.09 - RL a MS
limonene 1028 1031 - 0.8 ± 0.32 0.2 ± 0.03 RL a MS

1,8-cineole 1031 1033 - 2.3 ± 0.73 - RL a MS
Z-β-ocimene 1038 1040 4.2 ± 0.42 - - RL a MS
E-β-ocimene 1047 1050 7.7 ± 0.84 - 0.5 ± 0.09 RL a MS
γ-terpinene 1058 1062 - 3.5 ± 0.46 - RL a MS
α-terpinolene 1084 1088 - 0.8 ± 0.27 - RL a MS

linalool 1101 1098 - 0.1 ± 0.02 - RL a MS
terpinen-4-ol 1180 1179 - 0.6 ± 0.17 - RL a MS

hexyl butanoate 1192 1191 - - 0.1 ± 0.04 RL c MS
α-terpineol 1195 1197 - 0.4 ± 0.02 - RL d MS

decanal 1207 1207 - - 1.3 ± 0.13 RL e MS
safrole 1290 1285 - 2.3 ± 0.03 - RL c MS

δ-elemene 1332 1340 2.1 ± 0.17 - - RL a MS
α-copaene 1371 1376 - 1.2 ± 0.28 - RL a MS

β -bourbonene 1379 1355 - - 0.3 ± 0.06 RL a MS
β-elemene 1393 1391 0.7 ± 0.05 - 0.5 ± 0.05 RL a MS

methyl eugenol 1400 1403 0.7 ± 0.06 6.5 ± 1.13 - RL a MS
dodecanal 1411 1409 - - 0.6 ± 0.03 RL f MS

E-caryophyllene 1417 1418 5.5 ± 0.39 1.5 ± 0.34 13.2 ± 0.28 RL a MS
trans-α-bergamotene 1433 1438 - - 0.1 ± 0.03 RL g MS

croweacin 1450 1452 5.2 ± 0.27 - - RL h MS
α-humulene 1452 1454 0.7 ± 0.06 0.4 ± 0.09 0.8 ± 0.31 RL a MS

E-β-farnesene 1457 1458 - - 0.5 ± 0.02 RL a MS
γ-gurjenene 1469 1473 - - 2.9 ± 0.70 RL i MS
α-amorphene 1471 1485 0.7 ± 0.06 - - RL a MS
germacrene-D 1475 1480 10.8 ± 0.73 2.6 ± 0.63 6.8 ± 0.77 RL a MS
β-selinene 1484 1485 2.4 ± 0.17 - - RL i MS

bicyclogermacrene 1491 1494 1.0 ± 0.25 - 9.1 ± 0.26 RL a MS
α-muurolene 1493 1499 1.4 ± 0.77 0.2 ± 0.04 - RL a MS

Z-methyl isoeugenol 1496 1532 0.6 ± 0.08 - - RL a MS
germacrene A 1502 1503 0.7 ± 0.09 - 0.1 ± 0.06 RL a MS
γ-cadinene 1512 1513 - - 0.1 ± 0.05 RL a MS
myristicin 1516 1520 5.3 ± 0.23 - - RL a MS
δ-cadinene 1523 1524 - 0.9 ± 0.05 - RL a MS

β-sesquiphellandrene 1528 1524 - - 0.8 ± 0.05 RL j MS
elemicin 1542 1540 9.2 ± 0.76 3.1 ± 0.70 - RL l MS

3,4-
(methylenedioxy)propiophenone 1543 1545 11.3 ± 0.03 - - RL m MS

E-nerolidol 1564 1564 - - 1.3 ± 0.77 RL a MS
spathulenol 1572 1576 1.6 ± 0.07 - 0.4 ± 0.08 RL a MS

caryophyllene oxide 1578 1581 - - 0.4 ± 0.07 RL a MS
globulol 1581 1584 0.6 ± 0.05 - - RL n MS

viridiflorol 1588 1590 0.6 ± 0.06 - 15.1 ± 0.32 RL i MS
10-epi-γ-eudesmol 1618 1621 0.7 ± 0.05 - - RL o MS
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Table 1. Cont.

Compound RIexp RIlit
% RA

PM-EO
% RA

PC-EO
% RA
PP-EO Identification

dillapiole 1620 1622 - - 40.6 ± 0.90 RL i MS
γ-eudesmol 1629 1630 - 2.5 ± 0.77 - RL i MS

isospathulenol 1635 1639 0.9 ± 0.09 - - RL p MS
torreyol 1642 1645 0.6 ± 0.05 1.0 ± 0.17 - RL q MS

β-eudesmol 1650 1649 4.5 ± 0.03 - - RL i MS
apiole 1681 1680 - - 1.1 ± 0.08 RL i MS

Monoterpene hydrocarbons 18.6 44.9 0.7
Oxygenated monoterpenes - 3.4 -

Sesquiterpene hydrocarbons 36.0 13.3 35.2
Oxygenated sesquiterpenes 8.8 3.5 17.2

Phenylpropanoids 31.6 32.4 41.7
Others - - 2.0

Not identified 5.0 2.5 3.2

RI: retention indices relative to n-alkanes C8–C20 on Rtx-5MS capillary column; RA: relative area* (peak area
relative to the total peak area in the GC-FID chromatogram); RL: comparison of the retention index with the
literature (a–q: [17–32], respectively); MS: comparison of the mass spectrum with the literature. * Average from
three replicates.

We assessed the in vitro antibacterial activities of PM-EO, PC-EO, and PP-EO by
using the microplate microdilution method and evaluated them in terms of the minimum
inhibitory concentration (MIC, i.e., the lowest concentration of the compound capable of
inhibiting the growth of cariogenic bacteria). We performed the assay against seven bacteria
(Streptococcus mutans, S. mitis, S. salivarius, S. sanguinis, S. sobrinus, Enterococcus faecalis, and
Lactobacillus casei) and used chlorhexidine dihydrochloride as the positive control. DMSO
was used to solubilize the essential oils and assayed as the negative control. No inhibitory
effect of DMSO on the bacteria was observed. The results are depicted in Table 2.

Table 2. In vitro antibacterial activity (MIC; µg/mL) of the essential oils extracted from Piper margina-
tum (PM-EO), Piper callosum (PC-EO), and Peperomia pellucida (PP-EO) against cariogenic bacteria.

Microorganism PC-EO PM-EO PP-EO CHD

Streptococcus salivarius ATCC 25975 500 200 500 0.74
Streptococcus sanguinis ATCC 1055 1000 225 250 0.74
Streptococcus sobrinus ATCC 33478 500 200 250 0.18

Streptococcus mitis ATCC 49456 500 75 125 1.47
Streptococcus mutans ATCC 25175 500 50 125 0.09
Enterococcus faecalis ATCC 4082 1000 500 1000 2.95
Lactobacillus casei ATCC 11578 500 50 125 0.37

CHD: chlorhexidine dihydrochloride (µg/mL), positive control.

The MIC values obtained for PM-EO, PC-EO, and PP-EO were in the ranges of
50–500, 500–1000, and 125–1000 µg/mL, respectively. These EOs were less effective
against E. faecalis (MIC values from 500 to 1000 µg/mL) and S. sanguinis (MIC values from
225 to 1000 µg/mL). On the other hand, PM-EO, PC-EO, and PP-EO were more effective
against S. mutans and L. casei (MIC values from 50 to 500 µg/mL). The lowest MIC values
were achieved with PM-EO against S. mutans (MIC = 50 µg/mL), L. casei (MIC = 50 µg/mL),
and S. mitis (MIC = 75 µg/mL).

3. Discussion

A comparison between the chemical composition of the essential oils extracted from
Piper marginatum (PM-EO), P. callosum (PC-EO), and Peperomia pellucida (PP-EO) revealed
that, although these EOs are rich in phenylpropanoids, the chemical profiles of the EOs
obtained from the two Piper species (PM-EO and PC-EO) differ from that of PP-EO in terms
of the contents of monoterpene hydrocarbons (which is lower in PP-EO) and oxygenated
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sesquiterpenes (which is higher in PP-EO). PM-EO and PC-EO are rich in monoterpene
and sesquiterpene hydrocarbons; however, PC-EO is rich in monoterpene hydrocarbons,
whereas sesquiterpene hydrocarbons are richest in PP-EO.

The main constituents of PC-EO are α-pinene (19.2%), β-pinene (14.3%), and methyl
eugenol (6.5%). Interestingly, PC-EO is rich in α- and β-pinene, whereas safrole has frequently
been highlighted as the main compound in EOs extracted from P. callosum [33–35].

PP-EO contains dillapiole (40.6%), (E)-caryophyllene (13.2%), viridiflorol (15.1%), and
bicyclogermacrene (9.1%) as the main compounds. Phenylpropanoids were reported as
the major compounds in the EOs obtained from P. pellucida [36]; the most predominant
chemotype was shown to contain dillapiole as the main compound [37]. The chemical
composition of P. pellucida specimens collected in the Brazilian Amazon, Rio de Janeiro
(Brazil), and Cameroon are marked by the presence of dillapiole [28,38–40].

Here, we identified 3,4-(methylenedioxy)propiophenone (11.3%), germacrene-D (10.8%),
and E-β-ocimene (7.7%) as the major compounds in PM-EO. Da Silva et al. reported
3,4-methylenedioxypropiophenone (21.8%) as the main component in the EO extracted
from another P. marginatum specimen collected in the Brazilian Amazon region [33]. In
addition, 3,4-methylenedioxypropiophenone (22.9%), δ-3-carene (10.2%), (E)-caryophyllene
(9.7%), and spathulenol (6.9%) were detected as the main components in the EO extracted
from P. marginatum leaves collected in Santarém, Pará, Brazil [41]. On the other hand,
the EOs extracted from the leaves of a P. marginatum specimen collected in the State of
Pernambuco, northeastern Brazil, were shown to contain (Z)- or (E)-asarone (30.4 and 6.4%,
respectively) and patchouli alcohol (16.0%) as the main compounds [42]. The EO extracted
from P. marginatum collected in Curitiba, Paraná, Brazil, was reported to contain myristicin
(12.8%), sarisan (12.3%), and kakuol (13.3%) as the main compounds [43].

Differences exist in the quantitative and qualitative profiles of EOs extracted from
specimens collected worldwide, and are associated with environmental factors or growing
conditions, which greatly affect the chemical composition of volatile oils and, hence, their
biological activities [44].

The use of plant species as sources of alternative therapeutic agents for infectious
diseases is noteworthy. Mouthwashes containing EOs provided promising results in terms
of inhibition of pathogenic oral microorganisms [45] through several mechanisms, such as
cell wall disruption, inhibition of enzymatic activity, and biofilm formation [46,47]. Ethanol
extracts from Piper species inhibit the bacteria that cause oral diseases [16]. Antimicrobial
assays showed that the EO extracted from Piper muricatum Blume (Piperaceae) has moderate
activity toward Bacillus cereus and Streptococcus mutans (MIC values of 250 µg/mL) [48].
However, to the best of our knowledge, the antibacterial activity of EOs extracted from
Piper marginatum (PM-EO), Piper callosum (PC-EO), and Peperomia pellucida (PP-EO) against
cariogenic bacteria has not been reported.

Currently, the antibacterial activity of EOs against oral pathogens can be classified
based on their MIC values. According to Oliveira et al., EOs with MIC values lower than
100 µg/mL, between 101 and 500 µg/mL, between 501 and 1500 µg/mL, and between 1500
and 2000 µg/mL are considered very active, active, moderately active, and weakly active,
respectively. MIC values higher than 2000 µg/mL denote an inactive EO [11]. According
to these criteria, PM-EO, PC-EO, and PP-EO display antibacterial activity against all the
tested cariogenic bacteria. PC-EO displays moderate activity, with MIC values ranging
from 500 µg/mL (against S. mutans, S. mitis, S. salivarius, S. sobrinus, and L. casei) to
100 µg/mL (against S. sanguinis and E. faecalis). On the other hand, PM-EO is the most
active among the assayed EOs. The very strong activity of PM-EO against S. mutans
(MIC = 50 µg/mL) is noteworthy: this bacterium is one of the main microorganisms
underlying caries because it can produce both soluble and insoluble glucans from dietary
sucrose by using glucosyltransferases [49]. Natural products with antimicrobial effects are
an attractive alternative to conventional synthetic agents for preventing dental caries [10].

Studies on the antibacterial activity of EOs have been carried out because such oils do
not elicit bacterial resistance given that they are mixtures of compounds [11]. Lipophilic
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constituents of EOs successfully inhibit microbial growth because they react with the lipid
parts of cell membranes; in addition, they inhibit the synthesis of DNA, RNA, proteins,
and polysaccharides in bacterial cells [50]. Of the three Piperaceae EOs we evaluated
herein, PM-EO has the most promising antibacterial activity. GC-MS analysis of its chemi-
cal constituents showed a great amount of 3,4-(methylenedioxy)propiophenone (11.3%),
myristicin (5.3%), croweacin (5.2%), δ-3-carene (4.6%), and (Z)-β-ocimene (4.2%), which we
did not detect in PC-EO or PP-EO. The biological activities displayed by EOs are due to
their chemical composition and may originate from the action of a specific compound or
the synergistic action of all the chemical compounds in the EO [51]. In this study, we sur-
veyed the literature to determine the antimicrobial activities displayed by the constituents
exclusively detected in PM-EO, which could explain its stronger inhibitory activity on
cariogenic bacteria.

Over the last few years, studies conducted with myristicin, one of the major com-
pounds in PM-EO, have demonstrated its promising biological activities [52]. EOs contain-
ing myristicin as the main component have been shown to display interesting antimicrobial
activities in food systems [53]. The EOs extracted from dill (Anethum graveolens) and parsley
(Petroselinum crispum) grown during the summer and winter contain from 28% to 42%
myristicin and was shown to inhibit Escherichia coli, Staphylococcus albus, Bacillus mesen-
tericus, and Aspergillus flavus [54]. The EO extracted from Pycnocycla bashagardiana aerial
parts contains 39% myristicin and was reported to exhibit strong antimicrobial activity
against Staphylococcus aureus, Staphylococcus epidermidis, Escherichia coli, and Candida albi-
cans [55]. Myristicin isolated from the EO of Piper sarmentosum (representing about 81% to
83% of its composition) was shown to inhibit the proliferation of Escherichia coli and the
in vitro activity of the GTPase enzyme, interfering with a fundamental step for microbial
cell division [56]. Apart from the antibacterial activities reported for myrsticin, δ-3-carene
and (Z)-β-ocimene, which are major compounds in PM-EO, were also correlated with
antimicrobial activities [57,58].

Despite the reported application of EOs in the pharmaceutical, cosmetic, sanitary, and
food industries, recent studies demonstrated that EOs can exert prooxidant and cytotoxic
effects on eukaryotic cells. Studies showed that EOs display cytotoxic effects, and their
cytotoxic mechanisms were identified by examining gene and protein expression levels [59].
Depending on type and concentration, EOs can exhibit cytotoxic effects on living cells,
even at low concentrations (IC50 27.81 µg/mL) [60]. Therefore, the effective use of PM-EO,
PC-EO, and PP-EO in oral formulations requires carefully evaluating their cytotoxicity.
Complementing such discussion, PM-EO displayed the most promising anticariogenic
activity, and its chemical analysis showed high content of sesquiterpene hydrocarbon.
Comparisons between the toxicities of EOs distinguished by their content of sesquiterpene
hydrocarbon and oxygenated sesquiterpenes were reported. An EO rich in sesquiter-
pene hydrocarbon displayed selective action, i.e., it was more toxic against cancer than
noncancerous cells [61].

4. Materials and Methods
4.1. Plant Material

Leaves from Piper marginatum, Piper callosum, and Peperomia pellucida (Piperaceae)
were all collected near the city of Itacoatiara, State of Amazonas, Brazil (S 03◦01′50.5′′–W
58◦32′37.3′′, S 03◦04′28.6′′–W 58◦28′36.3′′, and S 03◦ 08′ 28.8′′–W 58◦ 26′ 54.3′′, respectively)
in March 2019 and identified by Prof. Dr. Ari de Freitas Hidalgo. Voucher specimens (8266,
8267, and 8264, respectively) were deposited at the Herbarium of the Federal University
of Amazonas. This study was registered in the Brazilian System for the Management of
Genetic Heritage and Associated Traditional Knowledge (SisGen) under codes AF36A53
and A2CE4A6.
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4.2. Essential Oil Extraction

Fresh leaves (1200 g) of each species were divided into three samples (400 g each) and
accommodated in 1 L round-bottom flasks containing 500 mL of distilled water. The flasks
containing the fresh leaves were connected to a Clevenger-type apparatus and submitted
to hydro-distillation for 3 h. After manual collection of the EOs, the obtained volume was
measured, and traces of water were removed by freezing the sample below 0 ◦C, followed
by transfer of the unfrozen EO to a new vial. The EO yields (w/w) were calculated from
the weight of the fresh leaves. The EOs were conditioned in hermetically sealed glass
containers at −20 ◦C until use.

4.3. Identification of the EO Compounds

The EOs were dissolved in ethyl ether and analyzed on a Shimadzu GC2010 Plus
gas chromatograph (Shimadzu Corporation, Kyoto, Japan) equipped with an AOC-20s
autosampler and fitted with FID and a data-handling processor. An Rtx-5 (Restek Co.,
Bellefonte, PA, USA) fused silica capillary column (30 m × 0.25 mm i.d.; 0.25 µm film thick-
ness) was employed. The operation conditions were as follows: the column temperature
was programmed to rise from 60 to 240 ◦C at 3 ◦C/min, then held at 240 ◦C for 5 min; the
carrier gas was helium (99.999%) at a flow rate of 1.0 mL/min; injection mode; injection
volume of 0.1 µL (split ratio of 1:10); injector and detector temperatures of 240 and 280 ◦C,
respectively. The relative concentrations of the components were obtained by peak area
normalization (%). The relative areas were the average of triplicate GC-FID analyses.

The GC-MS analyses were carried out on a Shimadzu QP2010 Plus (Shimadzu Corpora-
tion, Kyoto, Japan) system equipped with an AOC-20i autosampler. The column consisted of
an Rtx-5MS (Restek Co., Bellefonte, PA, USA) fused silica capillary (30 m length × 0.25 mm
i.d.× 0.25 µm film thickness). Electron ionization mode was used at 70 eV. Helium (99.999%)
was employed as the carrier gas at a constant flow of 1.0 mL/min. The injection volume
was 0.1 µL (split ratio of 1:10). The injector and the ion-source temperatures were set at 240
and 280 ◦C, respectively. The oven temperature program was the same as the one used for
GC. The mass spectra were taken with a scan interval of 0.5 s for mass ranging from 40 to
600 Da. The DA-EO components were identified based on their retention indices on an
Rtx-5MS capillary column under the same operating conditions used for GC, relative to a
homologous series of n-alkanes (C8–C20) [62]. Structures were computer-matched to the
Wiley 7, NIST 08, and FFNSC 1.2 spectral libraries, and their fragmentation patterns were
compared to the literature data.

4.4. Bacterial Strains and Antimicrobial Assays

The minimum inhibitory concentration (MIC) values of the EOs were calculated by
using the broth microdilution method in 96-well microplates. The following standard
strains were employed: Enterococcus faecalis (ATCC 4082), Streptococcus salivarius (ATCC
25975), Streptococcus sobrinus (ATCC 33478), Streptococcus mutans (ATCC 25175), Strepto-
coccus mitis (ATCC 49456), Streptococcus sanguinis (ATCC 10556), and Lactobacillus casei
(ATCC 11578). Individual 24 h colonies from blood agar (Difco Labs, Detroit, MI, USA)
were suspended in 10.0 mL of tryptic soy broth (Difco, Detroit, USA). The standardization
of each microorganism suspension was carried out as previously described [50]. The EO
samples were dissolved in DMSO (Merck, Darmstadt, Germany) at 1 mg/mL and diluted in
tryptic soy broth (Difco) so that concentrations in the range from 4000 to 3.9 µg/mL would
be achieved. The final DMSO concentration was 5% (v/v), and this solution was used as the
negative control. One inoculated well was included to control the adequacy of the broth for
organism growth. One noninoculated well free of the antimicrobial agent was also included
to ensure medium sterility. Chlorhexidine dihydrochloride (C8527 Sigma) was dissolved in
tryptic soy broth (Difco) and used as the positive control at concentrations ranging from
59.0 to 0.115 µg/mL. The microplates (96-well) were sealed with plastic film and incubated
at 37 ◦C for 24 h. Next, 30 µL of 0.02% resazurin (199303 Sigma, St. Louis, MO, USA)
aqueous solution was poured into each microplate reservoir to indicate microorganism
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viability. Visual readings of the resazurin color changing from blue (no bacterial growth) to
pink (bacterial growth) were carried out. The MIC values were determined as the lowest
concentration of each EO capable of inhibiting microorganism growth. Three replicate
assays were accomplished for each microorganism.

5. Conclusions

The EOs extracted from fresh leaves of Brazilian populations of Piperaceae have
promising activity against cariogenic bacteria. The main constituents detected in the
samples evaluated in our study were 3,4-(methylenedioxy)propiophenone for PM-
EO, α-pinene for PC-EO, and dillapiole for PP-EO. As for the chemical compounds de-
tected in the EOs obtained from plants collected in other countries, we noted that 3,4-
(methylenedioxy)propiophenone and dillapiole have frequently been identified as the main
compounds of EOs obtained from P. marginatum and P. pellucida, respectively. On the other
hand, safrole has been the main compound detected in the EO extracted from P. callosum.
Some chemical compounds, such as myristicin, were exclusively detected in PM-EO and
deserve attention because it displayed the most promising inhibitory activities against the
evaluated oral bacteria during the MIC assays. The results presented herein suggest the
possible use of Brazilian Piperaceae EOs in oral health products for treating dental caries
and periodontal diseases, which emphasize their great potential for commercial application
in phytomedicines. Our results provide new insights for the continuity of the evaluation of
PM-EO, PC-EO, and PP-EO as oral products. Further cytotoxicity assays are necessary to
reinforce the safety of their use in pharmaceuticals.
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