
Antichain-based QBF Solving

T. Brihaye1, V. Bruyère2, L. Doyen3, M. Ducobu1, and J.-F. Raskin4

1 Institut de Mathématique – Université de Mons, Belgique
2 Institut d’Informatique – Université de Mons, Belgique

3 LSV, ENS Cachan & CNRS, France
4 Département d’Informatique – Université Libre de Bruxelles, Belgique

Abstract. We consider the problem of QBF solving viewed as a reachability

problem in an exponential And-Or graph. Antichain-based algorithms for reach-

ability analysis in large graphs exploit certain subsumption relations to leverage

the inherent structure of the explored graph in order to reduce the effect of state

explosion, with high performance in practice.

In this paper, we propose simple notions of subsumption induced by the structural

properties of the And-Or graphs for QBF solving. Subsumption is used to reduce

the size of the search tree, and to define compact representations of certificates (in

the form of antichains) both for positive and negative instances of QBF. We show

that efficient exploration of the reduced search tree essentially relies on solving

variants of Max-SAT and Min-SAT. Preliminary stand-alone experiments of this

algorithm show that the antichain-based approach is promising.

1 Introduction

The problem of evaluating the truth value of a quantified Boolean formula (QBF) is one

of the most popular PSPACE-complete problems, like SAT (the satisfiability problem

for Boolean formulas) is the typical NP-complete problem. QBF is a simple and ele-

gant formalism in which many problems of practical interest can be encoded, in a large

number of areas such as automated planning, artificial intelligence, logic reasoning,

and verification [14, 6]. For instance, QBF can encode reachability problems more suc-

cinctly than SAT with a formula that is logarithmic in the diameter of the system when

it can only be done linearly in the diameter with a SAT formula [18]. As another exam-

ple, SAT and QBF can be integrated for bounded model-checking where the existence

of a path is encoded by SAT, and termination is checked with QBF [10].

The simple form of QBF makes the problem appealing and accessible to a large

community. However, despite its apparent simplicity, the design of efficient algorithmic

solutions remains challenging. Recent progress has been observed in the practical ap-

proaches to this problem. In particular, generalizations of heuristics and optimizations

used in SAT solving have been applied to QBF with some success [24, 27].

Many algorithms have been proposed in the literature to solve QBF and competitive

events like QBFEVAL aim at assessing the advances in reasoning about QBF [27, 15].

Several leading QBF solvers are search-based. They typically use pruning techniques

that extend the DPLL search strategy from SAT to QBF [8]. Common heuristics are unit

propagation, conflict learning and back-jumping, which are implemented in tools like

QuBE [16, 17] and DepQBF [22, 23]. Recent works have focused on certifying (rather

ψ = (x1 ∨ y4 ∨ y7)
| {z }

c1

∧ (x2 ∨ ȳ4 ∨ x6)
| {z }

c2

∧ (x1 ∨ x3 ∨ y5 ∨ ȳ7)
| {z }

c3

∧

(x̄3 ∨ ȳ5 ∨ x̄6 ∨ y7)
| {z }

c4

∧ (x̄1 ∨ x2 ∨ y4)
| {z }

c5

∧ (x̄2 ∨ ȳ7)
| {z }

c6

∧ (x1 ∨ x2 ∨ x3 ∨ y7)
| {z }

c7

Fig. 1. The CNF formula ψ for the QBF formula f = ∀x1x2x3 · ∃y4y5 · ∀x6 · ∃y7 · ψ.

than just evaluating) QBF formulas, as certificates can help in extracting error traces in

QBF-encoded problems. The tool suites ChEQ and sKizzo/ozziKs evaluate and certify

QBF formulas [3, 17, 24].

In verification and automata theory, a typical PSPACE-complete problem is the uni-

versality problem for nondeterministic finite automata. Despite its worst-case exponen-

tial complexity, dramatic performance improvements have been obtained recently for

this problem by antichain algorithms [11, 12]. One key idea of antichain algorithms

is to exploit the underlying structure of automata constructions (classically, powerset-

based constructions) to define subsumption relations, yielding compact symbolic rep-

resentations, as well as sound pruning of the search space. Although QBF is also a

PSPACE-complete problem, this natural idea has never been used in QBF solving.

In this paper, we identify structural properties of QBF and we define pruning strate-

gies to obtain antichain algorithms for QBF. The purpose is to define and evaluate

antichain-based techniques for QBF solving, and to suggest that their integration in

other search-based solvers could be valuable. We take the classical view of QBF as a

reachability problem in an exponential And-Or graph, where the nodes represent sub-

formulas (the And-nodes correspond to universal quantifications, and the Or-nodes to

existential quantifications). We illustrate the main ideas of the algorithm on the follow-

ing running example. Let f = ∀x1x2x3 · ∃y4y5 · ∀x6 · ∃y7 ·ψ where ψ (shown in Fig. 1)

is a CNF formula viewed as the set of clauses {c1, c2, . . . , c7}. The And-Or graph for f

is a DAG where each level corresponds to a block of quantifiers (see a partial expansion

in Fig. 2 where each clause ci is identified with its index i). Nodes of the DAG are

subsets ϕ ⊆ ψ of clauses which remain to be satisfied in the evaluation game. The root

of the DAG is the set ψ of all clauses. The successors of a node at level i are the sets of

clauses obtained by assigning the variables quantified in the ith block of the formula.

In the game interpretation, two players choose the successor of the nodes (player P∀ in

And-nodes, and P∃ in Or-nodes) by assigning the variables quantified in the block of

the level of the node. The goal of player P∃ is to reach a node ∅ where all clauses are

satisfied, and to avoid nodes where all literals of a clause are false (denoted by ⊥). The

QBF formula is true if and only if P∃ has a winning strategy to reach ∅ from the initial

node ψ in the game. A key observation is that set inclusion is a subsumption relation that

can be used to substantially reduce the size of the search tree: if player P∃ has a winning

strategy from a node ψ1 at level i, then player P∃ also has a winning strategy from all

nodes ψ2 ⊆ ψ1 at level i, because in ψ2 less clauses remain to be satisfied. This has two

implications in the search through the DAG. First, player P∃ should only consider valu-

ations that make true a maximal subset of the remaining clauses, while player P∀ should

2

{1,2,3,4,5,6,7}

∀x1x2x3

∃y4y5

∀x6

∃y7

{1,2,3,7} {1,2,4} {1,3,6} {1,4,6} {2,5} {2,4,5} {6} {4,6}

··· ··· ···

⊥ ⊥ {2} {2,4}

···

··· ···

⊥

Fig. 2. Search tree for the formula of Fig. 1.

make true a minimal subset. Computing such variable assignments reduces to solving

variants of Max-SAT and Min-SAT problems [19, 21]. Second, the set of winning nodes

at level i is downward-closed, and the set of losing nodes at level i is upward-closed.

Therefore, antichains of incomparable sets of clauses are the appropriate representation

of winning and losing nodes. We exploit this structure when backward propagating the

information collected during the exploration of the DAG, and we never explore a node

which is smaller than a winning node (or greater than a losing node) at the same level.

Finally, the information stored in the antichains at the end of the search is so rich that

it immediately provides compact certificates for both positive and negative instances of

QBF. Note that compact certificates represented by antichains is a new notion.

We propose an antichain algorithm which is search-based and reduces the search

space using antichains of winning and losing nodes of the And-Or graph. Antichains

can be viewed as compact symbolic representations which can be exponentially suc-

cinct, thus it also has the flavor of symbolic procedures. In contrast, traditional symbolic

QBF solvers rely on binary decision diagrams (BDD) and they are based on quantifier

elimination, such as Skolemization-based approaches [2] (with the aim at eliminating

existentially quantified variables), or symbolic quantifier elimination by clause resolu-

tion or BDD algorithms [25]. The tool sKizzo falls in this category of solvers [5].

We have implemented the ideas presented in this paper in a stand-alone prototype

in order to push and evaluate the approach, independently of the established heuristics

commonly used in search-based QBF solvers. While some benchmarks are solved more

efficiently with our prototype (e.g., see Fig. 5), the results are encouraging beyond the

absolute performance. In particular the experiments and comparison with state-of-the-

art solvers show that:

• the search trees constructed by our algorithm are generally much smaller (by orders

of magnitude) as compared to the entire search space, thanks to subsumption (e.g.,

see Table 1);
• our algorithm automatically provides certificates with no additional cost, whereas

in other approaches, additional computation is required to extract certificates after

evaluation of the formula;
• difficult instances (several hundreds of variables, thousands of clauses) are solved

by our prototype (e.g., see Table 1), and on several families of formulas, the overall

behaviour of our algorithm scales better or similarly as the size of the formulas

increases (e.g., see Figs. 5-8).

3

2 Preliminaries

2.1 Notations and QBF problem

Let V = {x1, x2, . . . , xm} be a set of m Boolean variables, we use X,X1, X2, . . . to

denote subsets of V . A literal ℓ is either a variable x ∈ V or the negation x̄ of a variable

x ∈ V , and a clause c is a disjunction of literals, or equivalently a set of literals. We

use notations such as ℓ ∈ c, x̄ ∈ c, etc. A CNF formula is a conjunction of clauses, or

equivalently a set of clauses. The empty CNF formula is denoted by 1, and the empty

clause by 0. In the figures we use the notations ∅ and ⊥ instead of 1 and 0 respectively.

Given a set X ⊆ V and a CNF formula ψ over V , we denote by πX(ψ) the projection

of ψ over X , with πX(ψ) =
⋃

c∈ψ πX(c) and πX(c) = {l ∈ c | l = x or l = x⇒ x 6∈

X}.

A quantified Boolean formula (QBF) is an expression Q1X1 · Q2X2 · · ·QnXn · ψ
where each Qi ∈ {∃,∀} for 1 ≤ i ≤ n, the sets X1, . . . , Xn (called blocks) form a

partition of V , and ψ is a CNF formula over V . We also write Q1x1 ·Q2x2 · · ·Qnxn ·ψ
when each block Xi contains one variable (Xi = {xi}). Since ψ is in CNF we assume

w.l.o.g. that the last block is existential (i.e., Qn = ∃). The truth value of a QBF formula

is defined as usual. The QBF evaluation problem is to decide whether a given QBF

formula is true or false. This problem is PSPACE-complete [26].

A valuation forX ⊆ V is a function v : X → {0, 1}. The domain of v is dom(v) =
X . If X = {x1, . . . , xk}, a valuation v : X → {0, 1} can be identified with a word

a1a2 · · · ak ∈ {0, 1}|X| such that al = v(xl) for all 1 ≤ l ≤ k. The empty word ǫ

corresponds to dom(v) = ∅. Given a partition P = X1 ∪X2 ∪ · · · ∪Xn of V , let X≤i

be the set of variables X1 ∪X2 · · · ∪Xi (with X≤0 = ∅), and let X≥i = V \X≤i−1.

Given the valuations v : X≤i−1 → {0, 1} and w : Xi → {0, 1}, let vw be the valuation

identified with the concatenation of the words representing v and w.

A clause c is satisfied by a valuation v (written v |= c) if there exists x ∈ dom(v)
such that either x ∈ c and v(x) = 1, or x̄ ∈ c and v(x) = 0. Given a CNF formula ψ,

we denote by satv(ψ) the set of clauses c ∈ ψ such that v |= c. We denote by ψ[v] the

CNF formula obtained by replacing in ψ each variable x ∈ dom(v) by its value v(x).
Formula ψ[v] is supposed to be simplified using the laws c ∨ 1 = 1, c ∨ 0 = c with c

being a clause, and ϕ ∧ 1 = ϕ, ϕ ∧ 0 = 0 with ϕ being a CNF formula.

Let ψ be an unsatisfiable CNF formula. An unsatisfiable core ψ′ of ψ is any subset

of clauses of ψ, minimal for the inclusion, such that ψ′ is still unsatisfiable.

2.2 QBF problem as a game

It is classical to view the QBF evaluation problem as reachability in an And-Or graph,

or equivalently as a two-player reachability game [26]. For the formula f = Q1x1 ·
Q2x2 · · ·Qmxm ·ψ over V = {x1, x2, . . . , xm}, the game is played inm rounds (num-

bered 1, . . . ,m) by the existential player P∃ and the universal player P∀. In round i, the

truth value of the variable xi is chosen by player PQi
. After m rounds, the players have

constructed a valuation v : V → {0, 1}, and player P∃ wins if ψ[v] = 1 (all clauses are

satisfied by v), otherwise player P∀ wins. It is easy to see that P∃ has a winning strategy

in this game iff the formula f is true. Note that instead of having one round for each

variable, we can also consider a game with one round for each block of variables, such

4

that the blocks correspond to quantifier alternations in f . The players then choose a val-

uation for all the variables in the block at once, and the number of rounds is equal to the

number of quantifier alternations. As the algorithms proposed in this paper are based

on this game metaphor, we present the And-Or graph on which the game is played.

Let P = X1 ∪ X2 ∪ · · · ∪ Xn be a partition of V = {x1, x2, . . . , xm}, and let

f = Q1X1 · Q2X2 · · ·QnXn · ψ be a QBF formula over V . We define the And-Or

graph Gf = (S, S∃, S∀, s0, E, F) where:

– S = {ψ[v] | dom(v) = X≤i−1, for i, 1 ≤ i ≤ n+ 1};

– S∃ = {ψ[v] | dom(v) = X≤i−1∧Qi = ∃, for i, 1 ≤ i ≤ n} is the set of P∃ nodes;

– S∀ = {ψ[v] | dom(v) = X≤i−1∧Qi = ∀, for i, 1 ≤ i ≤ n} is the set of P∀ nodes;

– s0 = ψ is the initial node;

– E = {(ψ[v], ψ[vw]) | dom(v) = X≤i−1 ∧ dom(w) = Xi, for i, 1 ≤ i ≤ n} is the

set of edges;

– F = {ψ[v] ∈ S | ψ[v] = 1} is the set of final nodes.

The set S is naturally partitioned into levels as follows: S = Level1 ∪ Level2 ∪ · · · ∪
Leveln+1 where Leveli = {ψ[v] | dom(v) = X≤i−1} for each 1 ≤ i ≤ n + 1. The

objective of player P∃ is to reach the set F of nodes ψ[v] such that all clauses of ψ

are satisfied by v. The game starts in node s0 and player PQ (Q ∈ {∃,∀}) chooses the

successor of node s if s ∈ SQ. Thus if s = ψ[v] ∈ S∃ and dom(v) = X≤i−1, then

player P∃ chooses one of the 2|Xi| possible successors of s in E, corresponding to a

valuation w : Xi → {0, 1}. A node s is winning for player P∃ if he has a strategy to

force reaching a node in F from s, no matter the choices of P∀; otherwise it is losing.

We denote by W the set of winning nodes for player P∃, and by L = S \W the set of

losing nodes for P∃. We say that P∃ is winning the game if s0 ∈ W . In the sequel, we

use the notations Wi (resp. Li) to denote W ∩ Leveli (resp. L ∩ Leveli).

Proposition 1. A QBF formula f is true iff player P∃ is winning the game Gf .

Note that in the graphGf , each node ψ[v] with dom(v) = X≤i−1 can be associated

with the formula Formula(ψ[v]) ≡ QiXi · · ·QnXn · ψ[v], and we can strengthen the

previous proposition as follows.

Proposition 2. Given a QBF formula f , the set of winning nodes in the graph Gf is

W = {ψ[v] ∈ S | Formula(ψ[v]) is true}, and the set of losing nodes is L = {ψ[v] ∈
S | Formula(ψ[v]) is false}.

2.3 Structure in the And-Or graph and antichains

We present in the next section an algorithm to solve the game played on Gf which

exploits the following subsumption relation on QBF formulas. We write f1 ⊑ f2 if

f1 = QiXi · · ·QnXn · ψ1 and f2 = QiXi · · ·QnXn · ψ2 are two QBF formulas with

the same quantifier prefix, and ψ1 ⊆ ψ2. Intuitively, f1 is more promising than f2 for

player P∃ because all strategies that are winning from ψ2 are also winning from ψ1.

Proposition 3. Suppose that f1 ⊑ f2. We have: if f2 is true, then f1 is true; and if f1
is false, then f2 is false.

5

Level1{1,2,3,4,5,6,7}

∀x1x2x3

Level2{1,2,3,7} {1,2,4} {1,3,6} {1,4,6} {2,5} {2,4,5} {6} {4,6}

000 001 010 011 100 101 110 111

Fig. 3. Level1 and Level2 of Gf and the 5 minimal valuations of P∀.

As a direct consequence of Propositions 2 and 3, we obtain the next corollary.

Corollary 1. In the graph Gf , for all nodes s1, s2 ∈ Leveli such that s1 ⊆ s2, i.e.

Formula(s1) ⊑ Formula(s2), if s2 ∈Wi, then s1 ∈Wi; and if s1 ∈ Li, then s2 ∈ Li.

Hence,Wi is ⊆-downward closed andLi is ⊆-upward closed. The set of ⊆-maximal

elements of Wi, noted ⌈Wi⌉, is an antichain for the partial order ⊆ (i.e. a set of pair-

wise incomparable elements) that canonically and compactly represents Wi. Similarly,

the set of ⊆-minimal elements of Li, noted ⌊Li⌋, is an antichain that canonically and

compactly represents Li. Elements of these antichains are denoted α, β.

3 Algorithms

In Section 3.1, we discuss the computation of optimal valuations to explore only the

most promising nodes, and in Section 3.2, we propose an antichain-based algorithm for

solving the QBF evaluation game.

3.1 Maximal and minimal valuations

According to Corollary 1, when it is the turn for P∃ to play in node s = ϕ in Leveli,

he can restrict his choices among valuations w : Xi → {0, 1} that maximize the set of

clauses of ϕ that are satisfied. Symmetrically, player P∀ can restrict his choices among

valuations w : Xi → {0, 1} that minimize the set of clauses of ϕ that are satisfied.

We define the notion of maximal and minimal valuations as follows. Let ϕ be a

CNF formula over X≥i. A valuation w : Xi → {0, 1} is ϕ-maximal if for all w′ :
Xi → {0, 1}, satw(ϕ) ⊆ satw′(ϕ) implies satw(ϕ) = satw′(ϕ). Symmetrically, w

is ϕ-minimal if for all w′ : Xi → {0, 1}, satw′(ϕ) ⊆ satw(ϕ) implies satw(ϕ) =
satw′(ϕ).

Example 1. Consider the CNF formula ψ of Fig. 1, viewed as the set of clauses {c1, c2,
. . . , c7}. In Level1, we have X1 = {x1, x2, x3} which are universal variables. Among

the 23 = 8 valuations, 5 are ψ-minimal (shaded in Fig. 3, where each clause ci is

identified with i). Remember that the nodes in the And-Or graph are the clauses that

remain to be satisfied, thus maximal such sets correspond to minimal valuations. Note

also that we may need to compute all maximal (or minimal) valuations in a node.

Maximal and minimal valuations can be computed by multiple calls to a SAT solver.

Let us give the intuition for maximal valuations (details are given in the appendix). Let

6

ϕ be a set of clauses over X≥i. First notice that a valuation w : Xi → {0, 1} is ϕ-

maximal if and only if it is πXi
(ϕ)-maximal. Thus we can assume w.l.o.g. that ϕ is a

set of clauses over Xi (instead of X≥i). Using a set of new variables Y = {yc | c ∈ ϕ},

called selectors, we transform the set of clauses ϕ into a set of clauses ϕ′ over Xi ∪ Y
such that any valuation w : Xi ∪ Y → {0, 1} with w(yc) = 1 implies that w satisfies c.

By a first call to a SAT solver on ϕ′, we get a valuation w and a subset C of clauses of ϕ

that are satisfied by w. Then we modify ϕ′ into ϕ′′ by imposing additional constraints

on the variables of Y in a way that a second call to a SAT solver provides a subset of

satisfied clauses of ϕ that strictly contains C. Iterating this procedure, we finally obtain

a valuation that satisfies a maximal set of clauses in ϕ.

Computing maximal and minimal valuations can also be computed thanks to solvers

for variants of the Maximum Satisfiability (Max-SAT) and Minimum Satisfiability (Min-

SAT) problems [19, 21]. Given a CNF formula ϕ, the Max-Sat problem asks to compute

a valuation that maximizes the number of satisfied clauses in ϕ (Min-Sat is defined sym-

metrically). Note that such a valuation is ϕ-maximal but the converse is not necessarily

true. Given a CNF fomula ϕ = ϕh ∧ ϕs where ϕh represents the hard clauses and ϕs
represents the soft clauses, the partial Max-SAT problem consists in finding a valuation

such that all hard clauses are satisfied and the number of satisfied soft clauses is max-

imized. This variant of Max-SAT can be used to generate all ϕ-maximal valuations as

follows. The first ϕ-maximal valuation is computed by a call to a Max-SAT solver. The

next ones are computed thanks to a partial Max-SAT solver, such that hard clauses with

selectors impose that for each already computed ϕ-maximal valuation w, at least one

new clause c 6∈ satw(ϕ) is satisfied (see details in the appendix).

3.2 Antichain-based algorithm

In this section we present an antichain-based algorithm to evaluate a QBF formula

f = Q1X1 · · ·QnXn · ψ. It is a search-based algorithm of the And-Or graph Gf
with backward propagation of the information collected during the exploration. Such

a forward-backward exploration was also used with success in timed games [9].

Our algorithm consists of two recursive procedures named ATCSearch∃(ϕ, i) and

ATCSearch∀(ϕ, i) where ϕ is a node of Gf and i is the recursion level (see Algo-

rithms 1 and 2). Initially, we make a call to ATCSearch∃(ψ, 1) if Q1 = ∃, and to

ATCSearch∀(ψ, 1) if Q1 = ∀. These procedures determine whether a node ϕ is win-

ning or losing for P∃, i.e. whether ϕ ∈Wi or ϕ ∈ Li. The setsWi and Li are updated as

global variables and compactly stored by antichains ⌈Wi⌉ and ⌊Li⌋ respectively. They

are used to prune the search by the subsumption checks (see lines 8, 11 in Algorithm 1).

The details of ATCSearch∃(ϕ, i) are as follows. If ϕ is not even satisfiable, then

it is a losing node; if ϕ is satisfiable and i = n, then it is winning since ϕ belongs

to S∃; otherwise, the procedure enumerates the ϕ-maximal valuations w (line 7) and

checks if ϕ[w] is winning at level i+1. For player P∃, maximal valuations are sufficient

because the set of winning nodes is downward-closed (see Corollary 1). The recursive

call to ATCSearch∀(ϕ[w], i+ 1) can be avoided if ϕ[w] is in the downward-closure of

⌈Wi+1⌉ (line 8), or if ϕ[w] is in the upward-closure of ⌊Li+1⌋ (line 11). Finally, if all

ϕ-maximal valuations have been explored, then ϕ is losing (line 17).

7

Algorithm 1 ATCSearch∃(ϕ, i)

Require: node ϕ ∈ S∃ ∩ Leveli, i ≤ n.

Ensure: Win if ϕ ∈Wi, Lose if ϕ ∈ Li.

1: if ¬IsSat(ϕ) then

2: Add(ϕ, ⌊Li⌋)
3: return Lose

4: if i = n then

5: Add(ϕ, ⌈Wi⌉)
6: return Win

7: for each ϕ-maximal valuation w : Xi →
{0, 1} do

8: if ∃α ∈ ⌈Wi+1⌉ s.t. ϕ[w] ⊆ α then

9: Add(ϕ, ⌈Wi⌉)
10: return Win

11: if ¬(∃α ∈ ⌊Li+1⌋ s.t. α ⊆ ϕ[w])
then

12: R← ATCSearch∀(ϕ[w], i+ 1)
13: if R = Win then

14: Add(ϕ, ⌈Wi⌉)
15: return Win

16: Add(ϕ, ⌊Li⌋)
17: return Lose

Algorithm 2 ATCSearch∀(ϕ, i)

Require: node ϕ ∈ S∀ ∩ Leveli, i < n.

Ensure: Win if ϕ ∈Wi, Lose if ϕ ∈ Li.

1: if ¬IsSat(ϕ) then

2: Add(ϕ, ⌊Li⌋)
3: return Lose

4: for each ϕ-minimal valuation w : Xi →
{0, 1} do

5: if ∃α ∈ ⌊Li+1⌋ s.t. α ⊆ ϕ[w] then

6: Add(ϕ, ⌊Li⌋)
7: return Lose

8: if ¬(∃α ∈ ⌈Wi+1⌉ s.t. ϕ[w] ⊆ α)

then

9: R← ATCSearch∃(ϕ[w], i+ 1)
10: if R = Lose then

11: Add(ϕ, ⌊Li⌋)
12: return Lose

13: Add(ϕ, ⌈Wi⌉)
14: return Win

The procedure ATCSearch∀(ϕ, i) for nodes ϕ ∈ S∀ is dual. Note that the case

i = n is not relevant since Qn = ∃. By a symmetrical argument, P∀ needs to consider

only the ϕ-minimal valuations.

In these two procedures, the ϕ-maximal and ϕ-minimal valuations are computed

as explained in Section 3.1, by either using a SAT solver or a partial Max-SAT solver.

Procedure IsSat(ϕ) tests whether formula ϕ is satisfiable by a call to a SAT solver. The

antichains ⌈Wi⌉ and ⌊Li⌋ (for 1 ≤ i ≤ n) are initially empty. The antichain structure is

maintained by the procedure Add which computes ⌈{ϕ} ∪Wi⌉ and ⌊{ϕ} ∪ Li⌋.

Example 2. Consider the CNF formula ψ of Fig. 1. Since Q1 = ∀, the algorithm starts

with ATCSearch∀(ψ, 1) which needs to explore the 5 minimal valuations of Fig. 3. As-

sume that the first valuation is (x1 7→ 0, x2 7→ 0, x3 7→ 0), denoted 000, which satisfies

clauses 4, 5, 6. Then, the game proceeds to the node ψ[w] = ψ[000] = {1, 2, 3, 7} of

remaining clauses where the turn is to player P∃. The subgraph of Gf rooted at ψ[000]
is shown in the first tree of Fig. 4. Among the 4 possible valuations for player P∃, only

2 are maximal, namely 01 and 11. For valuation 01, only clauses 1 and 7 remain. At this

point, all variables are instantiated except x6 and y7, and player P∃ wins by choosing

y7 7→ 1 which satisfies ψ no matter the value of x6 chosen by player P∀.

Thus nodes {1, 7} at Level3, and {1, 2, 3, 7} at Level2 are winning, and the related

antichains are updated as follows: ⌈W3⌉ = {{1, 7}} and ⌈W2⌉ = {{1, 2, 3, 7}}.

At the root node of Gf , the valuation 000 is not a good choice for player P∀, and no

conclusion can be drawn yet for this node (Fig. 3). We need to explore another choice

8

Level2

Level3

Level4

Level5

∃y4y5

∀x6

∃y7

{1,2,3,7}

{1,3,7} {1,7} {2,3,7} {2,7}

00 01 10 11

{1,7}

0 1

⊥ ∅

0 1

{1,2,4}

{1} {1,4} {2} {2,4}

00 01 10 11

{2,4,5}

⊥ ⊥ {2} {2,4}

00 01 10 11

⊥

0

Fig. 4. Subgames rooted at ψ[000], ψ[001], and ψ[101]

for player P∀. The second tree of Fig. 4 shows the subgame rooted at node ψ[001].
In this case, with minimal valuation 00, player P∃ reaches node {1} in Level3. Since

{1} ∈ W3 (indeed {1} ⊆ {1, 7} ∈ ⌈W3⌉, and W3 is the downward-closure of ⌈W3⌉),

he knows immediately that he is winning without further exploring the graph. This

situation illustrates the power of the subsumption which allows to prune the search for

nodes smaller than previously visited winning ones. The antichain ⌈W2⌉ is then updated

to {{1, 2, 3, 7}, {1, 2, 4}}. Valuation 001 is again a bad choice for P∀.

One can check that valuations 010 and 011 are bad choices for P∀ and their explo-

ration leads to the following update of the antichains: ⌈W2⌉ = {{1, 2, 3, 7}, {1, 2, 4},
{1, 3, 6}, {1, 4, 6}} and ⌈W3⌉ = {{1, 7}, {6}}. The last minimal valuation is 101 and

for all choices of player P∃, there is a choice of player P∀ to falsify the formula (see the

last tree in Fig. 4). Therefore P∃ is losing the game and the formula f is false.

The correctness of this algorithm is established using the notion of certificate pre-

sented in the next section.

Theorem 1. Let f be a QBF formula. Applying Algorithms 1 and 2 on f returns Win

if and only if f is true.

4 Certificates

In the previous section we have described a search-based algorithm to evaluate a QBF

formula f . This algorithm computes the sets of winning nodes and losing nodes for

each level of the graph Gf , and these sets are compactly represented by antichains.

Our algorithm gathers enough information in these antichains to easily build com-

pact certificates for both true and false QBF formulas. The certificates for true formulas

differ from the certificates for false formula. Intuitively, if f is true, that is, player P∃ is

winning the gameGf , then a certificate is given by the antichains ⌈Wi⌉, 1 ≤ i ≤ n, and

for each α ∈Wi by the maximal valuation computed by Algorithm 1 when α has been

declared winning. To the best of our knowledge they are different from the certificates

considered in the literature [3, 24].

We first define positive certificates as a witness for true QBF formulas. A positive

certificate for a formula f ≡ Q1X1 · · ·QnXn · ψ is a pair 〈(C+
i)1≤i≤n,w〉 such that:

9

– each C+
i is a set of nodes at the ith level of the graph Gf , that is, C+

i ⊆ Leveli;
– for each i such that Leveli ⊆ S∃, w is a function that assigns a valuation w(α) :
Xi → {0, 1} to each α ∈ C+

i ;
– and the following properties are verified:

1. C+
1 = {ψ}.

2. for each i < n such that Leveli ⊆ S∃, for all α ∈ C+
i , there exists β ∈ C+

i+1

such that α[w(α)] ⊆ β.
3. for each i < n such that Leveli ⊆ S∀, for all α ∈ C+

i , for all w : Xi → {0, 1},

there exists β ∈ C+
i+1 such that α[w] ⊆ β.

4. for i = n, for all α ∈ C+
i , α[w(α)] = 1.

Clearly, there exists a nondeterministic polynomial time algorithm to recognize

pairs 〈(C+
i)1≤i≤n,w〉 that are not positive certificate. All the verification related to

Conditions 1, 2 and 4 can be done in deterministic polynomial time while Condition 3

requires nondeterminism. Therefore, verifying the validity of a positive certificate is a

problem in coNP.

The next two lemmas are proved in the appendix.

Lemma 1. If 〈(C+
i)1≤i≤n,w〉 is a positive certificate for a QBF formula f , then f is

true.

Lemma 2. Let ⌈Wi⌉, 1 ≤ i ≤ n, be the antichains built by the execution of Algo-

rithms 1 and 2 on formula f . For each i such that Leveli ⊆ S∃, for all α ∈ ⌈Wi⌉, let

w(α) be the valuation used by Algorithms 1 when α has been declared winning. If f is

true, then 〈(⌈Wi⌉)1≤i≤n,w〉 is a positive certificate for f .

The next theorem directly follows from the two previous lemmas.

Theorem 2. Let f be a QBF formula. Then f is true if and only if there exists a positive

certificate for f .

Negative certificates are defined in a way similar to positive certificates; they are a

witness for false formulas f . The reader is referred to the appendix for more details.

5 Optimizations

5.1 Guiding the search to promising valuations

We recall that in Algorithm 1, when ϕ is a satisfiable formula, and i ≤ n − 1, player

P∃ traverses all the maximal valuations w : Xi → {0, 1} in the hope to find w such

that ϕ[w] is winning. The first optimization that we consider tries to guide the search

to promising maximal valuations. The new algorithm for player P∃ is described in the

appendix. Symmetrical improvements also exist for player P∀.

Improving ATCSearch∃. When considering all the maximal valuations w : Xi →
{0, 1}, we observe that player P∃ is winning as soon as he can find a valuation w such

that ϕ[w] ⊆ α for some α ∈ ⌈Wi+1⌉ (see Corollary 1). So, it is wise for P∃ to first

try to find such a valuation w. Suppose now that player P∃ cannot win by exploiting

the elements of ⌈Wi+1⌉. Then he should avoid considering maximal valuations w such

that α ⊆ ϕ[w] for some α ∈ ⌊Li+1⌋ as ϕ[w] is losing (see Corollary 1). These two

observations are exploited by the new algorithm.

10

Improving ATCSearch∀. We can improve the choice of minimal valuations for player

P∀ in a symmetric manner. Indeed, P∀ should first look for a valuation w such that there

exists α ∈ ⌊Li+1⌋ with α ⊆ ϕ[w]. If such a valuation does not exist, then he should

only consider minimal valuations that avoid the set ⌈Wi+1⌉ of winning nodes.

5.2 Improving the information about losing and winning nodes

Our algorithms can be seen as mixing a forward exploration of the And-Or graph Gf
with a backward propagation of the information about the winning and losing nodes.

We present below several ways of improving the propagation phase.

At initialization. Recall that the antichain ⌊Li⌋ is initially empty in Algorithms 1 and 2.

We can add some useful information to ⌊Li⌋ in the following case. Consider the initial

node ψ of Gf , and let i, 1 ≤ i ≤ n− 1. Suppose that the projection d = πX≥i(c) of a

clause c in ψ onX≥i has all its literals universally quantified. Then the clause dmust be

satisfied by a valuation generated before reaching Leveli since otherwise player P∀ can

falsify it. So, at initialization we can add {d} to ⌊Li⌋ for any such d (all sets of clauses

that contain d are losing at Leveli). An example is given in the appendix.

Some other information can be initially stored in the antichains ⌈Wi⌉ and ⌊Li⌋
to better guide the search. Consider the initial node ψ of Gf , and its projection ϕ =
πX≥i(ψ). If ϕ is unsatisfiable, then any unsatisfiable core of ϕ can be extracted and

added to ⌊Li⌋. On the other hand, if ϕ is satisfiable and we further restrict ϕ to the

existentially quantified variables, then we can compute a ϕ-maximal valuation w to get

a maximal subset of satisfied clauses ϕ′ = satw(ϕ). The set ϕ′ can be added to ⌈Wi⌉
because player P∃ has a winning strategy at Leveli if the set of clauses not in ϕ′ are

satisfied when the game enters this level.

When updating ⌈Wi⌉ and ⌊Li⌋. We now give an optimization that can be applied when

updating the sets of winning and losing nodes during the search. We consider two sce-

narios. First, assume that node ϕ is declared winning by the algorithm ATCSearch∃
in Leveli. This means that there exists a valuation w : Xi → {0, 1} such that either

ϕ[w] ⊆ α for some α ∈ ⌈Wi+1⌉, or ϕ[w] is declared winning by the recursive call to

ATCSearch∀. Notice that ϕ is a subset of the set of clauses in the root ψ (projected on

variables X≥i). It may happen that other clauses c ∈ ψ are also satisfied by the valua-

tion w. Thus, in a way to have bigger elements in ⌈Wi⌉, it is preferable to add the set

ϕ′ = ϕ∪{c | c ∈ satw(ψ)} instead of ϕ to ⌈Wi⌉. An example is given in the appendix.

Second, assume that ϕ is declared losing by Algorithm ATCSearch∃ in Leveli with

i = n. This means that ϕ is unsatisfiable. Instead of adding ϕ to ⌊Li⌋, we can add any

unsatisfiable core ϕ′ ⊆ ϕ instead.

6 Experimental Results

Setting. We have implemented the algorithms of Section 3 with the optimizations of

Section 5 in a stand-alone prototype in order to evaluate the impact of the antichain

approach. Thus none of the classical heuristics used in search-based QBF solvers, like

11

backjumping, unit propagation, and monotone literals elimination [8] has been inte-

grated. The code is written partly in C for the low level operations on the data struc-

tures, and partly in Python to implement high level operations like the exploration of

the And-Or graph, and for the construction of CNF formulas submitted to the SAT or

partial Max-SAT solvers. We use Python to facilitate the fast evaluation of different

ideas even if some price has to be paid at the performance level. We use the SAT solver

MiniSat [13] and the partial Max-SAT solver Akmaxsat [20] to compute the maximal

and minimal valuations as explained in Section 3.1, and PicoSAT [7] to compute unsat-

isfiable cores as described in Section 5.

In a preprocessing step, the formula is simplified with PreQuel [28] and then pre-

sented in a tree-like structure [4]. This is standard practice in QBF solving. The experi-

ments were run on a PC equipped with a Intel i7 2.8GHz processor, 6 GB of RAM and

running Linux Ubuntu 2.6.

Instance Var Cl Blocs Value Nodes ATC QuBE DepQBF sKizzo

k-path-n-01 108 275 7 1 14 0.22 0.01 0.005 0.01

k-path-n-02 180 481 9 1 43 0.93 0.01 0.02 0.05

k-path-n-05 384 1051 15 1 120 4.17 2.53 39.97 0.08

k-path-n-06 456 1257 17 1 142 7.54 13.74 / 0.26

k-path-n-10 732 2033 25 1 247 16.33 / / 45.87

k-path-n-11 804 2234 27 1 269 27.36 / / 445.71

k-path-n-20 1428 3992 45 1 503 95.19 / / /

k-path-n-21 1488 4155 47 1 452 88.81 / / /

Table 1. Family k-path-n.

Instances. We tested our algorithm on several instances proposed during the seventh

QBF solvers evaluation (QBFEVAL’10) [27] and compared the results with the ones

obtained with three state-of-the-art QBF solvers: QuBE-7.0, sKizzo-v0.8.2-beta and

DepQBF-0.1 (winner of QBFEVAL’10). QuBE and DepQBF are search-based solvers,

whereas sKizzo uses symbolic Skolemization.

The families k-∗ correspond to the encoding of the satisfiability problem for modal

K formulas into QBF, and they are known to give difficult instances for search-based

solvers. The families k-∗ have a deep level of quantifier alternations while the families

Toilet∗ and aim-∗ have three quantifier alternations.

Results. In Table 1, Var (resp. Cl, Blocs) gives the number of variables (resp. clauses,

blocs) of the instance and Value is its truth value. Nodes is the number of nodes of

the And-Or graph that have been explored. The columns ATC, QuBE, DepQBF, and

sKizzo present the execution times in seconds (with a timeout of 600 seconds) of our

antichain-based solver and the three other solvers. The experimental results obtained

with our solver are encouraging.

• According to pure performance, our prototype already performs better than the

three state-of-the-art solvers for the families k-path-n and k-path-p.

For other families in k-∗, QuBE and DepQBF solvers (which are search-based)

have often an execution time beyond 600 seconds (see the appendix).

See Table 1, Fig. 5 and 6 (the complete table for k-path-n is given in the appendix).

• The antichain approach leads to search trees that are amazingly small as compared

to the size of the entire search space (see the Nodes entry in Table 1 as compared

12

Fig. 5. Family k-path-n Fig. 6. Family k-path-p

Fig. 7. Family aim-100 (true - log scale) Fig. 8. Family aim-100 (false - log scale)

to the size of the entire search space in O(2Var)); the antichains are thus also very

small as they are composed of nodes of the search tree.

• For several families from the QBFLIB library [15] (including Toilet∗ and aim-∗),

the execution times of our solver follow the same shape of curve (at logarithmic

scale, with a timeout of 600 seconds) as for the other three state-of-the-art solvers,

see for instance the family aim-100 in Fig. 7 (true instances) and Fig. 8 (false

instances). Other tables and figures for families Toilet∗ and aim-∗ are given in the

appendix.

As explained in Section 3.1, the maximal and minimal valuations can be computed

either with a SAT solver of with a partial Max-SAT solver. In Section 5.2, we described

several ways to improve the information about losing and winning nodes in the an-

tichains. These different approaches have been tested, and the experiments show the

best approach can vary with the family of formulas that is tested (the table and figures

always present the results for the best approach). For instance, depending on the family,

the size of the search space can be either increased or decreased when using a partial

MaxSAT solver instead of a SAT solver.

Along with deciding if a given QBF formula is true or false, our solver provides

compact certificates in the form of antichains both for positive and negative instances

of QBF, and without any additional computation (see Section 4). DepQBF solver does

not construct certificates. For sKizzo and QuBE solvers, additional computation is re-

quired to extract certificates [3, 17, 24]. The log produced by sKizzo is evaluated by

ozziKs to construct certificates (only for true instances); QuBE-cert (in the suite ChEQ)

is an extension of QuBE that adds to QuBE the instrumentation required to generate

13

certificates (for both true and false instances). In [3], experiments have been done with

the family adder∗ with “the surprising phenomenon that the time taken to reconstruct

a model may overcome the time needed to solve the instance”.

7 Conclusion and Perspectives

The approach presented in this paper for QBF solving is inspired by previous works

on effective antichain algorithms for PSPACE-complete problems in automata theory

which are based on simple subsumption relations [11, 12]. While the And-Or graph

of QBF formulas enjoys such a subsumption relation, this idea has not been exploited

in search-based QBF solvers. In a prototypical implementation, we have evaluated the

feasibility of antichain-based algorithms for QBF. Experimental results show that on

several benchmarks the size of the search tree is drastically reduced, and that some

instances are solved more efficiently than by the leading QBF solvers. This shows that

the antichain approach is promising and it provides a new research direction in the

area. Its integration in standard search-based QBF solvers is worth investigating. On

the other hand, our algorithm provides automatically compact certificates represented

by antichains with no additional cost, and for both true and false instances.

We now plan to improve our algorithm with respect to the computation of the val-

uations. Indeed, we observed on the experiments that the execution time is partly spent

when computing maximal and minimal valuations. Our current solver computes the

best valuations since they are restricted to maximal/minimal ones, and exploit as much

as possible the information stored in the antichains. We could instead compute approx-

imate valuations in a way to decrease the execution time while keeping the advantages

of the antichains [1].

Our work also provides a new application of the Max-SAT problem. We intend to

submit instances coming from our experiments to the Evaluation of Max-SAT Solvers

that is yearly organized as an affiliated event of the International Conference on Theory

and Applications of Satisfiability Testing (SAT)1. We believe that the difficult instances

we produce could be of interest to the Max-SAT community and that antichain-based

QBF solving would benefit from their improvements.

Acknowledgements We thank Marco Benedetti, the author of sKizzo, for his great help,

Florian Lonsing for explanations about DepQBF, the QuBE’s team for answers about

their solver, and Nicolas Maquet for his guidance in the implementation.

References

1. T. Asano and D. P. Williamson. Improved approximation algorithms for max sat. J. Algo-

rithms, 42(1):173–202, 2002.

2. M. Benedetti. Evaluating QBFs via Symbolic Skolemization. In F. Baader and A. Voronkov,

editors, LPAR, volume 3452 of LNCS, pages 285–300. Springer, 2004.

3. M. Benedetti. Extracting Certificates from Quantified Boolean Formulas. In L. P. Kaelbling

and A. Saffiotti, editors, IJCAI, pages 47–53. Professional Book Center, 2005.

1 See http://www.maxsat.udl.cat/

14

4. M. Benedetti. Quantifier Trees for QBFs. In F. Bacchus and T. Walsh, editors, SAT, volume

3569 of LNCS, pages 378–385. Springer, 2005.
5. M. Benedetti. sKizzo: A Suite to Evaluate and Certify QBFs. In R. Nieuwenhuis, editor,

CADE, volume 3632 of LNCS, pages 369–376. Springer, 2005.
6. M. Benedetti and H. Mangassarian. Qbf-based formal verification: Experience and perspec-

tives. JSAT, 5(1-4):133–191, 2008.
7. A. Biere. PicoSAT Essentials. JSAT, 4(2-4):75–97, 2008.
8. M. Cadoli, A. Giovanardi, and M. Schaerf. An algorithm to evaluate quantified Boolean

formulae. In Proc. of AAAI-98/IAAI-98, pages 262–267. MIT Press, 1998.
9. F. Cassez, A. David, E. Fleury, K. G. Larsen, and D. Lime. Efficient on-the-fly algorithms

for the analysis of timed games. In M. Abadi and L. de Alfaro, editors, CONCUR, volume

3653 of LNCS, pages 66–80. Springer, 2005.
10. B. Cook, D. Kroening, and N. Sharygina. Verification of boolean programs with unbounded

thread creation. Theor. Comput. Sci., 388(1-3):227–242, 2007.
11. M. De Wulf, L. Doyen, T. A. Henzinger, and J.-F. Raskin. Antichains: A New Algorithm

for Checking Universality of Finite Automata. In Proc. of CAV, LNCS 4144, pages 17–30.

Springer, 2006.
12. L. Doyen and J.-F. Raskin. Antichain Algorithms for Finite Automata. In J. Esparza and

R. Majumdar, editors, TACAS, volume 6015 of LNCS, pages 2–22. Springer, 2010.
13. N. Eén and N. Sörensson. An extensible SAT-solver. In E. Giunchiglia and A. Tacchella,

editors, SAT, volume 2919 of LNCS, pages 502–518. Springer, 2003.
14. U. Egly, T. Eiter, H. Tompits, and S. Woltran. Solving Advanced Reasoning Tasks Using

Quantified Boolean Formulas. In Proc. of IAAI, pages 417–422. AAAI Press, 2000.
15. E. Giunchiglia, M. Narizzano, and A. Tacchella. Quantified Boolean Formulas satisfiability

library (QBFLIB), 2001. www.qbflib.org.
16. E. Giunchiglia, M. Narizzano, and A. Tacchella. QuBE++: An Efficient QBF Solver. In

Proc. of FMCAD, LNCS 3312, pages 201–213. Springer, 2004.
17. E. Giunchiglia, M. Narizzano, and A. Tacchella. Clause/Term Resolution and Learning in

the Evaluation of Quantified Boolean Formulas. J. Artif. Intell. Res., 26:371–416, 2006.
18. T. Jussila and A. Biere. Compressing BMC Encodings with QBF. Electron. Notes Theor.

Comput. Sci., 174:45–56, May 2007.
19. R. Kohli, R. Krishnamurti, and P. Mirchandani. The Minimum Satisfiability Problem. SIAM

J. Discrete Math., 7(2):275–283, 1994.
20. A. Kügel. Improved Exact Solver for the Weighted Max-SAT problem, 2011. Accepted at

the workshop Pragmatics of SAT. To appear in easychair electronic proceedings.
21. C. M. Li and F. Manyà. MaxSAT, Hard and Soft Constraints. In Handbook of Satisfiability,

Frontiers in Artificial Intelligence and Applications 185, pages 613–631. IOS Press, 2009.
22. F. Lonsing and A. Biere. DepQBF: A dependency-aware QBF solver (System Description).

Journal on Satisfiability, Boolean Modeling and Computation, 7:71–76, 2010.
23. F. Lonsing and A. Biere. Integrating Dependency Schemes in Search-Based QBF Solvers.

In Proc. of SAT, LNCS 6175, pages 158–171. Springer, 2010.
24. M. Narizzano, C. Peschiera, L. Pulina, and A. Tacchella. Evaluating and certifying QBFs: A

comparison of state-of-the-art tools. AI Commun., 22:191–210, December 2009.
25. G. Pan and M. Y. Vardi. Symbolic Decision Procedures for QBF. In M. Wallace, editor, CP,

volume 3258 of LNCS, pages 453–467. Springer, 2004.
26. C. H. Papadimitriou. Computational complexity. Addison-Wesley Publishing Company,

Reading, MA, 1994.
27. C. Peschiera, L. Pulina, A. Tacchella, U. Bubeck, O. Kullmann, and I. Lynce. The Seventh

QBF Solvers Evaluation (QBFEVAL’10). In Proc. of SAT, LNCS 6175, pages 237–250.

Springer, 2010.
28. H. Samulowitz, J. Davies, and F. Bacchus. Preprocessing QBF. In F. Benhamou, editor, CP,

volume 4204 of LNCS, pages 514–529. Springer, 2006.

15

Appendix

Details concerning Subsection 3.1

Maximal valuations. To compute ϕ-maximal valuations w : Xi → {0, 1} for a CNF

formula ϕ over X≥i, we adopt a classical approach that performs multiple calls to a

SAT solver, and can be summarized as follows.

First recall that w.l.o.g. we can suppose that ϕ = {c1, c2, . . . , ck} is a formula over

Xi (instead of X≥i). For each clause ci ∈ ϕ, we introduce a new variable yi called the

selector of ci. We denote by Y this set of new variables. We modify each clause ci ∈ ϕ

as c′i = yi ∨ ci. Notice that if c′i is satisfied by some valuation v : Xi ∪ Y → {0, 1} and

v(yi) = 1, then ci must be satisfied by v. Then we construct the CNF formula

ϕ′ =
∧

ci∈ϕ

c′i ∧
∨

yi∈Y

yi.

If ϕ′ is unsatisfiable, then there is no clause ci in ϕ that can be made true, and all

valuations w : Xi → {0, 1} are ϕ-maximal (because satw(ϕ) = ∅). Otherwise, let

v1 : Xi ∪ Y → {0, 1} be a valuation such that ϕ′[v1] = 1. From v1, we know that all

clauses ci such that v1(yi) = 1 are satisfied by v1. LetCv1(ϕ) = {ci ∈ ϕ | v1(yi) = 1}.

This set gives a first subset of clauses in ϕ that can be satisfied all together. Now, we

want to know if there exists a superset of this set that can be still satisfied. In this aim

we construct a new formula

ϕ′(v1) =
∧

ci∈ϕ

c′i ∧
∧

yi∈Y,v1(yi)=1

yi ∧





∨

yi∈Y,v1(yi)=0

yi



 .

Suppose that ϕ′(v1) is satisfiable and let v2 be a valuation that evaluates it to true.

The second part of ϕ′(v1) forces that all the clauses ci satisfied by v1 are still satisfied

by v2. The last part of the formula imposes that at least one additional clause ci is

satisfied by v2. It follows that Cv1(ϕ) ⊂ Cv2(ϕ), and we can iterate the process until

formula ϕ′(vl) becomes unsatisfiable for some l ≥ 2. Valuation w = vl−1 identifies a

maximal subset of satisfiable clauses ci, and w is thus a ϕ-maximal valuation.

Minimal valuations. The approach to find minimal valuations uses an iteration schema

similar to the one for maximal valuations. Let ϕ = {c1, c2, . . . , ck} be a formula and let

Y be the set of selectors as above. To compute a ϕ-minimal valuation w : Xi → {0, 1},

we first transform each clause of ci ∈ ϕ into the formula ci ∨ yi which is expressed in

CNF as the clause c′i =
∧

ℓ∈ci
¬ℓ ∨ yi. Notice that if c′i is satisfied by some valuation

v : Xi ∪Y → {0, 1} and v(yi) = 0, then ci cannot be satisfied by v. Then, we consider

the formula

ϕ′ =
∧

ci∈ϕ

c′i ∧
∨

yi∈Y

¬yi.

If ϕ′ is unsatisfiable, then no clause in ϕ can be made false and any valuation w :
Xi → {0, 1} is ϕ-minimal. Otherwise, let v1 : Xi ∪ Y → {0, 1} be a valuation such

16

that ϕ′[v1] = 1. Valuation v1 identifies the set of clauses Cv1(ϕ) = {ci ∈ ϕ | v1(yi) =
0} such that these clauses are unsatisfied by v1 all together. With an iteration schema

similar to the one defined above, we can find a set of valuations {v1, v2, . . . , vl} such

that ϕ′(vl) is unsatisfiable and Cv1(ϕ) ⊂ Cv2(ϕ) ⊂ · · · ⊂ Cvl−1
(ϕ). Valuation w =

vl−1 identifies a minimal subset of satisfiable clauses ci in ϕ (given by the complement

of Cvl−1
(ϕ)) and it is thus a ϕ-minimal valuation.

Variants of MaxSAT problem. We have explained above how to use a SAT solver to

compute a maximal or a minimal valuation. Another approach is to use a Max-SAT

solver and a Partial Max-SAT solver. Let ϕ = {c1, c2, . . . ck} be a CNF formula over

Xi. A first ϕ-maximal valuation is computed by one call to a Max-SAT solver. Suppose

that the set {v1, v2, . . . , vl} of ϕ-maximal valuations has already been computed. A new

ϕ-maximal valuation is computed as follows using a Partial Max-SAT solver. For each

clause ci ∈ ϕ, we introduce a selector yi. The CNF formula ϕh ∧ϕs is submitted to the

solver such that ϕs = ϕ (soft clauses) and

ϕh =

k
∧

i=1

(yi ∨ ci) ∧

l
∧

j=1

(
∨

vj(yi)=0

yi)

(hard clauses). The hard clauses express that for each already computed valuation vj , at

least one new clause c 6∈ satvj
(ϕ) is satisfied.

Details concerning Section 4

Proof (of Lemma 1). By induction we show that for all i, 1 ≤ i ≤ n, for all α ∈ C+
i ,

Formula(α) is true. This is sufficient as f = Formula(ψ), and ψ ∈ C+
1 .

We start with the base case i = n. Let α ∈ C+
n , so Formula(α) = ∃Xn · α.

By definition of positive certificates, the valuation w(α) : Xn → {0, 1} is such that

α[w(α)] = 1. So the valuation w(α) satisfies all the clauses of α. It is thus a witness

that the formula ∃Xn · α is true.

We now proceed with the induction case, under the hypothesis that for all for all

α ∈ C+
i+1, Formula(α) is true. We consider two cases.

Suppose that Leveli ⊆ S∃, and let α ∈ C+
i . By definition of positive certificates,

there exists β ∈ C+
i+1 such that α′ = α[w(α)] and α′ ⊆ β. So Formula(α′) ⊑

Formula(β). By induction hypothesis Formula(β) is true; by Proposition 3, Formula(α′)
is also true. Therefore, as Qi = ∃, it follows that Formula(α) is true.

Suppose that Leveli ⊆ S∀, and let α ∈ C+
i . By definition of positive certificates,

for all valuations w : Xi → {0, 1}, there exists β ∈ C+
i+1 such that α[w] ⊆ β, and so

Formula(α[w]) ⊑ Formula(β). By induction hypothesis, we know that Formula(β) is

true, and by Proposition 3, Formula(α[w]) is also true. Since this holds for all valuations

w : Xi → {0, 1} and Qi = ∀, we have that Formula(α) is true.

Proof (of Lemma 2). We reason by induction on the number of blocks in formula f .

Let i, 1 ≤ i ≤ n, we show that 〈({α}, ⌈Wi+1⌉, . . . , ⌈Wn⌉),w〉 is a positive certificate

for Formula(α), for all α ∈ Leveli treated by the algorithm and such that Formula(α)
is true. In this certificate, ⌈Wi+1⌉, . . . , ⌈Wn⌉ are the current antichains when α has just

17

been treated. Notice that at the end of the execution, the last treated node α is the root

ψ ∈ Level1 and ⌈W1⌉ = {α}.

For the base case i = n, we have α ∈ Leveln and Formula(α) = ∃Xn · α. If

Formula(α) is true then there exists w : Xn → {0, 1} such that w |= α. Let w(α) = w

with w being the valuation constructed by Algorithm 1. Clearly 〈({α}),w〉 is a positive

certificate for Formula(α).
For the induction case, we assume that the property holds for level i + 1. Let α ∈

Leveli such that Formula(α) is true. Assume that the first quantifier of Formula(α) is

existential, that is, Formula(α) = ∃Xi · ∀Xi+1 · · · ∃Xn · α (the proof is similar for the

universal case). As Formula(α) is true, there exists a valuation w : Xi → {0, 1} such

that Formula(α[w]) is true, and in particular there exists a maximal valuation w with

this property. Algorithm 1 considers such a maximal valuation w and makes a recursive

call to Algorithm 2 on node α[w]. By induction hypothesis, the algorithm will construct

a positive certificate 〈({α[w]}, ⌈Wi+2⌉, . . . , ⌈Wn⌉),w〉 for Formula(α[w]). As α[w] is

not necessarily a maximal winning node in Leveli+1, this node may have been replaced

by another winning node β in ⌈Wi+1⌉ such that α[w] ⊂ β, this is compatible with

Property 3 of the definition of positive certificates. So, 〈({α}, ⌈Wi+1⌉, . . . , ⌈Wn⌉),w
′〉

where w′ is extending w for α by w′(α) = w, is a positive certificate for Formula(α).

Negative certificates are defined as follows and they enjoy properties similar to those

for positive certificates. A negative certificate for a QBF formula f = Q1X1 · · ·QnXn ·
ψ is a pair 〈(C−

i)1≤i≤n,w〉 such that:

– each C−
i is a set of nodes such that C−

i ⊆ Leveli
– for each i such that Leveli ⊆ S∀, w is a function that assigns a valuation w(α) :
Xi → {0, 1} to each α ∈ C−

i

– and the following properties are verified:

1. C−
1 = {ψ′} with ψ′ ⊆ ψ

2. for each i < n such that Leveli ⊆ S∀, for all α ∈ C−
i , there exists β ∈ C−

i+1

such that α[w(α)] ⊇ β

3. for each i < n such that Leveli ⊆ S∃, for all α ∈ C−
i , for all w : Xi → {0, 1},

there exists β ∈ C−
i+1 such that α[w] ⊇ β

4. for i = n, for all α ∈ C−
i , for all w : Xi → {0, 1}, α[w] = 0.

Example 3. Consider the running example of Fig. 1. As f is false, the following nega-

tive certificate 〈(C−
i)1≤i≤4,w〉 is built by the execution of Algorithms 1 and 2 (see also

Example 2):

C−
1 = ⌊L1⌋ = {ψ}, w(ψ) = 101,

C−
2 = ⌊L2⌋ = {{2, 4, 5}},

C−
3 = ⌊L3⌋ = {{2}, {5}}, w({2}) = 0, w({5}) = 0 or 1,

C−
4 = ⌊L4⌋ = {{2}}.

Details concerning Subsection 5.1

Improving ATCSearch∃. When considering all the maximal valuations w : Xi →
{0, 1}, we observe that player P∃ is winning as soon as he can find a valuation w such

that ϕ[w] ⊆ α for some α ∈ ⌈Wi+1⌉ (see Corollary 1). So, it is wise for P∃ to first try

18

Algorithm 3 ATCSearchImproved∃(ϕ, i)

Require: node ϕ ∈ S∃ ∩ Leveli, i ≤ n.

Ensure: Win if ϕ ∈Wi, Lose if ϕ ∈ Li.

1: if ¬IsSat(ϕ) then

2: Add(ϕ, ⌊Li⌋)
3: return Lose

4: if i = n then

5: Add(ϕ, ⌈Wi⌉)
6: return Win

7: ExistWinVal← TestWinVal(ϕ, ⌈Wi+1⌉)
8: if ExistWinVal then

9: Add(ϕ, ⌈Wi⌉)
10: return Win

11: (ExistVal, w)← MaxVal(ϕ, ⌊Li+1⌋)
12: while ExistVal do

13: R← ATCSearchImproved∀(ϕ[w], i+ 1)
14: if R = Win then

15: Add(ϕ, ⌈Wi⌉)
16: return Win

17: (ExistVal, w)← MaxVal(ϕ, ⌊Li+1⌋)
18: Add(ϕ, ⌊Li⌋)
19: return Lose

to find such a valuation w. This approach is followed by the new algorithm (line 7 in

Algorithm 3). Procedure TestWinVal(ϕ, ⌈Wi⌉) tests, using a SAT solver, if player P∃

can choose a valuation w such that ϕ[w] ⊆ α for some α ∈ ⌈Wi⌉. In that case it returns

true, otherwise false.

Now, suppose that player P∃ cannot win by exploiting the elements of ⌈Wi+1⌉.

Then he should avoid considering (maximal) valuations w such that α ⊆ ϕ[w] for some

α ∈ ⌊Li+1⌋ as ϕ[w] is losing (see Corollary 1). In this aim, he must ensure to only

consider valuations w that satisfy at least one clause of each α ∈ ⌊Li+1⌋. Procedure

MaxVal(ϕ, ⌊Li+1⌋) checks in line 11, using a SAT solver, if such a valuation w exists.

If yes it returns (true, w), otherwise (false, ·). Assume that a valuation w generated by

Procedure MaxVal leads to line 17 of the algorithm, this means that ϕ[w] is losing and

has been added to ⌊Li+1⌋. Thus a call to MaxVal in line 17 generates a new maximal

valuation (if it exists) which is incomparable with w as it avoids ⌊Li+1⌋.

The rest of the new algorithm is the same as in Algorithm 1.

Details concerning Subsection 5.2

We present below two examples of improving the propagation of the information about

the winning and losing nodes.

At initialization. For example, consider the clause c2 = x2 ∨ ȳ4 ∨ x6 of our running

example (see Fig. 1). When projected on the variables X≥3 = {x6, y7}, this clause

reduces to x6 which is a universally quantified variable. If this clause has not been

19

satisfied by a valuation generated before reaching Level3, then clearly player P∀ has a

strategy to falsify it. Therefore, this clause can be added to the antichain ⌊L3⌋

When updating ⌈Wi⌉ and ⌊Li⌋. As an example, consider the first tree in Fig. 4 of our

running example. We see that at node {1, 7} in Level4, player P∃ has a winning strategy

by choosing value 1 for variable y7. With this choice, clause 1 and clause 7 are satisfied

but also clause 4. It means that in Level4, both {1, 7} and {1, 4, 7} are winning. So

instead of adding {1, 7} to ⌈W4⌉, we can add {1, 4, 7}.

Details concerning Section 6

Table 2 presents the experimental results (with a timeout of 600 seconds) obtained for

some instances of the families Toilet∗, aim-∗ and k-∗, taken from the seventh QBF

solvers evaluation (QBFEVAL’10) [27].

Instance Var Cl Blocs Value Nodes ATC QuBE DepQBF sKizzo

toilet-a-06-01.9 186 1044 3 0 35 2.39 0.03 0.01 0.01

toilet-a-06-04.4 214 1637 3 1 19 2.87 0.02 0.01 0.01

toilet-a-10-05.4 330 12685 3 1 106 191.79 11.53 0.69 0.51

toilet-a-10-05.4 170 11315 3 1 38 24.18 9.48 0.02 0.61

toilet-c-10-01.08 260 1219 3 0 33 3.29 0.01 0.007 0.01

toilet-c-10-01.18 580 2709 3 0 99 411.86 42.13 / 10.87

toilet-c-10-05.4 324 2555 3 1 106 141.08 0.95 0.03 0.02

aim-50-2-0-yes1-1-50 248 473 3 0 2 0.26 0.02 0.005 0.10

aim-50-2-0-yes1-2-90 210 415 3 1 85 2.81 0.02 0.01 0.06

aim-100-3-4-yes1-1-00 738 1657 3 0 2 2.35 0.13 0.03 0.55

aim-100-3-4-yes1-1-90 560 1390 3 1 184 17.37 0.10 0.01 0.14

aim-200-3-4-yes1-2-90 1124 2787 3 0 2 5.50 0.44 0.12 4.18

aim-200-3-4-yes1-4-50 1276 3013 3 1 167 122.61 0.44 0.07 2.41

k-d4-p-03 215 587 15 0 378 12.45 0.05 0.19 0.01

k-d4-p-13 815 2417 35 0 3303 299.64 / / 0.11

k-dum-n-03 214 522 17 1 312 6.36 0.01 0.23 0.02

k-dum-n-12 620 1594 35 1 598 15.72 / 231.06 0.06

k-dum-p-04 215 556 15 0 506 12.27 0.01 0.12 0.01

k-dum-p-15 641 1666 33 0 1645 160.31 4.96 / 0.07

k-poly-n-10 816 1841 65 1 312 24.64 0.03 / 0.42

k-poly-p-10 843 1902 67 0 437 40.11 0.02 / 0.31

Table 2. Families Toilet∗, aim-∗ and k-∗.

Table 3 presents the results for the family k-path-n. The curves for both families

k-path-n (true instances) and k-path-p (false instances) are given in Fig. 9. They show

that our solver performs better than the three state-of-the-art solvers.

The experimental results for other families in Toilet∗, aim-∗ and k-∗ are given in

Figs. 10-19. The execution times of our solver follow the same shape of curve (at log-

arithmic scale, with a timeout of 600 seconds) as for the other three state-of-the-art

solvers. For families in k-∗, QuBE and DepQBF solvers (which are search-based) have

often an execution time beyond 600 seconds.

20

Instance Var Cl Blocs Value Nodes ATC QuBE DepQBF sKizzo

k-path-n-01 108 275 7 1 14 0.22 0.01 0.005 0.01

k-path-n-02 180 481 9 1 43 0.93 0.01 0.02 0.05

k-path-n-03 252 682 11 1 79 2.65 0.04 0.27 0.027

k-path-n-04 324 888 13 1 103 3.30 0.13 3.59 0.04

k-path-n-05 384 1051 15 1 120 4.17 2.53 39.97 0.08

k-path-n-06 456 1257 17 1 142 7.54 13.74 / 0.26

k-path-n-07 528 1458 19 1 180 8.95 / / 0.72

k-path-n-08 600 1664 21 1 226 15.17 / / 3.17

k-path-n-09 660 1827 23 1 195 11.85 / / 12.66

k-path-n-10 732 2033 25 1 247 16.33 / / 45.87

k-path-n-11 804 2234 27 1 269 27.36 / / 445.71

k-path-n-12 876 2440 29 1 322 44.62 / / /

k-path-n-13 936 2603 31 1 314 44.59 / / /

k-path-n-14 1008 2809 33 1 361 37.98 / / /

k-path-n-15 1080 3010 35 1 363 51.30 / / /

k-path-n-16 1152 3216 37 1 427 63.58 / / /

k-path-n-17 1212 3379 39 1 409 58.11 / / /

k-path-n-18 1284 3585 41 1 460 64.24 / / /

k-path-n-19 1356 1786 43 1 461 128.84 / / /

k-path-n-20 1428 3992 45 1 503 95.19 / / /

k-path-n-21 1488 4155 47 1 452 88.81 / / /

Table 3. Family k-path-n.

Fig. 9. Family k-path-∗, true and false instances

Fig. 10. Family aim-50, true and false instances, log scale

Fig. 11. Family aim-100, true and false instances, log scale

21

Fig. 12. Family aim-200, true and false instances, log scale

Fig. 13. Family k-d4-p, false instances, log scale

Fig. 14. Family k-dum-∗, true and false instances, log scale

Fig. 15. Family k-poly-∗, true and false instances, log scale

22

Fig. 16. Family toilet-a-10-01, false instances, log scale

Fig. 17. Family toilet-a-8-∗, true and false instances, log scale

Fig. 18. Family toilet-c-10-01, false instances, log scale

Fig. 19. Family toilet-g, true instances, log scale

23

