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Abstract. We propose and evaluate a new algorithm for checking the
universality of nondeterministic finite automata. In contrast to the stan-
dard algorithm, which uses the subset construction to explicitly deter-
minize the automaton, we keep the determinization step implicit. Our
algorithm computes the least fixed point of a monotone function on the
lattice of antichains of state sets. We evaluate the performance of our
algorithm experimentally using the random automaton model recently
proposed by Tabakov and Vardi. We show that on the difficult instances
of this probabilistic model, the antichain algorithm outperforms the stan-
dard one by several orders of magnitude. We also show how variations
of the antichain method can be used for solving the language-inclusion
problem for nondeterministic finite automata, and the emptiness prob-
lem for alternating finite automata.

1 Introduction

The universality problem asks, given a nondeterministic finite automaton A over
the alphabet X, if the language of A contains all finite words over X', that is,
if Lang(A) = X*. This problem is fundamental in automata theory, and several
important problems in verification reduce polynomially to this problem. The
standard algorithm for universality is to first determinize the automaton using
the subset construction, and then check for the reachability of a set containing
only nonaccepting states. The subset construction may construct a deterministic
automaton that is exponentially larger than the original automaton. This explo-
sion is in some sense unavoidable, as the universality problem is known to be
PSpPACE-complete [MS72]. Explicit determinization via the subset construction
is also useful to solve a wide range of other problems, such as checking the empti-
ness of alternating finite automata [CKSS8T, [KV01], checking language inclusion
and language equivalence for two nondeterministic finite automata [HMUOI],
and solving two-player safety games of incomplete information [Rei84].
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Recently, we showed that explicit determinization via the subset construction
can be avoided when solving two-player safety games of incomplete information.
To avoid the subset construction, we proposed in [DDRO6] a lattice-theoretic so-
lution that comes in the form of a monotone function on the lattice of antichains
of state sets (an antichain is a set of C-incomparable sets). The greatest fixed
point of this monotone function contains the solution to the strategy synthesis
problem. The three main advantages of the antichain method over the subset
construction are as follows. First, the new algorithm keeps determinization im-
plicit. Second, the antichain algorithm takes into account the safety objective of
the game and computes only what is necessary to establish the existence of a win-
ning strategy for that particular objective. Third, antichains of state sets allow
us to store only maximal subsets of states for which a winning strategy exists.
This is because if Player I has a strategy to keep the game in safe states starting
from a set s of states, then she also has such a strategy for all starting sets
s’ C s. We show in this paper that the idea of keeping determinization implicit
using antichains can also be applied to important problems of automata theory,
such as universality and language inclusion for nondeterministic automata, and
emptiness for alternating automata.

First, we show that the universality problem for nondeterministic finite au-
tomata can be solved on the lattice of antichains of state sets using a variation
of the monotone function proposed in our previous work. We reduce the uni-
versality problem to a two-player reachability game of incomplete information,
which can be solved by computing the least fixed point of this monotone func-
tion. We implemented this solution using NUSMV [CCGR99] and the CUDD
library [Som98]. To compare the performance of the antichain algorithm to the
performance of various implementations of subset-construction based algorithms,
we used a large set of examples generated in the probabilistic framework by
Tabakov and Vardi [TV05]. This framework was proposed with the express pur-
pose of comparing the performances of algorithms on finite automata. In their
experiments, the authors conclude that explicit determinization as implemented
in [Mg04] outperforms the algorithm of Brzozowski [BL80] as well as newer im-
plementations, which use symbolic methods for the subset construction. Our
experimental results show that our implementation of the antichain algorithm is
considerably faster, on the entire parameter space of the probabilistic framework,
than the most efficient implementation of the standard algorithm. In particular,
on the most difficult instances of the probabilistic framework, the antichain al-
gorithm outperforms [Mg04] by two orders of magnitude. For this comparison,
we are limited to automata with approximately 175 states, which is the limit
that the explicit-determinization approach can handle on the most expensive in-
stances of the probabilistic framework. On these difficult instances, the antichain
approach scales much better: we are able to successfully check universality for
automata with several thousands of states in less than 10 seconds.

Second, to show the generality of the antichain approach, we also give
new algorithmic solutions to the language-inclusion problem for nondeterminis-
tic automata, and to the emptiness problem for alternating automata. Again, no
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explicit determinization is performed. To solve the emptiness problem for alter-
nating automata, we use the same lattice as for universality and only change the
monotone function that operates on the lattice. To solve the language-inclusion
problem for nondeterministic automata, we need a slightly richer lattice.

Structure of the Paper. In Section 2, we review some basic notions about finite
automata. In Section 3, we introduce the lattice of antichains of state sets, and we
present the antichain algorithm for the universality problem for nondeterministic
automata. In Section 4, we report on two different symbolic implementations of
the antichain algorithm, and we compare their performances with the classical al-
gorithm that uses explicit determinization. In Section 5, we give antichain-based
solutions for nondeterministic language inclusion and alternating emptiness.

2 Finite Automata

Definitions. A (nondeterministic) finite automaton, NFA for short, is a tu-
ple A = (Loc, Init, Fin, X, 6), where Loc is a finite set of states (or locations),
Init C Loc is the set of initial states, Fin C Loc is the set of accepting (or
final) states, X' is a finite alphabet, and 6 C Loc x X x Loc is a (nondeter-
ministic) transition relation. A deterministic finite automaton, DFA for short,
is an NFA A = (Loc, Init,Fin, X', §) such that for all states ¢ € Loc and all let-
ters o € X, there exists a unique state ¢ € Loc such that §(¢,0,¢'). A run of
the NFA A = (Loc, Init, Fin, X, 6) over a finite word w = oy ...0, is a sequence
r = Loly...L, of states such that (1) £y € Init and (2) 6(4;, 0441, 4ir1) for all
0 < i < n. The run r is accepting iff ¢,, € Fin. The language Lang(A) accepted
by A is the set of words w € X* such that A has an accepting run over w.

Notations. Given a finite word w = o7y . . . oy, of size |w| = n, we write w(i) = o;
for the i-th letter of w, and w(0) = ¢ for the empty word. Given an NFA
A = (Loc, Init, Fin, X, §), a state set s C Loc, and a letter 0 € X, we define
post?(s) = {¢' € Loc | 3¢ € s : §(¢,0,0")}, prel(s) = {¢ € Loc | I’ € s :
8(¢,0,¢")}, and cpre(s) = {¢ € Loc | V' € Loc: §(¢,0,¢') — ¢’ € s}. Note that
Loc \ cpre?(s) = pre(Loc \ s).

Operations. Given two NFAs A and B, we denote by A ® B the synchronous
product of the two automata, and by A & B the sum of the automata. The
language accepted by the product is Lang(A ® B) = Lang(A) N Lang(B) and
the language accepted by the sum is Lang(A @ B) = Lang(A) U Lang(B). Given
a DFA A, we denote by A the complement of A, which accepts the language
Lang(A) = X* \ Lang(A).

Problems. The emptiness problem for NFAs is to decide, given an NFA A,
if Lang(A) = . This problem is solvable in time linear in the size of A. The
universality problem for NFAs is to decide, given an NFA A, if Lang(A) = X*.
This problem is much harder than emptiness: it is complete for PSpacE [MS72].
The classical algorithm for deciding universality first determinizes A, and then
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checks emptiness of the complement. The difficult step is the determinization, as
it may cause an exponential blow-up in the number of states of the automaton.
The language-inclusion problem for NFAs is to decide, given two NFAs A and B,
if Lang(A) C Lang(B). This problem is also complete for PSPACE. The classical
algorithm for deciding language inclusion checks emptiness of the product of A
with the complement of B. In the next section, we propose a new approach to
solve the universality problem, which does not involve explicit determinization,
and later we extend the approach to solve also language inclusion.

3 A Fixed Point to Solve Universality

Two Lattices of Antichains. Let Loc be a set (in our case, a set of states of
some automaton). An antichain over Loc is a set ¢ C 2-°¢ such that Vs, s’ € q :
s ¢ s'. Thus ¢ is a set of pairwise incomparable subsets of Loc (with regard to set
inclusion). We denote by L the set of antichains over Loc. We define the following
partial orders: for two antichains q,¢' € L, let g C ¢’ iff Vs € ¢-3s’' € ¢’ : s C &,
and let ¢ C ¢ iff Vs’ € ¢/ -3s € ¢ : s C §'. The two partial orders C and C
yield complete lattices on the set L of antichains. This can be seen as follows.
Given a set ¢ C 2'°¢ (not necessarily an antichain), a set s € ¢ is mazimal
inqiff Vs/ € ¢ : s ¢ s'. Similarly, s € ¢ is minimal in ¢ iff Vs’ € q : s’ ¢ s.
We write [¢] (resp. |g|) for the set of maximal (resp. minimal) elements of q.
Given two antichains ¢,q’ € L, the C-lub (least upper bound) of ¢ and ¢’ is
the antichain ¢ U ¢’ = [{s|s € q V s € ¢'}]; the C-glb (greatest lower bound)
is the antichain ¢M¢ = [{sNs'|s€q A s €¢'}]. Similarly, the C-lub is ¢ U
¢ =|{sUs'|seqAs eq}|,and the C-glbisqM ¢ = |[{s|scqV secq}|
These definitions can be extended to lub’s and glb’s of arbitrary (nonbinary)
sets in the obvious way, yielding the operators | |, [], ||, and [ ]. Adding suitable
bottom and top elements, we obtain the following lemma.

Lemma 1. (L,C,||,[7.0,{Loc}) and (L,C,|,[,{0},0) are complete lattices.

We call these two lattices the lattice of antichains and the dual lattice of an-
tichains, respectively. We show how to solve the universality problem for nonde-
terministic finite automata using either lattice.

Game Interpretation of Universality. Consider the following game played
by a protagonist and an antagonist. The protagonist wants to establish that a
given NFA A does not accept the language X*. The protagonist has to provide a
finite word w such that, no matter which run of A over w the antagonist chooses,
the run does not end in an accepting state. This game is a one-shot game.
However, to obtain a fixed point solution to the universality problem, we can
consider a multi-round game interpretation of this problem: in each round of the
game, the protagonist provides a single letter o, and the antagonist decides how
to update the state of A on input ¢ according to the nondeterministic transition
relation. To be equivalent to the one-shot game, the protagonist must not be able
to observe the state of the automaton, which is chosen by the antagonist. So,
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we have to consider a game where the protagonist cannot distinguish between
states of the automaton: this is a game of imperfect information. We can solve
the universality problem by looking for the existence of winning strategies in such
games. In a recent paper, we showed that safety games of imperfect information
can be solved by computing the greatest fixed point of a monotone function
on the lattice of antichains [DDROG]. We show here that reachability games of
imperfect information can be solved by computing a least fixed point on this
lattice. This gives a new algorithm for checking universality.

Using the Lattice of Antichains to Solve Universality. Given an NFA
A = (Loc, Init, Fin, X, §), we define the following monotone function on the lattice
L of antichains over Loc. For an antichain g € L, let

CPre?(q) = [{s |35’ € q-Fo € ¥ : s = cpre’ (s')}].

So, a set s of states belongs to the antichain CPre®(q) iff it is maximal and there
exist a state set s’ € g and a letter o € X' such that for all states £ € s, the set
of states ¢/ with 6(¢,0,¢') is in s’. This monotone function can be used to solve
the universality problem for NFAs. This is formalized in the next theorem.

Theorem 2. Let A = (Loc, Init, Fin, X,8) be an NFA, and let F = [{q | ¢ =
CPre?(q) U {Fin}}. Then Lang(A) # * iff {Init} C F.

Proof. First, assume that Lang(A) is not universal. Let w € X* \ Lang(A) be
a word of size |w| = n. Consider the sequence sg, $1,..., S, of state sets such
that (1) so = Init, (2) s; = postfj(i)(si,l) for all 1 <4 < mn, and (3) s, C Fin
(recall that A has no accepting run over w). We prove by induction on & that
{$n—x} C F. For k = 0, since s,, C Fin, we obtain immediately {s,} C F.
For the inductive case, assume that {s,_r} C F for all 0 < k < ¢, and let us
show that {s,—;} T F. Observe that by definition, for 0 = w(n — i+ 1) we
have post?(s,_;) = $,_i4+1. Therefore {sn—i} C CPreA({an_i}), and by the
monotonicity of CPre”! and the induction hypothesis, we get {s, _;} C CPre”(F)
and {s,_;} C CPre’*(F) U {Fin}, which is equivalent to {s, ;} C F, as F is a
fixed point. In particular, we have {so} C F, that is, {Init} C F.

Second, assume that {Init} C F. We construct a word w ¢ Lang(A). Consider
the infinite sequence qo, q1, g2, - - - of antichains defined by (1) go = 0 and (2) ¢; =
CPre(¢;_1) L {Fin} for all i > 1. By Tarski’s fixed point theorem, we know that
F = gy for some n € N. We construct an integer k < n, a sequence Sg, 1, . .., Sk
of k + 1 state sets, and a word w of size k such that {s;} C CPre?*(¢,_;_1) and
postg(iﬂ)(si) C si11 for all 0 < i < k. We start with so = Init so that {so} C gy.
Then, we have either {so} = {Fin} or {so} T CPre®(g,_1) (because {so} is a
singleton). In the first case, we stop the construction with ¥k =0 and w =¢. In
the second case, we continue the construction inductively. Assume that we have
constructed {s;_1} C CPre?*(g,_;) for some i > 1. By the definition of CPre*, we
know that there are g; € Y and s; € ¢,,—; such that postfi (si—1) C s;. We choose
w(i) = o;. Then {s;} C ¢n—;, and thus either {s;} C {Fin} and we stop with
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k=i¢and w=o0y...04 or {s;} C CPreA(qn_i_l). This construction stops for

some k < n, as g1 = {Fin} and {s;} C {Fin}. The sequence sg, $1, ..., Sx shows
that A has no accepting run over w, because (1) so = Init, (2) postg(i)(si_l) Cs
for all 1 <i <k, and (3) s C Fin. Hence w ¢ Lang(A). ]

The algorithm that consists in computing the least fixed point F from Theorem 2]
through the successive approximation sequence go C ¢1 £ g2 C - -+ (as defined in
the proof) is called the backward antichain algorithm. The computation is similar
to the subset construction used in the backward determinization of A, with the
essential difference that it maintains only sets of states that are mazimal in the
subset-inclusion order.

Using the Dual Lattice of Antichains to Solve Universality. In the
previous algorithm, the automaton is traversed backward starting from the set
of nonaccepting states. Using the dual lattice of antichains, we can formulate
a solution that traverses the automaton forward starting from the set of initial
states. Given an NFA A = (Loc, Init, Fin, X, §) and an antichain ¢ € L, let

Post®(q) = [{s |35’ € ¢-Fo € ¥ : s = post(s')}].

This function is monotone on the dual lattice of antichains. We can solve the
universality problem for NFAs by iterating Post as follows, defining a forward
antichain algorithm.

Theorem 3. Let A = (Loc, Init, Fin, X, 6) be an NFA, and let F :|:| {alq=
Post”(¢) {Init}}. Then Lang(A) # X* iff F C {Fin}.

The computation of the least fixed point F is similar to the standard, forward
subset construction used in the determinization of A, with the essential difference
that it maintains only minimal sets of states.

Relationship Between Forward and Backward Algorithms. Given an
NFA A = (Loc, Init, Fin, X, §), the reverse of A is the NFA B = (Loc, Fin, Init, X,
8"y, where for all states £,¢' € Loc and all letters o € X, we have §'(¢,0,¢') iff
5(¢',a,¢). Note that for all ¢ € ¥ and all s C Loc, we have preZ(s) = postZ(s).
For a set s C Loc, let s be the complement of s relative to Loc, that is, s = Loc)\ s.
For a set ¢ C 2'°¢, let § = {s | s € ¢q}. Note that § is an antichain iff ¢ is an
antichain, and |¢] = [¢].

Lemma 4. Let A = (Loc, Init, Fin, X, §) be an NFA, let B be its reverse, and let
q be an antichain over Loc. Then ¢' = CPre”(q) iff § = Post®(G).

From this lemma, it follows that the forward and backward approaches are equiv-
alent in the following sense: for every instance A of the universality problem that
is difficult for the forward antichain algorithm, there is an equally difficult in-
stance (namely, the reverse of A) for the backward antichain algorithm, and
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Fig. 1. A family of NFAs Ay, k > 2, for Theorem

vice versa. Indeed, let ¢qo C ¢ C g2 C --- be the sequence of antichains that
are constructed when computing the least fixed point F from Theorem [ (as
defined in the proof of the theorem); and let ¢f € ¢} C ¢4 T --- be the se-
quence of antichains that are constructed when computing the least fixed point F
from Theorem 3] defined as follows: (1) ¢, = 0 and (2) ¢/ = Post®(¢/_,) 71 {Fin}
for all 7 > 1. Using Lemma H] and induction, we can prove that ¢; = ¢, for all
i>0.

Comparison with Explicit Determinization. We call the classical algo-
rithm for solving the universality problem for NFAs the subset algorithm: it
first determinizes the NFA using a subset construction, and then checks if every
reachable state in the resulting DFA is accepting. The determinization is stopped
whenever a rejecting state is encountered. Usually, the DFA is constructed in a
breadth-first forward search, but it can also be done in a backward fashion.

Theorem 5. For checking universality, there exists an infinite family of NFAs
Ay, with k > 2 states, for which the forward subset algorithm is exponential,
and the (forward and backward) antichain algorithms are polynomial. There also
exists an infinite family of NFAs By for which the backward subset algorithm is
exponential, and the antichain algorithms are polynomial.

Proof. Consider the family of NFAs Ay, k > 2, over the alphabet X = {0, 1}
shown in Fig. [[l The automaton Ay has k + 1 states, £, ..., %, all accepting
except fi. There is only one initial state: Init = {{p}. Every Ay is universal,
as the initial state has a self-loop labeled with Y. The forward determinization
of Ay has 2" states. Hence the forward subset algorithm is exponential on the
family A, k& > 2. However, the backward antichain algorithm terminates in
polynomial time, as the sequence go = {{fx}}, and ¢;+1 = CPre™*(¢;) U {{¢1}}
for ¢ > 0, stabilizes after k iterations with ¢; = {{lx—i,...,lk}} for i < k, and
gk = qr—1. The test {Init} C ¢; requires linear time. The forward antichain
algorithm terminates after a single iteration with F = {Init}, and the test F C
{{¥r}} is done in constant time.

A similar proof holds for the second part of the theorem: for the family By,
k > 2, choose each By to be the reverse of Ay. [ |
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Algorithm 1. Backward antichain algorithm for testing universality

Data : a nondeterministic finite automaton A = (Loc, Init, Fin, X, 6).
begin

1 Start < {Init};

2 F — {Fin};

3 Frontier «— F;

4 while (Frontier # @) A (Start [Z Frontier) do

5 Frontier «— {q € CPre”(Frontier) | ¢ Z F};

6 F — F U Frontier ;

7 return (Start [Z Frontier);
end

4 Implementation and Practical Evaluation

Two Symbolic Implementations of Antichains. We implemented our new
algorithm for testing universality on top of NUSMV [CCGR99] and the BDD
library CUDD [Som98]. We considered two encodings of NFAs in NUSMV, and
correspondingly, two encodings of antichains of state sets using BDDs.

Fully Symbolic Encoding. In the first encoding, we associate a boolean variable
with each state of an NFA. A valuation of the variables corresponds to a state
set, and a BDD represents a set of state sets. Two valuations vy and vs for a set
X of variables are incomparable iff there exist x,y € X such that vy (z) > vo(x)
and v1(y) < v2(y). If the BDD contains only valuations that are incomparable,
then it symbolically represents an antichain of state sets. We call this encoding
Sfully symbolic.

Semi-symbolic Encoding. In the second encoding, we associate an integer with
each state of the automaton. Then a single integer counter is used to encode the
current state. A BDD represents a set of integer values and so a set of states.
An antichain of state sets is represented by a set of BDDs that are incomparable
for valuation inclusion. We call this encoding semi-symbolic.

Algorithm. For both encodings, we use the backward Algorithm [l to check uni-
versality. To avoid computing CPre twice for the same set, the algorithm com-
putes iteratively CPre only on the frontier sets, which are the sets that were
added to the approximation F' of the least fixed point F in the previous it-
eration. When the automaton is not universal, then F is not fully computed,
because we stop the computation as soon as one of the sets in F' contains all
initial states.

The Randomized Model. To evaluate the antichain algorithm and compare
with the subset algorithm, we use a random model to generate NFAs. This
model was recently proposed by Tabakov and Vardi to compare the efficiency
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of some algorithms for automata [TV05]. In the model, the input alphabet is
fixed to X = {0,1}, and for each letter 0 € X', a number k, of different state
pairs (£, ¢') € Locx Loc are chosen uniformly at random before the corresponding
transitions (¢, o, ¢') are added to the automaton. The ratio r, = I&CI is called the
transition density for o. This ratio represents the average outdegree of each state
for o. In all experiments, we choose g = r1, and denote the transition density
by r. The model contains a second parameter: the density f of accepting states.
There is only one initial state, and the number m of accepting states is linear
in the total number of states, as determined by f = |L7Zc . The accepting states
themselves are chosen uniformly at random. Observe that since the transition
relation is not always total, automata with f = 1 are not necessarily universal.

Tabakov and Vardi have studied the space of parameter values for this model
and argue that “interesting” automata are generated by the model as the two
parameters r and f vary. They have run large tests to evaluate the probability
for an automaton to be universal as a function of the parameters. We reproduced
those experiments for a greater space of parameter values and obtained a similar
distribution (Fig.[2). To generate each sample point, we checked the universality
of 200 random automata with 30 states.

Performance Comparison. We compare the performance of the backward
antichain algorithm with the tool dk.brics.automaton developed by Mgller
[M@04], which implements the forward subset algorithm and stops determiniza-
tion whenever a rejecting state is encountered. According to the experiments
of Tabakov and Vardi, this tool, which uses explicit state representation, is the
most efficient one for checking universality [TV05]. For the comparison, we use
the semi-symbolic encoding of antichains, as that turns out to be much more
efficient than the fully symbolic encoding. The comparison is carried out on
the whole parameter space of the randomized model. All experiments are con-
ducted on a biprocessor Linux station (two 3.06Ghz Intel Xeons with 4GB of
RAM). We only measure the execution times for the universality test in both
approaches, not the time for parsing the input files and constructing the initial
data structures.

In Fig. Bl Fig. @ and Fig. Bl we present the execution times for checking
universality by the explicit subset algorithm and the semi-symbolic antichain
algorithm. To generate each sample point, we check the universality of 100 ran-
dom automata with |Loc| = 175 (this is roughly the largest size that the subset
algorithm is able to handle on the entire parameter space with the available
memory). In Fig. Bl we present the median execution times for testing universal-
ity by the subset approach as a function of r (transition density) and f (density
of accepting states). The figure shows that the universality test is most difficult
when 7 = 2 and f = 1. For the same instances, the median execution time of
our algorithm is always less than the time unit of the system clock (1ms).

In Fig.[d and Fig.[Bl we present the average execution times for testing univer-
sality by the subset approach and the semi-symbolic antichain approach, respec-
tively. Both figures exhibit similar peaks, showing that the difficult instances are
roughly the same for both approaches. However, the antichain algorithm is much
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faster. For the most difficult parameter values (r = 2 and f = 1), the antichain
algorithm is 165 times faster than the subset algorithm. Intuitively, these in-
stances are difficult for both algorithms for the following two reasons. First, the
probability to be universal for these parameter values is around 50 percent, and
we believe that most of these instances are neither trivially universal nor trivially
nonuniversal. Second, when an automaton is universal, the subset method has
to build the entire deterministic automaton, and the antichain method has to
complete the computation of the least fixed point.

In Fig. [6l we present the ratio of the average time for the subset approach and
the average time for the antichain approach as a function of the densities. The
comparison for r < 1.4 and f < 0.2 is not very significant, because the execution
times are very close to the precision of the system clock (1ms). For the rest
of the parameter space, the antichain algorithm performs always better (up to
200 times better). Finally, in Fig. [[l we show that the semi-symbolic antichain
approach scales well when the size of the automaton increases, in contrast to
the subset approach. For the experiments we generated randomly 100 automata
per sample point for automaton sizes under 200 states, and 30 automata per
sample point for sizes over 200 states. The densities are again r = 2 and f = 1.
The antichain algorithm is able to handle random automata with 4000 states
in the average time of 12s. The average size of the final antichain (for universal



Antichains: A New Algorithm for Checking Universality 27

T T T T T T T
12k Antichains —

[rime explicic)/itime antichains) Classical —----
i) 10k u
[
120 PR 4
BN —
4w ER i
£ =
L i
o
%, L ]
| /’
o L 1 1 1 1 1
0 500 1000 1500 2000 2500 3000 3500 4000
number of states
Fig.6. Average execution time ratio Fig. 7. Average execution times for the
(|Loc| = 175) subset and semi-symbolic antichain algo-

rithms (transition density 2; accepting-
states density 1)

automata) is 217 state sets for automata with 4000 states. We did not pursue
experiments with larger automata, because we would have had to modify the
automaton generator, as it is not designed for such large automaton sizes. The
subset algorithm quickly exceeds the memory limit when the number of states
nears 200, so the curve is quite short in the left corner of Fig. [l

As mentioned above, the semi-symbolic antichain encoding gives far better
performances on the random model than the fully symbolic encoding, as shown
in Table [ for the difficult instances (r = 2 and f = 1). It also turns out that
the fully symbolic encoding does not scale well when the size of the automaton
increases. Each sample point is computed on a set of 50 random automata with
less than 100 states. For 175 states, the sample size is 100, and for more states,
the sample size is 30. The number of boolean variables of the BDDs that encode
antichains seems to be the reason for the difference in performances: the number
of boolean variables grows linearly with the number of states in the fully sym-
bolic encoding, but logarithmically in the semi-symbolic encoding. We have also
implemented the forward antichain algorithm with the semi-symbolic encoding.
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Fig. 8. Average execution time for the forward semi-symbolic antichain algorithm
(|Loc|=175)
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Table 1. Average execution times (ms) for checking universality with r =2 and f =1

number of states 20 40 60 80 100 175 500 1000 1500 2000 2500 3000 3500 4000
subset algorithm 23 50 141 309 583 2257

fully symb. antich. 3 14 70 175 421 6400
semi-symb. antich. 1 2 2 3 5 14 76 400 973 1741 2886 5341 9063 13160

On the random model, this approach is roughly twice as slow as the backward
antichain algorithm, which is still better by several orders of magnitude than
the subset algorithm. See Fig. B for the experimental results.

5 Beyond Universality

Language Inclusion. We show that language inclusion can be checked using
an antichain algorithm based on a slightly richer lattice. Consider two NFAs
A = (Loca,Initg,Fina, X, 64) and B = (Locg, Initg, Fing, X, §p) over the same
alphabet. We wish to check whether Lang(A) C Lang(B). An antichain over
Locy x 2M°°5 is a set ¢ € 9Lloca 2B ek that for all (l1,51), (L2, s2) € g with
{1 = 0y and s; # s9, we have neither s; C s9 nor so C s1. Given a set ¢ €
2Locax2™® “an element (¢,s) € q is mazimal iff for every s’ with s’ D s, we
have (¢,s") & q. We denote by [q] the set of maximal elements of ¢g. Given two
antichains ¢ and ¢’, we define

qC ¢ itV s)eq-3(,s)eq :sC s
quig = [{(ts) | (L,;s) €qV (£s) €q'};
aMi g =[{{l;sns) [ (6s)eq A (ls)eq}H].

Let CPre;(q) = [{(¢,s) |Jo € X -3(¢',s') € q: ¢! € 6a(L,0) A postZ(s) C s'}].

Theorem 6. Let A and B be two finite automata, and let F; = [1{q | ¢ =
CPre;(¢) U; (Fing x {Fing})}. Then Lang(A) € Lang(B) iff there exists a state
£ € Inita such that {(¢,Initg)} C; Fi.

Typically, A is an “implementation” automaton, and B a “specification” au-
tomaton. Often A is given as a synchronous product of automata, that is,
A=A ® - ® A, Then we can apply our method with antichains over
Loca, x --- x Loca, x 2'°¢2. However, in the common case where the imple-
mentation components A; are deterministic (but the specification B is nonde-
terministic), an alternative approach is possible, and likely more efficient. The
following lemma shows that in this case, the language-inclusion problem can be
reduced in polynomial time to the universality problem. This reduction has the
advantage of avoiding the construction of the product of the implementation
components.

Lemma 7. For a set Ay,..., A, of DFAs and an NFA B, we define the sum
C=A10 - DA, ®B. Then Lang(A1)N...NLang(A,,) C Lang(B) iff Lang(C) =
2.
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Emptiness of Alternating Automata. The antichain algorithm for checking
the universality of NFAs can be generalized to checking the emptiness of alter-
nating automata, using the same lattice with a slight modification of the function
CPre. In alternating automata, the transitions are given by boolean formulas.
For example, p(¢,0) = ¢1V (£2 Al3) means that in state ¢, a word of the form o-w
is accepted if either w is accepted in ¢1, or w is accepted in both ¢5 and ¢3. Our
formal definitions follow [KVO0I]. Let B*(Loc) be the set of monotone boolean
formulas over Loc, defined by the grammar ¢ :=true | £ | ¢ A ¢ | ¢ V ¢, where
¢ € Loc. A set s C Loc of states satisfies a formula ¢ € BT (Loc) (denoted s = ¢)
iff  is equivalent to true when the states in s are replaced by true, and the states
in Loc\ s by false.

An alternating finite automaton, or AFA| is a tuple A = (Loc, Init, Fin, X, p),
where Loc, Init, Fin, and X are as for NFAs, and p: Loc x ¥ — BT (Loc) is
a transition function. The NFAs can be seen as a subclass of the AFAs: the
transition relation § of an NFA can be translated into the transition function p
of AFA such that p(¢,0) = ¢1V.. VL, for {¢1,...,£,} = {¢' € Loc | ({,0,0') € 6}.
A run of the AFA A over a finite word w is a tree T' = (N, =), whose nodes
are a prefix-closed set N C Loc' of nonempty sequences of states. The level
of a node x = #1...4, in N is its size |x| = n, and the last element of x is
last(x) = ¢,,. The set N contains a single node at level 1, the root, which is a
state in Init. We require that for all x € N, we have |z| < |w| + 1. The child
relation =~ C N x N satisfies the following condition: for all nodes x € N, we
have (1) if x = 2/, then 2’ = x - £ for some ¢ € Loc, and (2) if |z| < |w]|, then the
set s = {last(z’) | ¢ = 2’} is such that s |= p(last(x),w(|z])). A leaf of T is a
node z of level |x| = |w| 4+ 1. A run T is accepting iff last(z) € Fin for all leaves
x of T. The language Lang(A) accepted by A is the set of words w € X* such
that A has an accepting run over w.

The emptiness problem for AFAs is to decide, given an AFA A, whether
Lang(A) = 0. Since complementation of AFAs is easy (by dualizing the tran-
sition function and complementing the set of accepting states), the universality
problem for AFAs (to decide, given an AFA A, if Lang(4) = X*) is polynomi-
ally equivalent to emptiness. Given an AFA A = (Loc, Init, Fin, X, p), consider
the following monotone function on the lattice L of antichains over Loc: for an
antichain g € L, let

CPreq,(q) =[{s|3s' €q-FJoe X -Vles:s E=pl,o)}.

This monotone function on L can be used to decide the emptiness problem for
AFAs, as shown in the following theorem.

Theorem 8. Let A = (Loc, Init,Fin, X, 6) be an AFA, and let F, = [_]{q | ¢ =
CPre,(q) U {Fin}}. Then Lang(A) # 0 iff {Init} T F,.
6 Conclusions

We showed that explicit determinization can be avoided when solving several
problems related to NFAs on finite words. Our new solutions to the universality
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and language-inclusion problems for NFAs, and to the emptiness problem for
AFAs, evaluate the least fixed point of simple monotone functions on lattices of
antichains. They are goal-directed and leave determinization implicit. We imple-
mented the new algorithm for the universality problem and compared its perfor-
mance to that of the classical algorithm (which uses explicit determinization).
Our method outperforms the classical one dramatically on the entire parame-
ter space of a randomized model. On the difficult instances of the randomized
model, our algorithm is several orders of magnitude faster than the classical one.

We plan to pursue several future directions. First, as the performance of the
new algorithm on the randomized model is very encouraging, we want to apply
antichain algorithms to practical problems. Second, the antichain method does
not extend trivially to automata over infinite words. We need further research
to see if our results can be extended to such cases.

Acknowledgements. We thank Deian Tabakov for his code and helpful answers
about the randomized model.
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