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BY SHIGE PENG AND ZHE YANG
Shandong University, and Shandong University and Cambridge University

In this paper we discuss new types of differential equations which we call
anticipated backward stochastic differential equations (anticipated BSDEs).
In these equations the generator includes not only the values of solutions
of the present but also the future. We show that these anticipated BSDEs
have unique solutions, a comparison theorem for their solutions, and a duality
between them and stochastic differential delay equations.

1. Introduction. Consider these types of stochastic differential delay equa-
tions (SDDEz5):

dX; = (WX, + - X,—g)dt + (X,0] +X,_90 ) dW,,
(D telty, T +61;
Xl‘le’ te[to_e,tOL

where W is a d-dimensional Brownian motion, 6 > 0, x; is a deterministic func-
tion, and Q is a given ﬁ}” -measurable random variable. In the case where
i = o =0, this model is very typical in finance as the price of a stock. Then
Y,, = E[X1Q|.%4] can be the price of an option valued Q at maturity time 7 if
x; = 1. It is easy to prove that (see, e.g., El Karoui, Peng and Quenez [7]) Y, is

a solution to the following backward stochastic differential equation (BSDE):
—dYy = (W Yr + Zioy) dt — Z; dWy, Yr=20.

This SDE with delay, in which & and ¢ are nonzero, has a solution. An interesting
question is whether it can be expressed in the form of equation (1). The answer is
positive if we can solve the following new type of “anticipated” BSDE:

—dY; = (u Y + /_ME‘%[YH—G] + Z;0;

2 + EZ[Zi19160 + 1) dt — ZedW,,  telt, Tl
Y, =0y, telT, T+0];
ZI=PZ’7 tG[T,T—i—@]
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We observe that the generator, that is, the dt part of the BSDE, contains the values
(Y., Z,) for present time ¢ as well as for future time ¢ 4+ 6. This is a new duality
phenomenon for SDEs and BSDE:s.

In this paper we consider a more general form of this new type of BSDE:

—dY; = f(t, Yi,Zt, Yii5(1)s Zt+§(z))df — ZidWy, te[0,T];
Y =&, te[T, T+K],
Zy=ny, te[T, T+ K].

The paper is organized as follows. In Section 2 we consider the duality between
SDDE:s and anticipated BSDEs. After a brief presentation of some known results
that we will use in Section 3, we prove an existence and uniqueness result for
anticipated BSDEs in Section 4. In Section 5 we give an important result for an-
ticipated BSDESs: a comparison theorem. In Section 6 we use the duality between
SDDE:s and anticipated BSDEs mentioned in Section 2 to solve a stochastic control
problem.

2. Duality between SDDEs and anticipated BSDEs. It is well known that
there is perfect duality between SDEs and BSDEs (see El Karoui, Peng and
Quenez [7]). In this section we consider duality between the SDDEs and the an-
ticipated BSDEs mentioned above. We will use this duality to solve a stochastic
control problem in Section 6.

THEOREM 2.1. Suppose 6 > 0 is a given constant and [, [, € L?g(to -
0,T+0),1.€ L%, T),0.,6.€ L% (to—0,T +60; R u i, 0., 5. are uni-
formly bounded. Then for all Q, € S%}(T, T+806),P e L?Q(T, T +6; Rd), the
solution Y, of the anticipated BSDE (2) can be given by the closed formula

7 T T+6 _ ~
Y, =E t|:XT or +/ Xlsds +/T (Qsis—g + Psog_g) X9 dsj|’
t

a.e., a.s.,
where X is the solution to the SDDE

dXs = (s X5+ its—9Xs—9)ds + (XSO'ST + Xs—OO_—sjle)dWs,
Xl = 15
X; =0, set—0,t].

PROOF. First, we show that (3) has a unique solution. When s € [¢, t + 6], (3)
becomes

@ {dXs:,usXsds—i-XsosTdWs, selt,t+06];
Xt == l
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We can then easily obtain a unique continuous solution ¢, for (4). When s € [¢ +
0, T + 61, (3) becomes

dXg = (s Xy + fls—g Xs5—0) ds + (Xs0l + X9 o) dWs,
(5) se[t+6,T+6],
X5 = g, selt,t+0].

Equation (5) is a classical SDDE, thus, it has a unique solution. Applying Itd’s
formula to XY; for s € [¢, T] and taking conditional expectations under .%;, we
get

EZXrYr]— X, Y,

T
= Egt |:/ (Ysﬁs—QXs—Q - Egs [YS—i-Q]ﬁSXS
!

+ Zso5_9X5—9 — Egs [Zs1olos X — Xsls)dsi|~

Because X; =1and X; =0, s €[t — 0, 1), we have

7 T FAN _
Vo= E7Xpvr + [ Xiods | < B [ GufisaXooo = Yosofis X1 ds|
t t
z[ (", - -
—-E t|:/ (ZSO‘S—OXS—G_ZS-"-QO'SXS)ds:|
t
7z T T T+6
=F ’|:XTYT+/ Xslsds—/ Ysﬁs_gxs_gds+/+9 YS,ELS_QXS_QCZS]

t t t

7 T T+6
—F ’|:/ Z,0s_9Xs_pds — / Zs05_9Xs_p dsi|
t 140

T T+6
= E‘g‘ |:XTQT +/ Xlgds +~/T (Osits—oXs5—0 + Ps(}s—OXs—G)ds]- O
t

3. Preliminaries. Let (2,.%, P, .%;,t >0) be a complete stochastic basis
such that .#( contains all P-null elements of .%# and suppose that the filtration
is generated by a d-dimensional standard Brownian motion W = (W;);>¢. Given
T > 0, denote the norm in R by | - |. We will use the following notation:

o L2(Fr;R™) = {R™-valued .Zr-measurable random variables such that
E[|€]*] < oo}

° L?Q(O, T;R™) = {R™-valued and .%;-adapted stochastic processes such that
Elfy lgi|?dr] < o0};

° Sé (0, T;R™) = {continuous processes in ng(O, T;R™) such that
E[supy<,<7 |§0t|2] <oo}.

If m = 1, we denote them by L*(Fr), L% (0, T) and S% (0, T). The above L?
are all separable Hilbert spaces.
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The following lemmas can be found in Peng [13], Section 3. For their originali-
ties we refer to the notes of [13] or [7]. Our Lemma 3.1 is Lemma 3.1 of Peng [13].
Lemma 3.2, which is Theorem 3.2 of Peng [13], is a basic result of BSDEs: an exis-
tence and uniqueness theorem. Both Lemmas 3.3 and 3.4 are comparison theorems
for solutions of BSDEs. Lemma 3.3 is Theorem 3.3 of Peng [13] and can also be
found in El Karoui, Peng and Quenez [7]. Lemma 3.4 can be easily obtained from
Lemma 3.3.

LEMMA 3.1. For a fixed € € L*(Z1) and go(-) which is an Z,-adapted
process satisfying E[(fOT 1g0(1)|d1)?] < +o0, there exists a unique pair of
processes (y.,2.) € ng(O, T; R4 satisfying the following BSDE:

T T
yt=s+/ go(s)ds—/ L dW,,  1€[0, T,
t t

If g0(-) € L4(0,T), then (y.,z.) € $5(0,T) x L% (0, T; RY). We have the fol-
lowing basic estimate:
o [ (T(B 2\ B(s—1)
4 B [ (Sl 12 )P as)
t
(©) ) .
< PPN+ 2B [ e |
t

In particular,

2 TiB 2\ Bs
lyol~+ E A Elysl + |zs|7 )P ds

) L
28T - 2 _Bs
< Ef£Pe ]+ﬁE[/o 180(s)1%e ds],

where B > 0 is an arbitrary constant. We also have

T
®) E[ sup |)’t|2] skE[|s|2+ [ Igo(S)IzdS}

0<t<T

where the constant k depends only on T .

We assume that g = g(w, t,y,2): Q2 x [0, T] x R™ x Rmxd __ R™ gatisfies
the following conditions:

(a) g(-,y,z)is an R"-valued and .%;-adapted process satisfying the Lipschitz
condition in (y, z), that is, there exists p > 0 such that, for each y, y’ € R™ and
2.2 €R™, |g(t,y,2) = g(t. ¥ D) < py =y +1z = Z)).

(b) g(-,0,0) € L% (0, T; R™).
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LEMMA 3.2. Assume that g satisfies (a) and (b), then for any given terminal
condition § € L*(Fr; R™), BSDE

T T
C) Yt=$+/ g(s,YS,ZS)ds—/ Zgd Wy, O0<t<T,
t t

has a unique solution, that is, there exists a unique pair of %#;-adapted processes
Y.,Z) e SLZQ(O, T;R™) x L?@(O, T; R™*4) satisfying equation (9).

LEMMA 3.3. Assume gj(w,t,y,2): Q2 x [0, T] x R x R — R satisfies (a)
and (b), j=1,2. Let (Y.(l), Zfl)) and (Y.(z), Zfz)) be respectively the solutions of
BSDEs as follows:

. . T . . T .
th:g(mr/ g (s, Ysm,zs(n)ds_/ zZVaw,  0<i<T,
t t
where j =1,2. If ¢V = @ and g1 (1, v", Z") = g2, YV, Z{"), ace., as.,
then
Y,(l) > Yt(z), a.e., a.s.
We also have strict comparison: under the above conditions,
1 2
V=¥ e W@ gy
1 1 1 1
gi(t, Yt( ) Zt( )) = g(1, Yt( ) Z,( )), a.e., a.s.
LEMMA 3.4. We make the same assumption as in Lemma 3.3. If £V >
£, g1(t,y.2) 2 g2(t.y,2),1 €[0,T],y €R, z € RY, then
Y,(l) > Yt(z), a.e., a.s.

4. Existence and uniqueness theorem. We consider a new form of BSDEs
as follows:

—dY; = f(l‘, Yi,Zt, Yiis()s Zt+;(z))df —Z;dWy, tel0,T];
(10) Y, =&, tel[T, T+ K],
Zl‘:nl‘s tE[T9T+K]’

where 8(+) and ¢ (-) are two R™-valued continuous functions defined on [0, T'] such
that:

(1) There exists a constant K > 0 such that, for all s € [0, T'],

s+8(s)<T+K; s+¢(s)<T+K.
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(i1) There exists a constant L > 0 such that, for all # € [0, T'] and for all non-
negative and integrable g(-),

T T+K
/ g(s—i—S(s))dsgLf g(s)ds;
1 t

T T+K
/ g(s—i—;“(s))dsgL/ g(s)ds.
t t

We call equation (10) the anticipated BSDE.

The setting of our problem is as follows: to find a pair of .%;-adapted processes
Y.,Z.) € SEZ@(O, T + K;R™) x L2y(0, T + K;R™*4) satisfying anticipated
BSDE (10).

Assume that for all s € [0, T, f(s, @, y,2,& 1):Q x R" x R™"*4 x [2(.Z,;
R™) x L?(F; R"¥4)y — L2(F,,R™), where r,r’ € [s, T + K1, and f satisfies
the following conditions:

(H1) There exists a constant C > 0, such that for all s € [0,T], y,y" € R™,
2,7 e R g £ e L2 (s, T + K;R™),n.,n/ € L% (s, T + K;R™ ) r, 7 €
[s, T + K], we have

|f(S, Y, Z’SV’ nf) - f(S, y/’zl,%.;, 77;')|
<C(y =Y+ 1z =21+ EZ[1& — &l + In7 — D).

(H2) E[fI |f(s.0,0,0,0)%ds] < co.

REMARK 4.1. 1. Note that f(s, -, -, -, -) is .#¢;-measurable ensures the solu-
tion to the anticipated BSDE is .%;-adapted.

2. We give examples of §(s) and f. Both examples of §(s) satisfy (i) and (ii).
Example 1: Let §(s) = ¢, where ¢ > 0 is a constant. Example 2: Let s + §(s)
be a monotone nonnegative function whose converse function has a continuous
differential function. We give examples of functions that satisfy (H1) and (H2):
Let g satisfy (a) and (b) and let §, ¢ be two positive constants. For each 7 € [0, T']
and (£,,n.) € L?g(t, T+ @BV, R" x R™*d) define f1, f> such that

F1(t, Es i) = g(t, EZ [E4s), E7 i),
P Egss i) =8, & ivsléigs], Mg D,
where & [-]: L*(F) — L*(F,),0<s <t <T+K, is a.%-consistent nonlin-

ear evaluation (see Peng [13]). Then fi, f> satisfy (i) and (ii).

The following is the main result of this section: an existence and uniqueness
theorem for adapted solutions for anticipated BSDE:s.
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THEOREM 4.2. Suppose that f satisfies (H1) and (H2), and 8, ¢ satisfy
(1) and (ii). Then for any given terminal conditions &, € S:ZQ(T, T + K;R™)
and n, € Lzy(T, T + K;R™*) the anticipated BSDE (10) has a unique so-
lution, that is, there exists a unique pair of F,-adapted processes (Y.,Z.) €
550, T + K;R™) x L% (0, T + K; R™*9) satisfying (10).

PROOF. We fix 8 = 12C%(2L + 1) +2, where C is the Lipschitz constant of f
given in (H1), and introduce a norm in the Banach space ng—[ 0, T + K; R™):

T+K 12
||V(')||ﬁ=<E[/O IvslzeﬁsdsD.

Clearly, it is equivalent to the original norm of L?;(O, T + K; R™). But it is more
convenient to use this norm to construct a contraction mapping that allows us to
apply the Fixed Point Theorem. Set

T T
Yi=¢&r +/ F (S, Yy Zss Ys46(s)> Zs+2(s)) dS —/ ZgdWs,
t t

te[0,T];
Y, =&, tel[T, T+ K],

Zl:nlv te[T7T+K]

Define a mapping 4 : L?Q(O, T+K;R" x Rm>dy L?Q(O, T+ K; R™ x R"*4)
such that h[(y.,z.)] = (Y., Z.). Now we prove that A is a contraction mapping
under the norm || - || 5. For two arbitrary elements (y,, z,) and (v,z)in L?Q(O, T+
K;R"™ x R"*4) set (Y., Z.) = h[(y.,z.)] and (Y'.,Z) = h[(y/, z))]. Denote their
differences by

Gn2)=( =Y., @=2)), Y,Z)=(Y -Y)..(Z-7Z)).

By basic estimate (7), we have
r é 52 5 12\ Bs
E [Ys1” + | Zs|” e ds
0o \2
o) T
= EE[/O ‘f(s» Vs ZSays+8(s)aZs+§(s))

2
- f(S» y;» Z;, y§+5(s), Z;+{(s))| P’ ds].

Since é(s) and ¢ (s) satisfy (ii) and f satisfies (H1), by the Fubini Theorem, we

haVe
0 ) s K

2C2 T T e BBl . 2 Bs
= TE 0 (|J’s| +lzs| + E [|)’s+6(s)‘ + |Zs+g“(s)u) e’ ds
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6C? T a0 . 2 . 2\ Bs
f?E 0 (l)’s| + 125l +2|)’s+8(s)| +2|Zs+{(s)} )e ds

6CZ2L+1) T+K .

s——————EU“ G%F+u£wmw]
B 0

Because 8 = 12C%(2L + 1) 4 2, then

T+K n
EU° unﬂ+mﬁw&M]
0

1 T+K A2 212y Bs
<SE[ [ P+ P ds |
2 0
or
I(Y.. Z)llp < 515 2)p.

Consequently, / is a strict contraction mapping of LZQ(O, T 4+ K;R™ x Rm*4),
It follows by the Fixed Point Theorem that (10) has a unique solution (Y., Z,) €
L?Q(O, T 4+ K:;R™ x R"*4). Since f satisfies (H1) and (H2) and since 8, ¢ sat-
isfy (i) and (ii), we have f(-,Y,, Z.,Y 15.), Z.4¢(.) € ng(O, T; R™). Thus, by
Lemma 3.1, we obtain Y, € SLZQ(O, T+ K;R™). O

The following example shows that a simple case of the anticipated BSDE (10)
has a solution.

EXAMPLE 4.3. Consider the following anticipated BSDE:

+34
Y =tW;, telT, T +4],

where § > 0 is a given constant. Then (W, t);¢[0,7+5) 1S its solution.

T T
{ Yi=TWr _/ —EJ‘Y[Ys+5]dS _/ ZsdWy, t€(0,T],
t S t

The following proposition is an estimate of the solution of the anticipated
BSDE (10).

PROPOSITION 4.4. Assume that f satisfies (H1) and (H2), and also § and ¢
satisfy (1) and (ii). Then there exists a positive constant Cq that only depends on
C in (H1), L in (ii), and T such that for each &, € Sé(T, T + K; R™) and each
n, € L?Q(T, T + K;R"™*4), the solution (Y., Z.) of the anticipated BSDE (10)
satisfies

Z, 2 T 2
E ’|: sup |Ys|” + | Zs| ds}
t<s<T t
(11)
Z 2 T+k 2 2 T 2
<coe e+ [ 6P+ inPyds+ ([ 176.0.0.0.00as5) |
t

foreacht [0, T].
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PROOF. For s € [0, T], applying Ito’s formula to e#*|¥;|?, we obtain

T
eﬂS|Ys|2+/ P BIY, P+ 12, dr
S
T 2 T
—Tigr2 -2 / (Y, Z, dW,)
S

+ 2/ST P (r Ve, Zr, Yrisirys Zrien)s Yr) dr.
Since
2(f(r Yr, Zr, Yrys()s Zrven))s Yr)

=2(f(r.Yr, Zr. Yra50)s Zracin) — F (1. Y, Zr, Vg5, 0), Yr)
+2(f(r Y Zr. Yrgs5(), 0) = f (. ¥y, Z,,0,0). Y,)
+2(f(r, Yy, Z,,0,0) — f(r,Yr,0,0,0), Y;)
+2(f(r, ¥,,0,0,0) — £(r,0,0,0,0), ¥,) +2(f(r, 0,0,0,0), ¥,)

<2CET (| Zrye 1V + 2CEZ Y50 [|1¥r] + 2C 1Y, [ Z1 |
+2C1Y, > +2(f(r,0,0,0,0), Y;)

1
< GLC? +4LTC? +3C7 + 2001V, + 7 E7[|Zesen ]

1 b 1
+ mE%[!mm! 1+ §|Zr|2 +2(£(r,0,0,0,0),Y,),

we get, for s € [0, T],

T 2
eﬁles|2+f eﬂr|:(ﬂ—3LC2—4LTC2—3C2—2C)|Yr|2+§|Zr|2:|dr
)
T T
(12)  <efTerP+2 / " (f(r,0,0,0,0), Y,) dr —2 / (Y, Z, dW,)
s s

1 rT 1 T
+ ﬁ/ e’ery’[|Zr+§(r)|2]dr+ m/ eﬂrEyr[|Yr+5(r)}2] dr.

N N

Taking conditional expectations under .%; on both sides of (12), we have

T
PNy )P+ ES U eﬂ’[(ﬁ —3LC?—4LTC?*-3C*-20)|Y,?
S
2
+ 5|Z,|2} dr}

o> T
<E% [eﬂT|sT|2 42 / P (£(r,0,0,0,0), Yr)dr]
R
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I T
+mE‘%US eﬁ’E‘/’[|Yr+a<r)|2]d"]

1 T
+5 BT [/s " EP|Zrsi ] dr}

T
<E% [e”|sr|2 +2/ e (£(r.0,0,0,0). Y,)dr
N
1 T+K
b= [ emra]

1 T+K
+ gEg‘ [/ e’sr|Zr|2dr]
)

1
Set B=3LC2+4LTC?+3C2+2C + T then

. T
EZs [/ ef”|z,|2dr]
S

T
(13) < E% [3e’”|sr|2 +6 / P (£(r,0,0,0,0), Yr)dr]
S

T s 20 3 0
+E é|:/ e (|77r| + &1 )dri|
T 4T

Sincefort <s <T,

T
/ (Y, Z, dW,)

N

T K
/ eﬁr(YraZrdWr)_/ eﬁr(YraZrdWr)
t t

= +

’

T
f eﬂr(Yra Z-dW,)

t

/ eﬁr(Yr, Z,dW,)
t

by the Burkholder—Davis—Gundy inequality, we have
E7 [ sup }

T
/ eﬂr(YraZrdWr)
t<s<TIlJs
s
/eﬁr(YraZrdWr)
t

<27 sup :|
Li<s<T

r T 1/2
(14) <6E7 (/ ezﬂ’|Yr|2|zr|2dr) ]
t

- T 1/2
<6E7 (sup el/zﬂ’|yr|)(/ eﬂr|z,|2dr) }
L \e<r<T t

1 ar G T
szJ’[ sup eﬁr|Yr|21|+36EJ’|:/ e'Br|Zr|2dr].
t

t<r<T
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From estimates (12) and (14) we have

E‘%[ sup eﬂs|Ys|2:|

t<s<T

T
sE%[eﬁT@ﬂ%zf "1 f(r,0,0,0,0)]Y,|dr
t

+2 sup

t<s<T

1 T
HET [ﬁ/[ " ET (| Zrson | dr

T
/ Py, Z, dw,)

N

)

1 r 2
tar ), P EZ Y50 ]dr]

1
< EZePT g 2] 4 EE%[ sup eﬁ’mﬂ

t<r<T

T
+T2ET U eﬁ’|z,|2dr]

t

g7 L[ 2gr g LMo 2d
+ L) ¢ 1 Zr e ’”+ml e |Yrqs0r)|"dr

T
+2E9f[/ ef”|f<r,o,o,o,0>||yr|dr}
t

1 T
< 71 er 1+ B sup MR+ 7267 [T ez, Par
t

t<r<T

1 T+K 1 fT+K
E%_/ pri 7,2 _f By, 2 ]
+ [3: e||dr+4Tt e’ Y |7 dr
T
+2E%[/ eﬂ’|f<r,o,o,o,0)||Yr|dr]
t

3
< EZ1[ePT g 2] 4 ZE%[ sup eﬁ’mﬂ

t<r<T

1 T
+ <72+ g)E‘% [/ eﬁr|Zr|2dr}
t

gz (T pf(l o, 1 0
+E [/T e (§|m| +E|sr|)dr}

T
+2E‘%[/ eﬁrlf(r,(),0,0,0)||Yr|dr]
t
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Denote by Cop > 0 a constant that depends only on 7,L and C, which we
allow to change from line to line. From the estimate above and estimate
(13),

1 )
ZE‘%[ sup eﬁ3|Ys|2:|

t<s<T

Z, T 2 T+K 2 2
< CoE f[eﬁ el [ e +1g )dr]

T
+C0E“%[< sup e1/25’|Y,|)<f 2P| £(r, 0, 0,0,0)|dr>}
t

t<r<T

Z, T 2 T+K 2 2
< CoE f[eﬂ erP+ [ e +1g )dr]

1 T 2
+§E'%[ sup eﬁ’|Y,|2] +2C§E5fr[</ V287 £(r.0,0,0, O)|dr) }
t

t<r<T

T+K
< COE%[|ST|2+ [ P+ |sr|2>dr}

1 T 2
+§E5"r[ sup eﬂr|Y,|2] +2C§E5‘7[(/ |£(r,0,0,0, 0)|dr> }
t

t<r<T

Then

T
Eﬂ‘[ sup |Ys|2}+E%[/ |zs|2ds]
t<s<T t
y 5 T+K ) 5 T 2
< CoE f[|sT| + [ s+ ”’”(/t |f<s,0,o,o,0>|ds> ]
]

The following proposition shows the importance of the effect of anticipated time
on the solution to anticipated BSDEs.

PROPOSITION 4.5. Let (Y.(”, Zfl)) and (Y.(2>, Zfz)) be respectively solutions
of the following two anticipated BSDE's:

!—dyfﬁ =¥, 20 v} ) dt—zaw,,  telo, 1],

v =g, telT,T+K],
where j = 1,2. Assume &, € SLQQ(T, T + K;R™), 81 and &, satisfy (i) and (ii),
f satisfies (H2), and there exists a constant C > 0, such that for all s €
[0,T],y,y €eR" 2,z e R"™ 4. 0,0 € L% (s, T+ K;R") and r €[5, T + K],

|f(say’Z90r) - f(sv ylaz/’ey,')| S C_‘(|y _y/| + IZ_Z,| + |E§S[9r _07,':”)
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If for any t € [0,T], 81(t) < 8,(t), then there exists a constant M=>0 only de-
pending on C, L and T such that

- T
yV —y@P < M/t (82(s) — 81(s)) ds
F 2 T+K 2 T 2
< E ’[ISTI [ s+ [ 1£6.0.0.0) ds]

PROOF. Setting y, =YD — Y@ 7z =70 — 7@ then by estimate (6), we
obtain, for all r € [0, T'],

Py T B _
|y,|2+Eff[ft (5|ys|2+|zs|2)eﬁ“ ”ds]

2 20 (T 1 2 2
< 2R [0 200y ) - 16, 204 )

s+81(s)
w P61 ds]
T
— 1 2 2 B(s—
= E'% |:/t (|)’s| +lasl+ |E95 [Ys(—i-)Sl(S) B Ys(+)62(s)]|) eﬂ(s ! dS:|
6C? T
= EL%[/ (|)’s|2+|Zs|2
B 1
T Fiy @ @ 12y Bls—
+ ‘E [ys+‘31(5)] +E [Ys+81(s) o Ys+82(s)]’ )eﬁ(s ! ds:|

6C2+12C*L _, [ (T
< [ e as] +
t

~2

T
6C E‘%[/ IZS|26[j(s—t)ds:|
B ¢

12C* 2T (T 7@ @ 12.BG—1)
"‘TE ft [E7 Y50 = Yoranoll e ds |.
But
82(s)
F v @ q1_ gl [T @ 52 v@
E [Ys+81(s) - Ys+52(s)] =E [£+51(S) f(r’ Yr ’ Zr ’ Yr+52(r))dr ’

and set 8 = 6C2, hence,

T
el < (A +2L)E [/ s 2P0 ds}
t

+2E9f[/T Eﬁ*‘[
t

s+382(s)
2 2 @)
/S f(ry®,z@y

2
B(s—1) }
e ds
+5,(s) r+68(r) i|

)dr
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o T
<120 TOE7 [y Pas]
1

s+82(s)

T
Gy 2 2
287 [ oo =010) [0 02 22 ¥ )

xeﬂ(‘v’)ds}
T
< (1+2L)PTDET: [/ |ys|2ds}
t
T
+8E7 [/ (82(5) — 81(5))eP ™ ds
t
T _ _
A [ @rPP 4 CzOP 4 0
+1£0.0.0.0P)dr | |
o T
<(1+2L)TDET [/ |ys|2dsi|
t
T
+8f (82(5) — 81(s))ePE ™ ds
t
AN 21y @2 L #2152 >
x E [/ (1+L)CHYP )+ C*|ZP ) + 1 £(,0,0,0) %) dr
t
T+K ~» )
+fT LC?|g,| dr:|.

From estimate (11), we can find a constant M > 0 depending only on C, L and T
such that

T
IwVSME%L/I%Vw}
t
_ T
+ M/ (82(s) — 81(s)) ds
t

F 2 T+K 2 T 2
foD&|+A &P ds+ | vmaam|w]
t

Thus, by Gronwall’s inequality,

_ T
<8 [ (526) 1 (5)) ds

« EZ G 2 I+K 2 T 2 Mt
r|”+ . |Es|°ds + [f(5,0,0,0)|"ds [e™".
t
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Fix M = MeMT | therefore,
, (T
[y §M/ (82(s) — 81(s))ds
t

e ) T+K T )
x EZEr|” + . |&s17ds + t |f(5,0,0,0)|7ds |. 0

5. Comparison theorem for 1-dimensional anticipated BSDEs. Lemma3.3
is a typical version of a comparison theorem. It is a fundamentally important re-
sult in BSDE theory. Some further developments in this direction are Cao and
Yan [3], Lin [10], Liu and Ren [11], Zhang [16] and Situ [15], without mention-
ing many other widely circulated papers listed in [13]. Recently Hu and Peng [8]
gave a comparison theorem for multidimensional BSDEs. Comparison theorems
for BSDEs have received a lot of attention because of their importance. For exam-
ple, the punishment method in reflected BSDEs is based on a comparison theorem
(see [4, 6, 9] and [14]). Moreover, research on properties of g-expectations (see
Peng [13]) and the proof of a monotonic limit theorem for BSDEs (see Peng [12])
both depend on comparison theorems.

It is well known that 1-dimensional BSDEs have comparison theorems (see
Lemmas 3.3 and 3.4) when their generators satisfy the conditions of existence
and uniqueness theorems for BSDEs. It is very important to notice that the condi-
tions on f needed for the comparison theorem for anticipated BSDEs are stronger
than those needed for the existence and uniqueness theorem. Using the compari-
son theorem for anticipated BSDEs, we will solve a stochastic control problem in
Section 6.

Let (YD, Z(D), (¥@, Z?)) be respectively solutions of the following two 1-
dimensional anticipated BSDEs:

Yt(j) =f;(j), T<t<T+K,

where j =1, 2.

THEOREM 5.1. Assume that f1, f>» satisfies (H1) and (H2), S.(l),f.(z) €
Sé-(T, T + K), § satisfies (1), (ii), and for all t € [0,T],y e R,z € R4, f(t,y,
z,+) is increasing, that is, fo(t,y,z,6r) > fa(t,y,2,6)), if 6, >0/, 6,0 €
L%, T+K),relt,T+KI.IFEY =62 s € [T, T + Kland fi(t,y,2,6,) >
ft,y,2,6,),t€[0,Tl,yeR zeR, 0 e L% (t,T + K),r €[t,T + K1, then

Y,(l) > YT(Z), a.e., a.s.
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PROOF. Set

T
v =&+ /t fo(s, ¥,z v )ds—/t zP aw,

s T s+8(s)
1€[0,T];
vO =% tell,T+Kl

By Lemma 3.2, we know there exists a unique pair of .%,-adapted processes
(¥®, 23y € §5,(0,T) x L% (0, T; R?) that satisfies the above BSDE. Since

1 1
fi. 3.2 Y0 = . y.2. Y ) s €10, T].y € R,z € R, by Lemma 3.4,
we obtain

Y,(l) > Yt(3), a.e., a.s.

Set

T
y® =@ 4 /zf( y®, z® y® )ds_/t z@ aw,,

s 2 Ts+5(s)
tel0,T];
yY=¢?, te[T.T+K]

Since forall 1 € [0, T],y e R,z € R4, f2(t,y,z,-) is increasing and Yt(l) > Y,(3),
a.e., a.s., by Lemma 3.4, we know

Y,(3) > Y,(4), a.e., a.s.

Forn =35,6, ..., we consider the following classical BSDE:

Y™ = (2>+/ fals, Y™, z™ y@-Dy ds_f z™ aw,

s+6(s)
tel0,T];
YW =@,  te[T.T+K]
Similarly, we have Y( ) > Y(S) - > Y(") -+, a.e., as. Weuse [[v(-)]lg in

the proof of Theorem 4.2 as the norm in the Banach space L> 70, T+ K;R) x
L%(0, T;RY). Set v\ =y —y "~V 20 =z — 7"~ 1), n > 4. Then, by
(7) we have

T ~
E[/ (E|Y§”)|2+{Z§”)| ) ﬂsds}
0 \2
2 T n) ~m) ym—=1)
SEE 0 |f2(S Y Z ’Ys+8(s))

s+8(s)

6C* (T . 6C2L [ (T
< S [ (FOP 120 Pye as |+ SR E] 70D e as],

— f(s, YO,z y =22, ﬁsds:|
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Set B = 18C%L + 18C? + 3. Then
2 T o A ,
SE| [ OROP 4120 P as)

0

LT pe-np ps LT pe-n2 o 5002y s 5]
§3E |Y" 7 ds §3E (Y"1 + 2P ds .
0 0 _

Hence,
L omiz o 15m2),8s N T T o2 s@2y 6 ]
E 0 (|Ys | +|Zs |)e ds = 5 E 0 (|Ys | +|Zs |)€ ds|.

It follows that (Y(”))n>4 and (Z("))n>4 are respectively Cauchy sequences in
ng(o T + K) and in L2 70, T; Rd) Denote their limits by Y, and Z,, respec-
tively. Since L 9(0 T+K ) and L2 70, T; R?) are both Banach spaces, we obtain
(Y., Z)eL O, T—|—K)><L (O T:R%). Note for all ¢ € [0, T'],

T
| 2
E[/, | Fas, Y, 20 Y850 = s, Yoo Zs, Yigseo)] eﬁsds}

T
< 3C2E[/ (Y™ = ¥,|* +]Z2™ = Z,* + LIy" =D — v, |*) P ds] -0,
t

when n — oo. Therefore, (Y., Z,) satisfies the following anticipated BSDE:

£? +/ fa(s, Yo, Zs, Yops(s)) ds — / ZgdW,,  0<t<T;
Yt—gz(2)7 T<t<T+K.
By Theorem 4.2, we know
Y, = Y,(z), a.e., a.s.
Since Y,(l) > Yt(3) > Y,(4) > Y;, it holds immediately

Yt(l) > Y,(z), a.e., a.s. OJ

If f> is nonincreasing in the anticipated term of Y,, Theorem 5.1 does not hold.
The following example shows this.

EXAMPLE 5.2. Given T > § > 0, consider the following two anticipated BS-
DEs:

T T
(15) {Yt:C+/ aEJS[YS+5]dS—/ ZsdWy, tel0,T1;
t t
Y, =c, telT, T+ 48],
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and
T
(16) Y —/t aE [I[Y/ 8<O]Y +5] ds _/l Z;dWs, te [0, T],
Y/ =0, telT, T +6],
where a = —%, ¢ < 0 are given constants. Obviously the solution to equation (16)

is (Y/,Z/)=(0,0). When t € [T — 8, T], equation (15) becomes

T T
Y,:c—l—/ acds—/ Z,dW;.
t t

It is easy to see that Y; = c + ac(T —t), Z; =0 is the solution of equation (15)
whent € [T —4§,T]. ButY; >0whent [T —45,T —6§/2).

If f> contains the anticipated term of Z,, Theorem 5.1 does not hold. This is
shown in the following example.

EXAMPLE 5.3. Given T > § > 0, consider the two anticipated BSDEs

Y, =W} —T — / [Z E‘% (| Zsts — Z|]ds—/ ZsdW,

(17 te[O Tl;
Y, =W2— (T —1), LT, T +9;
Z, =2W;, telT,T+36],
and
T
Y/ = 4W2 — / [T ERNZ s - 2] ds—/ Z. dw,,
t
(18) tel0,T];
Y/ =4W? —A(T —1), telT, T +35];
Z, =8W;, telT, T +38]

We can check that the solution of (17) is (Y, Z;) = (W,2 —T—(T —1),2W;) and
that the solution of (18) is (Y/, Z;) = (4W,2 — 4T —1),8W;). We have Y7 < Y}
but Yy > Yé.

THEOREM 5.4. Under the assumptions of Theorem 5.1, ifé(l) 5(2),
1 1 1) 1 1 1)
(7.7 + K) and fi(t. ", 2", v\ ) = fot. v, 2", Y( D). 1 €0, T]
then
Yt(l) > Yt(z), a.e., a.s.

We also have a strict comparison. Given the assumptions of Theorem 5.1, suppose
[T, T+ K]C{t+5(t),t €[0, T} and f, is strictly increasing in 6. Then

1 1) (D) M (1) (D
1) ) f( Y. Z, Yt+8(t)) f2( Y, Z, Yt+5(t))
Yy =Y, — 1 5 tel0,T],
D=e?  selT, T+KI
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PROOF. Set

T
r® = ;2)+/t fls,Y®, z® y®

s+68(s)
tel0,T];
vy® =¢®,  te[l.T+Kl.

T
)ds—/t z3 dwy,

= 1 1 1 1 1 i)
set fi = fit.v\", ZV v, — pe. vz v ) and y, = v® -
Y,(3), z,= Z,(l) — Zf3), & = 5.(1) — S_(z). Then the pair (y,, z.) can be regarded as
the solution to the linear BSDE

- T - T
yl=§T+f (as))s‘f‘bszs‘f‘fs)ds_/t zs d W,

t
) t€[0,T1;
}’t=$t, tG[TaT-'_K]’

where
M 1) (1) @) (1) ()
EICR TR ST EICS AN s 5<s>) v Ly O,
a; = 0 _ 0 i Y5 # Y™
5 y _y
0, ity =y®,
3) 1) () 3) 53 v
LG, Y57 2o Y s ) — oG, Y™ Z57, Y 8<v)) 70 O,
by = O _,0 £ 25" # 27
$ Zs _Zs
0, it zV =z,

Since f, satisfies (H1), |as| < C and |bs| < C. Set

1 1 rt t
X; :=exp[/(; bdeS_E/o |bs|2ds+/0asds:|20.

We apply 1t6’s formula to X ys on [#, T'] and take conditional expectations on both
sides:

G ~ T ~
= E71 |:§TXT +f fs Xs ds:|.
t
: Pt 7 M (3)
Since é7 >0, f; >0, ae., as,,wegetY,”’ >Y,7, ae., as.
Then similarly to the proof of Theorem 5.1, we obtain
Y,(l) > Y,(z), a.e., a.s.
Now we only need to prove the strict comparison theorem.
(=) Suppose Y(l) = Y(Z), by Lemma 3.3, we get

1 1) (@D @ 1) @)
file. Y, z, Yl+8([)) Kt Y, Z, Yt+8(l)) tel0,T].
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Since Yél) > Y0(3) > Y(gz), we know Y(gl) = Yé3). Also by Lemma 3.3, we get

1 1) (M @M 1) (M
[ Y 20 Y o) = R YE 20 Y i) tel[0,T].
Therefore,
D 1) (M @ 1) @)
LYV 2V v o) = fe D Z0 v ). relo Tl

Note thatforallr € [0, T],ye R,z € R4, f2(t,y, z,-) is strictly increasing, hence,

YI(JIF)(S(I) = Yﬁ)g(t), t € [0, T]. In particular, g}” = 1(2),1 e[T, T +K].
1 1 1 1 1 1
(=) Suppose fi(t, Y. 2", v\ ) = L. YD 20, v ). €10.T]

and £V = £ s € [T, T + K]. Then
~ T _
yt:Yt(l) _Yt(3):E9z |:$TXT+/ stst] =0.
t
Therefore,

T
1 2 1
V=624 [ pGr®. 20,
t

s+6(s)
te[0,T];
vV =¢?, te[T.T+K]

By Theorem 4.2, Yt(l) = Yt(z), a.e., a.s., in particular, Yél) = YO(Z). O

T
)ds — / z3 dwg,
t

COROLLARY 5.5. Let (Y.(l), Z.(l)) and (Y.(Z), Z.(Z)) be respectively the solu-
tions for the following two 1-dimensional anticipated BSDEs:

: —dv? =¥, 20 v} ) dt =27 aw,,  0<1<T;
v =g, T<t<T+K,

where j =1, 2. Suppose &, is in S&%;(T, T + K), f satisfies (H1) and (H2), for all
tel0, T],yeR,ze R4, f(t,vy,z,-) is increasing, and 81, 8> satisfy (i) and (ii).

(1 1)
UYI+5|(t) 2 Yl+82(l‘)’ a.e., a.s., then
Yt(l) > Y,(z), a.e., a.s.
PROOF. Set
T T
3 1
Yt( : = ST + / f(s7 Ys(3)’ Z§3)’ Yv(+)52(.v)) ds — [ Z§3) dWs’

t
t€[0,T]
v =g, 1ell,T+K].

From Lemma 3.2, there exists a unique pair of .%-adapted processes (Y,

Z®) € 55(0,T) x L% (0,T;R™™?) that satisfies the above BSDE. Since

1 1
f(s,y,z, YS(JF)(SI(S)) > f(s,y,2, YY(+)52(AT)), by Lemma 3.4, we know
Y,(l) > Yt(3), a.e., a.s.

The remaining proof is similar to Theorem 5.1, we omit it. [
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6. Stochastic control problems. El Karoui, Peng and Quenez [7] applied the
duality between SDEs and BSDEs to stochastic control problems. Now we con-
sider if it is feasible to use the duality between SDDEs and anticipated BSDEs to
solve these problems. Let 6 > 0 be a given constant. Now we consider the fol-
lowing stochastic control problem: the laws of the controlled process belong to
a family of equivalent measures whose densities are

dX" = (a(s,us) X" 4+ b(s — 0, us—0) X" ) ds + X" o7 (s, us) dWy,
selt, T +6l;

X4=1,

X! =0, selt—06,t1),

where the coefficients a(s,u):R x R — R, b(s,u):R x R — Rt and
o(s,u):R x R¥ — R4*! are adapted processes uniformly continuous with re-
spect to (s, u). A feasible control (us,s € [0, T + 6]) is a continuous adapted
process valued in a compact subset U in R, The set of feasible controls is de-
noted by U. The problem is to maximize over all feasible control processes u the
objective function

T+6
J(u) :E[X%Q(T)—F/T XY p0(s)b(s —0,us—g)ds

T
+/ XYI(s, us)ds},
0

where Q(-) € S(zg(T, T + 0) is the terminal condition, (/(w, s, us),s € [0, T]) is
the running cost associated with the control process u and /(s, #) is an adapted
process uniformly continuous with respect to (s, u). Assume (s, u), b(s, u),
|o(s,u)| and I(s, u) are uniformly bounded by w. Notice that, by Theorem 2.1,
J(u) =Yy, where (Y, Z") is the solution to the following linear anticipated
BSDE:
—dY/ = f"(t, Y/, 2!, Y/ p)dt — Z} dW;, tel0,T];
{Yt”:Q(t), telT, T +40],

where fU(t,y,z,1,) = a(t,u;)y + zo(t,u;) + b(t,u)EZ 1 [n,] + 1(t,u;), 1 €
[0,T],yeR,zeRY n € L2t T +6),ret, T +6]and

T+6
Y} = EZ [X%Q(T) +fT XY p0@s)b(s —0,us—g)ds

T
—i—/ X{1(s, us)ds].
t

THEOREM 6.1. Set f(t,y,z,n,) =esssup{ f“(¢, y,z,n:),u € U}, t €[0,T],
yeR,ze Rd, n, € L??(t, T +0),relt, T+ 0]. Then anticipated BSDE

—dYtzf(t, Yt,Zt,Yt+9)dt—thW[, tG[O, T],

I Ny, =00, te[T, T +6],
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has a unique solution (Y., Z,). Moreover, Y, is the value function Y* of the control
problem, that is, for each t € [0, T],

Y, =Y =esssup{Y/',u € U}.

PROOF. On one hand, since «, b, |o| and [ are uniformly bounded by u, for
allt €[0,T],s [T, T+0],y,y €R,z,2 €eRY n, 0 € L%, T+06),andr €
[z, T + 0],

f@,y,zom) = f,y, 2 n)
<esssup{a(r, u)(y —y) + (z — 2o (t, ur)
+b(t,u)E7 [, — )l u € U
<uly =yl+lz=21+EZ U —n1D.
Notice E fOT |£(2,0,0,0)|2dt] < uT, then by Theorem 4.2, the anticipated
BSDE (19) has a unique solution (Y., Z.) € §5,(0, T + K) x L%(0, T; R?).

Since forallu € U, f“(¢t,v,z,n) < f(¢t,y,2,n) and f“(¢, y, z, n) is increasing

in 77, by Theorem 5.1, we get Y; > Y/, a.e., a.s. Thus, ¥; > Y/, ae., as.

On the other hand, by the deﬁnltlon of f, we know for all ¢ > 0, for each
(w,1) €2 x[0,T),

{M S uv f(a)7 z, Yl‘(a))’ Zt(a))’ Y[+9(Cl)))
<at,u)Y(w)+ Zi(w)o (t,u)
+b(t, ) ET Y 10(0)] + L(w, 1, u) + €} # 2.

Then by a Measurable Selection Theorem, for example, that can be found in Del-
lacherie [5] or in Benes [1, 2], there exists a u® € U such that

f(tv Yta Zl‘a Yt+9) S fus(tv Yl‘a Zta Yl+9) + &, a.c., a.8.

Denote the solution to the anticipated BSDE corresponding to (f “ Q) by
(Y™, 7).

First consider the case when t € [T — 6, T]. Thus,t +60 € [T, T + 6], Y19 =
Y! +9 and

fu (t Yu +0) f(t,Y[,Z[,Y[J,_Q)
> f Y 2 Y ) — U Yy, Ze, Yege) — €
= Y 2 Y ) — f Y Ze Y — €

(1 2
=gV —v)+¢P 2 - 7)) e,
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where, fort € [T — 0, T1],

fus(t’Y[ugvz;lsaY[u_iQ)_fug(taYI’Z?SthI{iQ) . ué .
gt(l) _ vy , it Y #Y;;
t T 1t
0’ lf Ytug :Yt,
@ fus(t’thZ?Sa big)_fu (t Y[,Z[, I+9) 1fZ”€7éZ
g = Zue —Zt t ts
0, if 24 = Z,.

Thatis, fort € [T — 0, T],

. T
Y Y, = / (V" —¥y) +g@(@Z" — Z,) — ) ds
t

T &
—/ (ZY — Zs)dWs.
t
Hence, Yt"s -Y; > 17,(1), where Yt(l) is the solution of BSDE:

i T . T
Y}”:/ (gMV¥D 4 ¢@ZD —s)ds—f ZWaw,,  t1e[T-0,TI.
t

t

Since g | < . 1g1”] < . we get
- o T
7V = —eE% [[ xM ds], te[T —6,T],
t

where
o 1
x,ﬂ):exp[/ ¢@aw, — /|g§2>| ds+/ g(l)ds}
0

Therefore, there exists a constant p; > 0 depending only on u, 6 and T such that
Y —Y,>¥V>—pe,  te[T—06,T]

Second, consider the case when t € [T — 260, T —6]. Thent +6 € [T —60,T],
Yii0 < Y,+9 + p1e. Since for all t € [0, T],y e R, z € R4, f4(,y,z,-) is ain-
creasing and linear function, we have

U 2 Y ) — F( Y Z Yige)
> Y 2 Y ) — (Y Z Yige) — €
> Y 2 Y ) — Y Ze, Y g+ p1E) — €
> Y ZE Y ) — Y 2 Y ) — upre — €
=gV —Y)+ 822" — Z0) — (upr + Ve,
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where, fort € [T — 20, T — 6],

FEEY 2 Y ) — Y 2 Y

e® = vy . ity #EY
t 1t

0, it Y* =v,

FE Y 2 Y ) — U Y 2 Y ) .
g = 777, , MRZE F 27y

t
0, if 24 = Z,.

Therefore, fort € [T — 20, T — 0],

& B -6 e
R e e IR AT
t

T—6 R .
[ v+ gD 2 = Z) ~ (upr + De)ds.
t
Hence, Yt”S -Y > Yt(z) , where ?t(Z) is the solution to the following BSDE: For
telT —20,T —0],

~ (2 &
72 =Y, —Yroo

T—6 _ _ 0
+ f (&"VP +¢PZP — (up1 + 1e) ds — f Z?aw,.
t

t

Note |g,(1)| < u and |g,(2)| < . We have, forall t € [T — 20, T — 0],
T—6
(2 £ ~ (2 ~
v = g7 [(Y%_e —Yr )X, - / (up1 + DeX? ds},
t
where

%O —exp| [ e@aw. — L [(1.2124 "] =0
l‘_pogs N 20|g5i s+0g5 sz

Since Yf_e — Yr_p > —p1¢, there exists a constant py > 0 depending only on u,
6 and T such that

Y —Y, >V P> —pe,  te[T—20,T -0l
Similarly, we get constants p3, o4, .. ., PiTyyy > 0 such that

. T
Y — Y, > —ppe, te[T—nO,T—(n—1)9],n=3,4,...,[5];

e T
Y, — Y= —pr/e+ie, te|0, T — 7 0.

Setting p = max{p2, p3, ..., p[T/6]+1}, We obtain

Y —Y,>—pe, tel0,T]



ANTICIPATED BSDES 901

. & . &
Since Y/ <Y;, ae., as., setting e — 0, we get Y/ — Y;, a.e., a.s. Thus,

Y, =Y/, a.e., a.s. O
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