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Abstract The purpose of this study is to characterize stochastic choice in-
fluenced by the objective or subjective positions of alternatives in a menu.
The main theorem axiomatizes the anticipated stochastic choice (ASC) repre-
sentation, wherein the decision maker maximizes the expected utility by the
cognitive control of a probability measure over mental states that trigger the
ex post choice of alternatives. A key prerequisite for this axiomatization is
that the randomization between menus is identified with their perfectly corre-
lated mixture, which includes only mixtures of specific alternative pairs. The
essential uniqueness of an ASC representation defines an index of rationality
that is relevant to a preference for commitment. Special cases of ASC include
exact utility maximization, uncontrolled stochastic choice, trembling hands,
and choice with limited attention. Furthermore, ASC accommodates poten-
tially stochastic choice anomalies such as the attraction effect, cyclical choice,
and position effects.
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1 Introduction

People often make mistakes. In contrast to the basic assumption of traditional
economics that a decision maker (DM) is rational, numerous studies have
indicated that DMs make suboptimal choices with a positive probability, owing
to various psychological or cognitive effects (Selten 1975).

Many mistakes are position-dependent ; that is, the choice of one alternative
from the set of alternatives, or menu, may depend on the order of the alterna-
tives in the menu.1 For example, various psychological effects suggest that the
alternatives presented in a certain position, such as those at the beginning,
middle, and end of the menu, are chosen more frequently than others (e.g.,
Bruine de Bruin 2005; Christenfeld 1995; Murdock 1962). It has also been re-
ported that adding, removing, and replacing items in the menu may draw the
DM’s attention to alternatives that are superior in a specific attribute (e.g.,
the quality, salience, or justifiability of the product) rather than their overall
utility, which significantly affects the choice of alternative (Huber et al. 1982;
Simonson 1989; Slovic 1975; Tyszka 1983). Another example is choice with
limited attention (Manzini and Mariotti 2014, 2015; Masatlioglu et al. 2012;
Wright and Barbour 1977), which typically restricts the DM’s attention to
alternatives in a certain part of the menu, such as the top n according to some
criteria. Finally, such positions may not only be determined by an objective
order (e.g., location, time, or size), but also by a subjective order (e.g., at-
tention, memory, or familiarity) or an outside agent, such as a consultant or
search engine, as argued by Rubinstein and Salant (2006).

Under the influence of these mistakes, the DM may exert cognitive control,
that is, the control of the probability measure over mental states that affect
choice, rather than directly controlling the choice of alternative (Posner and
Snyder 1975). For example, suppose that, in a restaurant serving menu x =
{beef, fish}, the choice of alternative is driven by the mental state: mental
state s1 triggers the choice of the unfavorable beef , whereas mental state s2
triggers the choice of the preferred fish. Because the realization of mental state
is involuntary, the DM may not be able to fully control the ex post choice in
anticipation of this; however, she may still be able to perform some cognitive
activities, such as staying focused on the decision at hand and suppressing
an unwanted psychological response, to maximize the probability of mental
state s2 being realized, which is associated with the favorable fish. A similar
idea has been documented under the names of mood regulation (Larsen 2000),
emotion regulation (Gross 1998), and self-control of automatic associations
and behavioral impulses (Sherman et al. 2008).

The present study formalizes this type of behavior in a menu preference
framework. Our main theorem (Theorem 1) axiomatizes the anticipated stochas-
tic choice (ASC) representation, which assumes that the DM selects the opti-

1 We use the term “position-dependence” rather than the more general term “menu-
dependence” because the former provides a natural interpretation for the correlated choices
of alternatives and potentially full support stochastic choice function, which are key char-
acterizations of the following analysis.
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mal probability measure over mental states from a certain set M, to maximize
the expected utility.

This model has several distinctive properties. First, the position-dependence
of ASC motivates the axiom of perfectly correlated mixtures of menus; that is,
the DM identifies a random menu (i.e., lottery over menus) with a menu that
consists of the mixtures of specific alternative pairs: for menus x and y with
cardinality 2, suppose that mental states s1 and s2 are position-relevant; that
is, s1 and s2 respectively trigger the choices of the first and the second alter-
natives from each menu. We also assume that the mental states are realized
before a randomization between x and y is performed, which reflects the idea
of automatic choice. Then, the first alternative is chosen from both x and y if
mental state s1 is realized, whereas the second alternative is chosen from both
x and y if mental state s2 is realized. Accordingly, the DM would expect her
choices of alternatives from each menu to be perfectly correlated, which is an
instrument to derive potentially full support probability measures over men-
tal states. In particular, under our model, a randomization between identical
menus x is identified with the original nonrandom menu x. This is in stark
contrast to the axiom used in existing studies (e.g., Dekel et al. 2001; Gul
and Pesendorfer 2001), which identifies a randomization between the identi-
cal menus x with their uncorrelated mixture (i.e., Minkowski sum), as we will
discuss later.

Second, because the choice of alternative in ASC depends on the menu, the
induced stochastic choice over alternatives generally violates standard prop-
erties such as regularity (Luce and Suppes 1965) and/or the weak axiom of
revealed stochastic preference (WARSP) (Bandyopadhyay et al. 1999). This
property also enables us to accommodate various choice anomalies, such as the
attraction effect, cyclical choice, and other position effects, as demonstrated
in Section 6.1.

Third, Theorems 2 and 3 indicate that ASC exhibits a preference for com-
mitment to a singleton menu, and has no nontrivial intersections with the
models of a preference for flexibility (Dekel et al. 2001; Kreps 1979; Nehring
1999), despite their similarity. That is, in anticipation of her own mistakes, the
consumer in the restaurant example would ex ante prefer menu y = {fish}
to menu x = {beef, fish}, to preclude the possibility of erroneously choosing
the nonpreferred beef.2 Accordingly, our model portrays position-dependent
stochastic choice, rather than temptation (Chatterjee and Krishna 2009; Dekel
and Lipman 2012; Dekel et al. 2009; Gul and Pesendorfer 2001; Noor and
Takeoka 2010, 2015) and ex post regret (Sarver 2008), as a potential source of
preference for commitment.

2 Anticipated mistakes (i.e., ex ante awareness of ex post mistakes) have been discussed
both in psychology (Broadbent et al. 1982) and in economics (Kahneman et al. 1997; Manzini
and Mariotti 2015; Piccione and Rubinstein 1997). Gross (1998) also argued that under the
influence of emotion, the DM often applies the situation selection strategy, that is, she
attempts to avoid a situation that possibly creates a negative psychological state leading to
an undesirable future choice, which can be interpreted as a preference for commitment.
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Finally, the uniqueness of the set M of probability measure over men-
tal states allows for an interpersonal comparison. Restricting M yields a wide
range of special cases such as exact utility maximization, uncontrolled stochas-
tic choice (i.e., stochastic choice generated by a single probability measure),
trembling hands, and choice with limited attention. Theorem 3 also indicates
that the size of M is relevant to a comparative preference for commitment,
and provides a behavioral foundation for Selten’s (1975) classic argument that
regards the error rate in the trembling-hand model as an index of rationality.
This also conforms with the argument that higher cognitive abilities reduce
vulnerability to psychological effects such as the attraction and position effects
(Krueger and Salthouse 2011; Sherman et al. 2008; Tentori et al. 2001).

The remainder of this study is organized as follows: Section 2 describes
the basic model that forms the focus of this study. Section 3 presents the
basic axioms, and Section 4 states the main representation theorem. Section 5
explores the implications of ASC with respect to size-related properties such
as monotonicity. Section 6 discusses our model, and Section 7 concludes the
paper.

2 Model

2.1 Preliminaries

Let Z be a finite set of prizes. ∆(Z) denotes the set of alternatives, or proba-
bility distributions over prizes (∆(·) denotes the set of finite probability distri-
butions over (·)). Let A = K0(∆(Z)) be the set of finite menus (K0(·) denotes
the set of all finite subsets of (·)) and An ⊆ A be the set of menus with car-
dinalities less than n ∈ N, that is, An = {x ∈ A : |x| ≤ n}. We refer to ∆(A)
= ∆(K0(∆(Z))) as the set of (finite) random menus. The generic elements in
∆(A), A, and ∆(Z) are denoted by P , Q, R, · · · , x, y, z, · · · , and α, β, γ,
· · · , respectively.3 We use λP ⊕ (1−λ)Q to denote the randomization between
random menus P and Q with probabilities λ and 1−λ, respectively.4 We also
define n̄(P ), the maximum cardinality of the menus in the support of ran-
dom menu P ; that is, n̄(P ) = maxx∈supp(P )|x| (supp(·) denotes the support
of probability measure (·)). Note that n̄(P ) is well-defined because P is finite.

This study assumes the preference relation % over ∆(A), the set of all finite
random menus.5 Clearly, % has a restriction on A. Furthermore, we refer to

3 As usual, menu x is naturally identified with a degenerated random menu that generates
x with a probability of one, and an alternative β is identified with a singleton menu {β}.

4 By definition, we have λP ⊕ (1− λ)Q = (1− λ)Q⊕ λP .
5 We restrict our attention to finite (random) menus because of a key characterization

of the following analysis, namely, a surjection or bijection from one menu to the other can
be consistently defined for all menu pairs; this is not generally the case for (uncountably)
infinite menus. Furthermore, many studies have examined a preference over (the convex hulls
of) finite menus (e.g., Chatterjee and Krishna 2009; Dekel et al. 2009; Gul and Pesendorfer
2001).
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Fig. 1 Timeline

the restriction of % on ∆(Z) as the commitment ranking. For simplicity, we
denote β % γ for all β, γ ∈ ∆(Z), instead of {β} % {γ}.

2.2 Timeline

Here, we explain the timeline assumed in this study.6 The DM chooses a
random menu P in period 1, and P generates a (finite) menu x in period 2.
The choice of alternative β ∈ x in period 3 is triggered by mental state s,
which is realized between periods 1 and 2. In anticipation of this, the DM
chooses the optimal probability measure over mental states, µ, from a certain
set M in period 1+, which generates mental state s in period 1++ (Fig. 1).

Our approach differs significantly from those in existing studies (e.g., Dekel
et al. 2001) in its timing of the realization of mental states and utility maxi-
mization. Existing studies highlight the utility-maximizing choice of an alter-
native given an ex post preference change, and thus assume that a subjective
state is realized after a menu has been generated by a random menu, after
which the state-dependent utility is maximized. In contrast, our primary fo-
cus is on the DM’s ex ante control of the probability measure over mental
states, whereas the realization of a mental state triggers an automatic, rather
than deliberative, ex post choice of alternative. Thus, we assume that a men-
tal state s is realized before menu x has been generated by random menu P ,
before which a probability measure µ over mental states is chosen to maximize
the expected utility. This difference in timing explains our adoption of the
terminology “mental states” instead of “subjective states.”

The above timeline provides a general framework for discussing various
cases, including the following examples. First, psychological effects such as pri-
macy and recency may trigger the choice of an alternative in a specific position
on the menu. In this case, mental states are presumably realized before the
menu is generated by a random menu, because these psychological effects are
involuntary and irrevocable. Second, choice with limited attention (Manzini
and Mariotti 2014, 2015; Masatlioglu et al. 2012; Wright and Barbour 1977)
may confine the DM’s attention to an alternative in a specific position (e.g.,
the first item) on the menu. Our timeline is also generated in this case, be-
cause the alternative in the relevant position is eventually chosen, irrespective
of the menu generated by a random menu. Finally, before a menu has been
generated by a random menu, temptation may trigger the choice of alternative
in a specific position, or conversely, the DM may decide to use positions in the

6 The timeline outlined here is an interpretation, rather than part of the model. The only
item that is assumed to be observable is choice over random menus in period 1.
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menu as a commitment device to avoid temptation. In both cases, the choice
of the alternative in a specific position is predetermined once a mental state
has been realized, which also generates the timeline described above.

3 Axioms

This section states the axioms imposed on the preference relation %. The first
is standard.

Axiom 1 (Weak order) % is complete and transitive.

The next axiom describes the DM’s perceptions of random menus under
position-dependent choice, which distinguishes our approach from those used
in existing studies. This axiom is characterized by the following steps.

First, in the restaurant example of the Introduction, suppose that the DM
regards alternatives beef and fish in menu x = {beef, fish} as being positioned
first and second under some criteria (e.g., the alternatives are physically listed
or the DM recognizes the alternatives in this order), and thus position-relevant
mental states s1 and s2 trigger the choices of beef and fish, respectively. Now,
consider a random menu P = λx⊕(1−λ)x for some λ ∈ [0, 1], which generates
an identical menu x both in the “λ” and “1− λ” events. Because the timeline
assumes that the mental states are realized before a menu has been generated
by random menu P , mental state s1 triggers the choice of beef in the “λ” event
if and only if it triggers the same choice in the “1−λ” event, and similarly for
mental state s2 and fish. Thus, the DM expects that her choices of alternatives
from each menu x will be perfectly correlated, and thus, she identifies the
random menu P with the menu that comprises λbeef+(1−λ)beef = beef and
λfish+(1−λ)fish = fish, namely, the original nonrandom menu x. Because
a similar discussion holds for an arbitrary menu, we have λx ⊕ (1 − λ)x ∼ x
for all x ∈ A and λ ∈ [0, 1].

Next, to extend this inference to randomizations between nonidentical
menus, we impose the following two consistency conditions. As we will in-
dicate, these are also satisfied in existing studies such as Dekel et al. (2001)
and Gul and Pesendorfer (2001). The first condition requires that the DM
form the correct expectation of her choices from each menu generated by a
random menu. Consider a random menu P = λx⊕ (1− λ)y over some menus
x and y. If she correctly anticipates that she will choose alternative pair (α, β)
from menu pair (x, y), she would also expect the mixture λα + (1 − λ)β of
the alternatives to be obtained from P . Because a similar argument holds for
other alternative pairs that can be chosen simultaneously, there should exist a
nonempty C ⊆ x×y such that P ∼ {λα+(1−λ)β : (α, β) ∈ C}. Second, a DM
who has consistent perceptions of random menus would expect the choices of
alternatives to be correlated across different menu pairs. That is, for all menus
x, y, z ∈ A, if the DM expects alternative pairs (α, β) and (β, γ) to be chosen
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from menu pairs (x, y) and (y, z), respectively, she would also expect alterna-
tive pair (α, γ) to be chosen from menu pair (x, z), because there must exist a
mental state that triggers the choices of alternatives α, β, and γ from menus
x, y, and z, respectively. These two conditions can be formalized as follows.

Definition 1 Preference % has consistent perceptions of random menus if the
following conditions are satisfied.

(a) For all x, y ∈ A, there exists a nonempty set C ⊆ x×y such that λx⊕(1−λ)y
∼ λx+C (1− λ)y ≡ {λα+ (1− λ)β : (α, β) ∈ C} for all λ ∈ [0, 1].
(b) For all x, y, z ∈ A such that |x| ≤ |y| ≤ |z|, C ⊆ x× y, and C ′ ⊆ y × z,
if λx⊕ (1− λ)y ∼ λx+C (1− λ)y and λ′y ⊕ (1− λ′)z ∼ λ′y +C′ (1− λ′)z for
all λ, λ′ ∈ [0, 1], then λ′′x⊕ (1− λ′′)z ∼ λ′′x+C′′ (1− λ′′)z for all λ′′ ∈ [0, 1],
where C ′′ = {(α, γ) : (α, β) ∈ C, (β, γ) ∈ C ′}.

The restriction |x| ≤ |y| ≤ |z| in condition (b) is imposed to obtain a class of
menu mixtures that are more general than the Minkowski sum; if we drop this
restriction and consider a singleton menu y = {β̂}, for example, we may have

(α, β̂) ∈ C and (β̂, γ) ∈ C ′ for all x, z ∈ A, α ∈ x, and γ ∈ z in condition (b).
Then, the condition implies that a randomization between x and z is trivially
indifferent to their Minkowski sum, that is, C ′′ = {(α, γ) : α ∈ x, γ ∈ z}.

The following axiom summarizes this discussion:

Axiom 2 (Perfectly correlated mixtures of menus)
(a) For all x ∈ A and λ ∈ [0, 1], λx⊕ (1− λ)x ∼ x.
(b) % has consistent perceptions of random menus.

A typical situation wherein Axiom 2 holds is that in which each alternative
in the menu is explicitly indexed (e.g., by its physical location) and correlation
occurs among alternatives with specific indices, typically, the i-th alternatives
in each menu. Formally, for all menus x = {α1, · · · , αm} and y = {β1, · · · , βn}
with m ≤ n, letting C = {(αmin{i,m}, βi) : i = 1, · · · , n} and λx ⊕ (1 −
λ)y ∼ λx +C (1 − λ)y for all λ ∈ [0, 1] satisfies the axiom. Note that, in
contrast to Rubinstein and Salant (2006), who considered the set of lists (i.e.,
choice sets with explicitly indexed alternatives) as the domain of choice, our
model does not assume such indices of alternatives as a preliminary and allows
for correlated choice with respect to subjective (i.e., unobservable) indices
determined by, for example, attention, memory, and familiarity.

Unlike our approach, existing literature on menu preferences (e.g., Dekel
et al. 2001; Gul and Pesendorfer 2001) implicitly imposes the following axiom,
which identifies a randomization between menus with the Minkowski sum (see
Dekel et al.’s discussion on the independence axiom for details).

Axiom 2’ (Uncorrelated mixtures of menus) For all x, y ∈ A and λ ∈
[0, 1], λx⊕ (1− λ)y ∼ λx+ (1− λ)y ≡ {λα+ (1− λ)β : α ∈ x, β ∈ y}.
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This axiom is in stark contrast to Axiom 2, particularly when x = y; that
is, it implies λx⊕ (1− λ)x ∼ λx+ (1− λ)x = {λα+ (1− λ)β : α, β ∈ x} 6= x
for all λ ∈ (0, 1). In other words, a randomization between identical menus x
is identified with the menu comprising mixtures of any two alternatives from
x, because the choice of alternative in the “λ” event is uncorrelated with that
in the “1− λ” event.

Section 6.2 contains a further discussion on the implications of Axioms 2
and 2’. Particularly, Axiom 2’ has another equivalent representation, Axiom
2”, which replaces Axiom 2a with its counterpart while retaining Axiom 2b. In
other words, Axiom 2b produces a weak consistency condition that is satisfied
not only by Axiom 2, but also by Axiom 2’.7

The next continuity axiom is standard, but is restricted here to menus with
identical cardinality.

Axiom 3 (Archimedean continuity for menus with constant cardi-
nalities) For all x, y, z ∈ A such that |x| = |y| = |z| and x � y � z, there
exist λ, λ′ ∈ (0, 1) such that λx⊕ (1− λ)z � y � λ′x⊕ (1− λ′)z.

We permit some discontinuity in the preference for randomizations be-
tween menus with different cardinalities, as this allows us to capture possible
changes in the menu evaluation due to a change of the perceived positions of
alternatives in each menu.

The next axiom is the independence axiom restricted to randomizations
with singleton menus.

Axiom 4 (Singleton independence (S-independence)) For all x, y ∈ A
and β ∈ ∆(Z), x % y if and only if λx⊕ (1− λ){β} % λy⊕ (1− λ){β} for all
λ ∈ [0, 1].

The intuition behind this axiom is given below. Let x, y, and z be menus
and λ ∈ [0, 1]. The preference ranking between λx⊕ (1−λ)z and λy⊕ (1−λ)z
only differs from the ranking between x and y if randomizing with z affects the
evaluations of x and y differently. However, if z is a singleton menu, that is, z
= {β} for some β ∈ ∆(Z), then all alternatives in x and y will be randomized
with the identical alternative β, which uniformly changes the evaluation of
alternatives. Thus, the ranking between x and y and that between λx⊕ (1−
λ){β} and λy ⊕ (1− λ){β} should be consistent.

This axiom is similar to those of C-independence (Gilboa and Schmeidler
1989), set S-independence (Olszewski 2007), and independence of degenerated

7 Whether we can characterize an informative preference representation with imperfectly
correlated mixtures of menus (i.e., a randomization between identical menus not being indif-
ferent to the menu itself or the Minkowski sum) is an open question. However, this problem
may be solved by imposing certain axioms. For example, the set betweenness proposed by
Gul and Pesendorfer (2001) renders the preference representation dependent only on two
alternatives in a menu, implying that a randomization between menus is indifferent to a
doubleton set comprising the mixtures of two specific alternative pairs. Similar axioms may
characterize more general cases.
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decisions (Ergin and Sarver 2010). In particular, the last axiom can be adapted
to our model as λx⊕(1−λ){β} % λy⊕(1−λ){β} whenever λx⊕(1−λ){γ} %
λy⊕(1−λ){γ} for all x, y ∈ A, β, γ ∈∆(Z), and λ ∈ [0, 1], which is a weakening
of S-independence. The imposition of the weaker axiom derives a more general
representation, wherein choosing the optimal probability measure over mental
states involves positive costs. However, this study imposes the S-independence
axiom instead of the weaker axiom because it renders our model comparable
with various stochastic choice models. In particular, ASC can naturally relate
stochastic choices for menus with different cardinalities by applying Bayes’
rule (see Online Resource 1 for details), which cannot be obtained under the
weaker axiom.

The next axiom requires the DM to prefer menu x to a randomization
between x and an inferior menu.

Axiom 5 (Aversion to randomizations with inferior menus (ARI))
For all x, y ∈ A such that |x| = |y|, if x % y, then x % λx⊕ (1− λ)y for all λ
∈ [0, 1].

To understand the reasoning behind this axiom, let menus x and y be such
that x % y, and alternatives α̂ and β̂ be of the highest commitment ranking
in x and y, respectively. If the DM performs exact utility maximization, we
clearly have x % λx⊕(1−λ)y, because x % y implies α̂ % β̂ and the alternative

chosen from λx⊕ (1− λ)y will be at best as good as λα̂+ (1− λ)β̂, which is
worse than α̂. On the other hand, if suboptimal alternatives are chosen from
a menu with a positive probability, we may have x � λx⊕ (1− λ)y even if α̂

∼ β̂, because x % y implies that the suboptimal alternatives in y worsen the
evaluation of the menu more than those in x. Thus, randomizing with y may
lower x’s evaluation, which motivates the axiom.

ARI may appear similar to Gilboa and Schmeidler’s (1989) uncertainty
aversion and Ergin and Sarver’s (2010) aversion to contingent planning (ACP).
In particular, the latter axiom characterizes a menu preference as ARI. How-
ever, ACP and ARI have different behavioral implications: ACP argues that
arranging a choice plan for the mixture of two menus is more cognitively costly
than for the individual menus, because it assumes uncorrelated mixtures of the
menus. That is, the mixture of menus includes the mixtures of all possible al-
ternative pairs, which drastically increases the number of contingencies to be
considered before arranging a choice plan for the mixture of menus. In con-
trast, our model identifies a randomization between menus with their perfectly
correlated mixture of menus, which only includes the mixtures of correlated
alternative pairs. Moreover, the correlated choice in our model presumably
involves no cognitive cost, because it is induced by an automatic, rather than
deliberate, process driven by mental states. Accordingly, arranging a choice
plan for the mixture of menus will be no more cognitively costly than for the
individual menus in our model, and thus, ARI is more relevant to the DM’s
attitude toward randomizations than to cognitive costs.
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We restrict ARI to menus with a common cardinality for a similar reason
to that given for Axiom 3. For example, for some x, y ∈ A such that |x| <
|y| and x % y, we allow λx ⊕ (1 − λ)y to be strictly preferred to x, because
randomizing with menu y of a different cardinality may improve x’s evaluation
by affecting the positions of alternatives in each menu.

Finally, the following two axioms are technical. First, we state the concept
of dominance with respect to correlated alternatives.

Axiom 6 (Dominance) For all x, y ∈ A, assume that C ⊆ x × y is such
that λx⊕ (1− λ)y ∼ λx+C (1− λ)y for all λ ∈ [0, 1]. If α % β for all (α, β)
∈ C, then x % y.

This axiom implies that menu x is preferred to menu y if α ∈ x is preferred
to β ∈ y for all correlated alternative pairs (α, β). This implication is equivalent
to that of the dominance axiom in the Anscombe–Aumann framework, except
that the correlation between alternatives in menus x and y is determined by
an endogenously derived set C, instead of exogenously given states of the
world. Accordingly, Axiom 6 derives a state-independent utility function, that
is, the utility level attained by each alternative in the menu depends only
on its commitment ranking, and is independent of the realization of mental
states, which sets our approach apart from existing studies. Note that, by the
definition of random menus, this axiom also carries the inverse implication;
that is, if β % α for all (α, β) ∈ C, then y % x.

The next axiom renders the domain of choice sufficiently rich.

Axiom 7 (Richness of domain)
(a) There exist x, y ∈ A such that x � y.
(b) For all n ∈ N, there exist x∗

n = {βn
1 , · · · , βn

n} such that λx∗
n ⊕ (1− λ)x∗

n+1

∼ ∪n+1
i=1 {λβn

min{i,n} + (1− λ)βn+1
i } for all n ∈ N and λ ∈ [0, 1].

(c) For all x = {β1, · · · , βn} ∈ A, 1 ≤ k ≤ n, and β̄ ∈ ∆(Z), there exists x′ =
{β′

1, · · · , β′
n} ∈ A such that β′

i ∼ βi for all i 6= k, β′
k ∼ β̄, and λx⊕ (1− λ)x′

∼ ∪n
i=1{λβi + (1− λ)β′

i} for all λ ∈ [0, 1].

Condition (a) is the standard nondegeneracy axiom, whereas conditions (b)
and (c) characterize the richness of the domain with respect to the position-
dependent correlated choice. Condition (b) ensures the existence of menus x∗

1,
x∗
2, · · · , such that the alternative in each position of menu x∗

n will be correlated
with its counterpart in x∗

n+1 (i.e., βn
i is mixed with βn+1

i for i = 1, · · · , n).
This condition derives mental states that are consistently indexed for menus
with different cardinalities. To interpret condition (c), suppose that β′

i = βi

for all i 6= k, which gives λx ⊕ (1 − λ)x′ ∼ x \ {βk} ∪ {λβk + (1 − λ)β′
k} for

all λ ∈ [0, 1]. This implies that alternative βk in any (or the k-th) position
of x will be correlated with alternative β′

k having an arbitrary commitment
ranking, whereas alternatives βi will be correlated with themselves for all i 6=
k. This condition also allows for indifference between β′

i and βi for all i 6= k,
instead of equivalence between them.
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Note that condition (c) derives a bijection from the set An of menus to
that of Anscombe–Aumann acts, because correlation between alternatives is
independent of the commitment ranking. Together with the obtained von
Neumann–Morgenstern (vN-M) utility function, this generates a linear space
that is crucial to our main theorem. However, if correlated choice is related to
the commitment ranking, such a bijection cannot be obtained. For example, if
alternatives with identical commitment rankings in each menu are correlated,
that is, λx ⊕ (1 − λ)y ∼ {λαi + (1 − λ)βi : i = 1, · · · , n} for all menus x =
{α1, · · · , αn} and y = {β1, · · · , βn} such that α1 % · · · % αn and β1 % · · · %
βn, condition (c) is clearly violated, and only a mapping from An to a subset
of Anscombe–Aumann acts can be obtained.

4 Representation theorem

This section states our main representation theorem. First, we define an ASC
representation, which forms the primary focus of this study. We say that func-
tion W : ∆(A) → < represents % if P % Q whenever W (P ) ≥ W (Q).

Definition 2 We call (u, φ, S,M) an ASC representation of preference % if
the following conditions hold:

(a) S = ∪∞
n=1Sn, where Sn = {s1, · · · , sn} for all n ∈ N;

(b) M = ∪∞
n=1Mn, where Mn ⊆ ∆(Sn) is convex and closed for all n ∈ N;

(c) φ : A× S → ∆(Z) is such that φ(x, s) ∈ x for all x ∈ A and s ∈ S;
(d) V : ∆(A) → < represents %, where

V (P ) = max
µ∈Mn̄(P )

∫
Sn̄(P )

∫
A
u(φ(x, s))dP (x)dµ(s) (1)

for all P ∈ ∆(A), with an affine function u : ∆(Z) → <.

This representation is interpreted as follows: condition (a) defines the set
S of mental states, while (b) defines the set M of probability measures over
mental states. Condition (c) denotes the stochastic choice function φ that
yields an alternative from a given menu x ∈ A, depending on mental state s ∈
S,8 and condition (d) denotes a representation V of % wherein a probability
measure µ over mental states is chosen to maximize the expected utility using
the vN-M utility function u. Note that the dependence of (1) on n̄(P ), that is,
the maximum cardinality of the menus in the support of P , captures a possible
change in the evaluation of a random menu by a cardinality change.

For a nonrandom menu x ∈ A, (1) can be simplified to:

V (x) = max
µ∈M|x|

∫
S|x|

u(φ(x, s))dµ(s). (2)

8 Peter Hammond suggests the alternative terminology of selection function for this type
of choice function.
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This representation implies that the DM chooses a probability measure µ over
mental states to maximize her expected utility, considering the probability
distributions over alternatives generated by µ and φ.

Next, the following regularity conditions are considered.

Definition 3 We refer to φ in an ASC representation (u, φ, S,M) as regular
if the following conditions are satisfied:

(a) For all x ∈ A, φx
|x| : S|x| → x defined by φx

|x|(·) ≡ φ(x, ·) is a bijection.

(b) For all x ∈ A and n′ ∈ N such that n′ ≥ |x|, φ(x, sn′) = φ(x, s|x|).
(c) For all n ∈ N and (β̄1, · · · , β̄n) ∈ (∆(Z))n, there exists some x ∈ A such
that |x| = n and φ(x, si) ∼ β̄i for i = 1, · · · , n.

Further, we refer to an ASC representation (u, φ, S,M) as regular if φ is reg-
ular.

The first two conditions imply that mental states are position-relevant,
whereas the final one renders mental states independent of the commitment
ranking: condition (a) indicates that for all menus x with cardinality n, the
stochastic choice function derives a bijection between the set Sn of mental
states and menu x. That is, mental states correspond to each of n positions
of alternatives in the menu, rather than the alternatives themselves; condition
(b) implies that, for all natural numbers n′ greater than the cardinality of
menu x, mental state sn′ triggers the choice of the “last” alternative in x,
that is, φ(x, s|x|); condition (c) guarantees the existence of a menu such that
the alternative triggered by each position-relevant mental state has an arbi-
trary commitment ranking. Note that condition (a) does not necessarily imply
that all alternatives in any given menu are chosen with a positive probability,
because there may exist s ∈ S such that µ(s) = 0 for all µ ∈ M.

Next, we need the following uniqueness concept to state our representation
theorem. Given an ASC representation (u, φ, S,M) and n ∈ N, we refer to a
mental state s ∈ Sn such that µ(s) > 0 for some µ ∈ Mn as being relevant to
Sn.

Definition 4 We consider an ASC representation (u, φ, S,M) of % to be es-
sentially unique if the following conditions hold for all ASC representations
(u′, φ′, S′,M′) of %:

(a) u′ is a positive affine transformation of u; that is, there exist a > 0 and b
∈ < such that u′(·) = au(·) + b.
(b) For n ∈ N and the sets S̃n and S̃′

n of mental states relevant to Sn and
S′
n, respectively, there exists a bijection ηn : S̃n → S̃′

n such that φ′(x, ηn(s))
= φ(x, s) for all x ∈ An and s ∈ S̃n.
(c) M = ∪∞

n=1{µ′ ◦ ηn ∈ ∆(S̃n) : µ
′ ∈ M′

n} for ηn defined above.

Condition (a) is straightforward. Condition (b) implies that relevant men-
tal states in S and S′ trigger the choice of identical alternatives under some
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renumbering, whereas condition (c) renders the sets of probability measures
over mental states equivalent after such a renumbering.

We now state the main theorem of this study.

Theorem 1 Preference % satisfies Axioms 1–7 if and only if % admits a
regular ASC representation (u, φ, S,M). Furthermore, the ASC representation
is essentially unique.

The proof of this theorem is provided in the appendix, while the necessity
part is outlined in the following steps. First, for all menus x and y such that |x|
= |y|, the perfectly correlated mixtures of menus axiom obtains a bijection τ
from x to y that characterizes the DM’s perception of random menus (Lemma
1). Then, together with the richness of domain axiom, we derive the set of
mental states S = ∪∞

n=1{Sn} and regular stochastic choice function φ (Lemma
2). By construction, all random menus P can be identified with menus of
cardinality n̄(P ).

Second, weak order, Archimedean continuity for menus with constant car-
dinalities, and S-independence derive a vN-M utility function u representing
the commitment ranking % (Lemma 3). We also demonstrate the existence of
a preference representation over finite menus (Lemma 4).

Third, we derive a cognitive control structure from S-independence and
ARI, together with the set of mental states and the regular stochastic choice
function obtained above. For a fixed n ∈ N, the regularity of φ ensures that
An is rich enough to mimic all the Anscombe–Aumann acts with state space
Sn using functions φx

n(·) ≡ φ(x, ·).9 By defining K ≡ u(∆(Z)), the set of
composite functions u ◦ φx

n : Sn → K of utility function u and functions φx
n(·)

for all x ∈ An will generate a linear space B, endowed with mental-state-wise
scalar multiplication and addition. Therefore, we derive the desired preference
representation in a manner similar to Gilboa and Schmeidler’s (1989) maxmin
expected utility theory (MMEU), except that ARI has the inverse implication
of uncertainty aversion, resulting in a representation that maximizes, rather
than minimizes, the expected utility (Lemmas 5 and 6).10

Finally, we apply the same arguments to menus with all n cardinalities.
The proof for the uniqueness result is similar to that given by Gilboa and
Schmeidler.

A few remarks are in order. First, given a menu x ∈ A and a probability
measure µx ∈ M|x| over mental states that attains the optimality in (2), we
can define a random choice rule (RCR), that is, a probability distribution over
alternatives, as

ρx(β) = µx({s : φ(x, s) = β})
9 Chandrasekher (2015) independently developed a technique to apply the arguments in

the Anscombe–Aumann framework to menu preferences by providing additional structures
to the menus. A major difference in our approach is the imposition of perfectly correlated
mixtures of menus, whereas Chandrasekher employed uncorrelated mixtures. This differ-
ence eventually results in representations with a vN-M utility function (combined with the
stochastic choice function) in ASC, and a Strotzian value function in Chandrasekher’s model.
10 We discuss the implication of the preference representation obtained by reversing ARI’s
implication in Section 6.3.
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for all β ∈ x. This RCR generally violates regularity (Luce and Suppes 1965)
and WARSP (Bandyopadhyay et al. 1999), because µx depends on menu x.11

The menu-dependence stems from the interplay between two factors—the cor-
respondences between position-relevant mental states and alternatives in the
menu, and the optimal choice of probability measure over mental states—and
accommodates choice anomalies, such as those discussed in Section 6.1.

Second, ASC regards nonextreme points of a menu’s convex hull differently
from the random utility approach (e.g., Dekel et al. 2001). Consider degen-
erated probability distributions over prizes b1, b2 ∈ Z, and assume that β
∈ ∆(Z) generates each of b1 and b2 with a probability of 1/2. Then, β is a
nonextreme point of the convex hull of x = {b1, b2, β}. As highlighted by Gul
and Pesendorfer (2006), random utility models generally satisfy extremeness,
that is, they allow only the extreme points of x’s convex hull, namely, b1 and
b2, to be chosen with a positive probability. Moreover, these models satisfy
indifference to randomization (IR) (Dekel, et al. 2001), that is, menu x being
indifferent to y = {b1, b2}, because they have identical convex hulls. In con-
trast, ASC generally violates both extremeness and IR: for menu x and the
RCR ρx defined above, ASC allows for ρx(β) > 0 if, for example, all µ ∈ M3

have full support. That is, the nonextreme alternative β can be chosen from x
with a positive probability, and thus x will be distinguished from menu y, even
if they have identical convex hulls. This property of ASC not only enables us
to characterize stochastic choice with full support, such as trembling hands,
but also produces sensitivity to adding, removing, or replacing alternatives in
the menu, which is another driving force for explaining the choice anomalies
in Section 6.1.

Third, in addition to characterizing stochastic choice for menus with a
given cardinality, ASC can naturally relate stochastic choices over menus with
different cardinalities using Bayes’ rule. That is, under an additional axiom,
the set Mm of probability measures over mental states can be obtained by
conditioning each probability measure in Mn for all natural numbers m < n
(see Online Resource 1 for details). This result exploits the parallelism of ASC
to MMEU, and is relevant to existing stochastic choice models. In particular,
in the case of uncontrolled stochastic choice, that is, the setsMn of probability
measures over mental states consisting of singletons, the relative probability of
one mental state over another will be independent of the menu, which carries
an implication similar to that of Luce (1959).

Finally, although we have mainly discussed our model in terms of mistakes,
it can also be interpreted as a form of temptation: suppose that the DM is
a random Strotzian, that is, she cannot resist the temptation of choosing the
triggered alternative once a mental state has been realized. However, she can
still exercise self-control by regulating a probability distribution over mental
states through some cognitive strategies, such as making a resolution or as-

11 Our approach is in line with that of Noor and Takeoka (2010, 2015) in that both consider
a menu preference that violates the Independence of Irrelevant Alternatives axiom and the
Weak Axiom of Revealed Preference (WARP). However, Noor and Takeoka focus on the
deterministic choice of alternatives from a menu, whereas we allow for stochastic choice.
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signing herself a penalty/reward. In this case, M in ASC can be interpreted
as the set of such cognitive strategies available to the DM. This interpretation
is also relevant to two-stage models that have recently been considered in the
context of menu preference (Ahn and Sarver 2013; Ergin and Sarver 2010,
2015; Nehring 2006), which we discuss in Section 6.4.

The essential uniqueness of an ASC representation renders the comparison
of M meaningful. In the next section, we indicate that the size of M can
be interpreted as an index of rationality. This section, however, concludes by
discussing four special cases of ASC, each of which varies in M.

First, consider Mn = ∆(Sn) for all n ∈ N, which corresponds to the exact
maximization of state-independent utility, that is, V (x) = maxβ∈x u(β). In
this case, all probability measures over position-relevant mental states are
available, and thus the DM can choose the alternative in any given position
with a probability of one. Section 5.1 demonstrates that monotonicity both
implies and is implied by this special case.

The second special case is Mn = {µn} for all n ∈ N and some µn ∈ ∆(Sn),
which obtains V (x) =

∫
S|x|

u(φ(x, s))dµ|x|(s). This corresponds to uncontrolled

stochastic choice; that is, the DM has no control over mental states and the
choice of alternative will be solely determined by a single probability measure
µn (see Online Resource 1 for its axiomatization).

The third is Mn = {(1− ε)µ+ εµn : µ ∈ ∆(Sn)} for all n ∈ N, and certain
µn ∈∆(Sn) and ε ∈ [0, 1]. In this case, all the probability measures over mental
states are available with a probability of 1 − ε, whereas stochastic choice is
uncontrollable with a probability of ε. Eventually, we obtain the trembling-
hand representation (Selten 1975) as follows:

V (x) = (1− ε)max
β∈x

u(β) + ε

∫
S|x|

u(φ(x, s))dµ|x|(s), (3)

which implies that the DM chooses the best alternative from the menu with
a probability of 1 − ε and randomly selects alternatives with a probability of
ε.1213

Finally, a special case of ASC can be interpreted as a choice with limited
attention (Manzini and Mariotti 2014, 2015; Masatlioglu et al. 2012; Wright
and Barbour 1977). For all n ∈ N, let Qn ⊆ Sn and Mn = ∆(Qn). Then,
the resulting ASC representation is V (x) = maxβ∈φ(x,Q|x|) u(β). That is, Qn

corresponds to the set of attended positions of alternatives in the menu, from

12 Although we do not provide a formal axiomatization of the trembling-hand ASC rep-
resentation, for simplicity, it is derived by exploiting an axiomatization of ε-contamination
(e.g., Nishimura and Ozaki 2006) and the similarity between ASC and MMEU.
13 This representation is reminiscent of that of Chatterjee and Krishna (2009), who con-
sidered a DM that maximizes the normative utility with a probability of 1 − ε and the
“alter-ego” utility with a probability of ε. Specifically, if we interpret the composite func-
tions of u and φ as exactly maximized state-dependent utility functions, (3) implies that the
DM maximizes the normative utility with a probability of 1− ε and the multiple “alter-ego”
utilities with a probability of ε. Unlike their study, however, our model permits nonextreme
points of the menu’s convex hull to be chosen with a positive probability in the “ε” event,
which is crucial to interpreting it as the trembling-hand case.
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which the DM chooses the best alternative; on the other hand, the alternatives
associated with the mental states in Sn\Qn will be disregarded, irrespective of
their commitment rankings. In other words, the DM ex post fails to choose the
alternatives associated with mental states in Sn \Qn because of oversights or
mistakes, although she is ex ante aware thereof.14 Typically,Qn = {s1, · · · , sm}
for some m ≤ n implies that the DM’s attention is confined to the first m
alternatives of the n-cardinality menu, based on some criteria. Note that an
ASC representation with limited attention permits stochastic choice as well as
deterministic choice by allowingMn to be a proper subset of∆(Qn). Moreover,
in contrast to Manzini and Mariotti (2014, 2015), whose primary focus is on
stochastic choice with limited attention, this special case can be derived from
a general ASC representation axiomatized by Theorem 1.

5 Preferences for flexibility and commitment

This section explores the implications of ASC with regard to the sizes of menus,
a topic frequently examined in the literature.

5.1 Preferences for flexibility

First, we discuss monotonicity, which is interpreted as a preference for flexibil-
ity. This axiom has been considered in many studies on menu preferences (e.g.,
Dekel et al. 2001; Ergin and Sarver 2010, 2015; Kreps 1979; Nehring 1999).

Axiom 8 (Monotonicity) For all x, y ∈ A, if x ⊇ y, then x % y.

The following theorem indicates that an ASC preference does not satisfy
monotonicity unless the sets Mn in the representation comprise all probability
measures over mental states for all natural numbers n.

Theorem 2 Assume that % admits a regular ASC representation (u, φ, S,M).
Then, the following statements are equivalent:

(a) % satisfies Axiom 8.
(b) Mn = ∆(Sn) for all n ∈ N.

The proof is presented in the appendix. This theorem indicates that, despite
their apparent similarity, no nontrivial intersection occurs between ASC and
the models of a preference for flexibility, such as that of Dekel et al. (2001): if
monotonicity is required, a regular ASC is reduced to the exact maximization
of a state-independent utility function because, otherwise, adding undesirable
alternatives may deteriorate the evaluation of a menu by increasing the chance
of an inadvertent choice being made.15

14 A similar “implementation error” interpretation of limited attention in the context of
menu preference is discussed by Manzini and Mariotti (2015).
15 A similar argument indicates that the set betweenness axiom introduced by Gul and
Pesendorfer (2001) (i.e., x % y implying x % x ∪ y % y) is equivalent to exact utility max-
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5.2 Preferences for commitment

Next, we investigate the other extreme, that is, a preference for commitment.

Definition 5
(a) For all x ∈ A, preference % exhibits a preference for commitment to a
singleton menu at x if there exists β ∈ x such that {β} � x.
(b) Preference %2 exhibits a preference for commitment to a singleton menu
greater than preference %1 if, for all x ∈ A and β ∈ x,

{β} �1 x ⇒ {β} �2 x.

Preferences for commitment to a singleton menu are stronger than the
preferences for commitment defined by Gul and Pesendorfer (2001). Dekel
and Lipman (2012) and Ergin and Sarver (2010) conducted similar interper-
sonal comparisons.16 The following observation indicates that ASC generally
exhibits a preference for commitment to a singleton menu unless an exact
utility maximization is possible.

Observation 1 Assume that % admits a regular ASC representation (u, φ, S,M)
such that M ( ∪∞

n=1∆(Sn). Then, there exists x ∈ A such that % exhibits a
preference for commitment to a singleton menu at x.

To understand the rationale behind this implication, let β̂ be the alter-
native representing the highest commitment ranking in menu x such that no
probability measure in M|x| assigns probability one to the mental state that

triggers the choice of β̂ (the existence of such x and β̂ follows from regularity
condition (c) and M ( ∪∞

n=1∆(Sn)). The resulting ASC preference clearly

implies that {β̂} � x.
Next, the following theorem relates the interpersonal comparison of a pref-

erence for commitment to the size of the set M of probability measures over
mental states.

Theorem 3 Assume that DM i’s preference %i admits a regular ASC repre-
sentation (u, φ, S,Mi) for i = 1 and 2. As a result, %2 exhibits a preference
for commitment to a singleton menu greater than that of %1 if and only if M1

⊇ M2.

imization for a regular ASC: the latter trivially implies the former. Conversely, under the
lemma proved by Gul and Pesendorfer, set betweenness implies in ASC that only the mental
states associated with the normatively best and worst alternatives in menu x are assigned
a positive probability by the optimal probability measure over mental states chosen in (2).
Moreover, the normatively worst alternative is assigned a zero probability; otherwise, reg-
ularity condition (c) can replace the alternative, so that the optimal probability measure
over mental states assigns a positive probability to an alternative that is neither norma-
tively best nor normatively worst in the menu, which contradicts the implication of Gul and
Pesendorfer’s lemma. Thus, M|x| includes a probability measure that assigns a probability
of one to an arbitrary mental state. It follows from the closedness and convexity that M|x|
comprises all the probability measures over mental states.
16 A condition similar to Definition 5a can also be found in the desire for commitment
axiom proposed by Dekel et al. (2009).
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The proof is given in the appendix. Intuitively, the size of M can be in-
terpreted as an index of rationality : for DMs possessing identical commitment
rankings, the smaller M becomes, the more restrictive is the DM’s choice of
probability measure over mental states. Thus, M2 being smaller than M1

implies that DM2 is more likely to make an erroneous choice from the menu
than DM1, which means that DM2 has a higher preference for commitment
to a singleton menu than DM1. Moreover, if we accept the temptation inter-
pretation of ASC discussed in Section 4, Theorem 3 implies that DM2 is more
prone to temptation generated by ex ante suboptimal alternatives in the menu
than DM1, because a smaller number of cognitive strategies for suppressing
temptation are available to the former than to the latter. Finally, this result is
also compatible with the psychology literature that associates higher cognitive
abilities with lower vulnerability to psychological effects such as the attraction
and position effects (Krueger and Salthouse 2011; Sherman et al. 2008; Ten-
tori et al. 2001) because, as indicated in Section 6.1, ASC explains such choice
anomalies by restricting M. Note that comparing the size of M is meaningful
in our model, because a regular ASC representation is essentially unique.

In the trembling-hand case (3), the above set inclusion can be described
by the single parameter ε. Let Mn = {(1 − ε)µ + εµn : µ ∈ ∆(Sn)} and
M′

n = {(1 − ε′)µ + ε′µn : µ ∈ ∆(Sn)} for some µn ∈ ∆(Sn) and ε, ε′ ∈
[0, 1]. It follows that we have ε ≤ ε′ if and only if Mn ⊇ M′

n. This provides
a behavioral foundation for the classic argument proposed by Selten (1975),
who interpreted ε as an index of the DM’s rationality.

This theorem parallels that proposed by Ghirardato and Marinacci (2002,
Theorem 17), who defined an index of comparative ambiguity aversion by the
set of priors in MMEU, except that the contraction of the set of priors implies
a lower preference for certainty in MMEU, whereas the contraction of the
set of probability measures over mental states implies a greater preference for
commitment to a singleton menu in ASC.

6 Discussion

6.1 Choice anomalies

This subsection demonstrates that ASC accommodates certain choice anoma-
lies reported in the literature, which reflects the following two key factors.
First, these choice anomalies are generally caused by a position change among
alternatives in the menu as a result of adding, removing, or replacing an alter-
native. ASC captures this effect by varying the connections between position-
relevant mental states and alternatives, while holding the alternatives’ com-
mitment rankings unchanged.

Second, because the set M of probability measures over mental states can
be interpreted as an index of rationality, as discussed in the previous section,
ASC attributes nonstandard choice patterns to a restriction onM, rather than
the violation of axioms such as WARP, WARSP, and transitivity. This provides
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a unified framework that regards both exact utility maximization and choice
anomalies as special cases of ASC, and consistently relates stochastic and de-
terministic choices. To highlight this property, the following discussion focuses
on stochastic, rather than deterministic, choice, but deterministic choice can
also be obtained by allowing ε and ε′ below to be zero.

In the following, for simplicity, we write c(x) = (β1, · · · , β|x|) for all x ∈ A
to imply φ(x, si) = βi for i = 1, · · · , |x|.

6.1.1 Attraction effect

The attraction effect occurs when adding an unchosen alternative to an ex-
isting menu changes the choice of alternative in that menu (e.g., Huber et
al. 1982). Let α, β, and δβ ∈ ∆(Z). Assume that α is preferred to β, but
the addition of δβ , which is dominated by β (and often referred to as a “de-
coy”), attracts the DM’s attention to β. Eventually, the DM chooses α from
x = {α, β} and β from y = {α, β, δβ} with the highest probability (often a
probability of one). This example clearly violates WAR(S)P.

We can easily explain this behavioral pattern in ASC by assuming that α
� β � δβ , c(y) = (β, δβ , α), M2 = {µ ∈ ∆(S2) : µ(si) ≤ 1−ε for i = 1, 2}, and
M3 = {µ ∈ ∆(S3) : µ(si) ≤ 1 − ε for i = 1, 2 and µ(s3) ≤ ε′} for sufficiently
small ε and ε′.17 That is, despite α having the highest commitment ranking of
the three alternatives (and being chosen from x with a probability of 1− ε), it
is chosen from y with a very low probability (equal to ε′), because the addition
of δβ drives α into a “blind spot,” that is, the least attended position, which
is associated with mental state s3.

18

6.1.2 Cyclical choice

ASC can also explain cyclical choice. For some α, β, γ ∈ ∆(Z), assume that
c({α, β}) = (α, β), c({β, γ}) = (β, γ), c({γ, α}) = (γ, α), and M2 = {µ ∈
∆(S2) : µ(s1) = 1− ε} for a sufficiently small ε. Then, α is chosen from {α, β},
17 The reader may suspect that the above argument relies on the fact that x and y have
different cardinalities, and are thus evaluated by different sets of probability measures over
mental states. However, ASC also accommodates similar choice anomalies for menus of
identical cardinality. For example, Tyszka (1983) reported that, for α, β, γ, and δ ∈ ∆(Z),
the majority of the participants choose α from x = {α, β, γ}, despite choosing β from y
= {α, β, δ}. Assuming that α � β � γ ∼ δ, c(x) = (α, γ, β), c(y) = (β, δ, α), and M3 =
{µ ∈ ∆(S3) : µ(si) ≤ 1 − ε for i = 1, 2 and µ(s3) ≤ ε′} for sufficiently small ε and ε′, the
above choice pattern is consistent with the ASC preference.
18 This result does not imply that the attraction effect generally accompanies a preference
for commitment. However, the attraction effect (and other choice anomalies) can be asso-
ciated with a specific type of preference for commitment: in this example, the DM would
naturally prefer menu x to y, because she is ex ante aware that decoy δβ attracts her at-
tention to the suboptimal alternative β, and is thus willing to exclude δβ from the menu.
Another interpretation is that the menu choice is made by the social planner, who prefers to
exclude suboptimal alternatives from the menu to prevent the DM from making an erroneous
alternative choice. A discussion relevant to this interpretation can be found in Manzini and
Mariotti (2015).
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β is chosen from {β, γ}, and γ is chosen from {γ, α} with probability 1 − ε.
That is, cyclical choice occurs because the alternative that is (objectively or
subjectively) positioned first in each pair is chosen with a higher probability.
This indicates that the stochastic choice function φ (or equivalently, function
c) and the sets Mn of probability measures over mental states may impact
the choice of alternatives more significantly than the alternatives’ commitment
rankings would.

Specifically, consider the case ε = 0. This implies that only the alternative
associated with a specific position (or mental state) is chosen with a probability
of one, regardless of its commitment ranking, and carries an implication sim-
ilar to that of Strotz (1955) and Gul and Pesendorfer’s (2001) overwhelming
temptation.

6.1.3 Position effects

Various position effects suggest that alternatives located at the beginning,
end, or in other specific positions (typically the middle) of the menu have
a higher probability of being chosen than others (e.g., Bruine de Bruin 2005;
Christenfeld 1995; Murdock 1962). To explain these effects in ASC, we assume
that c(x) = (α, β, γ) for a menu x = {α, β, γ}. That is, alternatives α, β, and
γ are physically ordered first, second, and third in the menu, and mental state
si triggers the choice of the alternative in the i-th position for i = 1, 2, and 3.
We also assume uncontrolled stochastic choice, i.e., M3 = {µ}, for simplicity.
Then, the probability of each alternative being chosen is solely determined by
the probability measure µ over mental states: µ(s1)> µ(s2)≥ µ(s3) implies the
primacy effect, that is, the first item α is chosen with the highest probability;
µ(s1) ≤ µ(s2) < µ(s3) implies the recency effect, that is, the last item γ is
chosen with the highest probability; µ(s1) < µ(s2) and µ(s2) > µ(s3) imply
that the alternative β in the middle is chosen with the highest probability.

6.2 Mixtures of menus

As we have noted, ASC is in stark contrast to the random utility approach in
the menu preference framework (Ahn and Sarver 2013; Chatterjee and Krishna
2009, 2012; Dekel and Lipman 2012; Dekel et al. 2001, 2009; Ergin and Sarver
2010, 2015; Gul and Pesendorfer 2001; Kreps, 1979; Nehring 1999; Noor and
Takeoka 2010, 2015; Sarver 2008). Accordingly, this subsection discusses the
relationship between the axioms that are crucial to the difference, that is,
Axioms 2 and 2’ proposed in Section 3.

First, the following observation highlights the difference between the two
axioms.

Observation 2 Axiom 2’ is equivalent to the following axiom:
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Axiom 2” (Uncorrelated mixtures of menus, another representation)

(a) For all x ∈ A and λ ∈ [0, 1], λx⊕ (1− λ)x ∼ λx+ (1− λ)x.
(b) % has consistent perceptions of random menus.

The proof is given in the appendix. Because Axioms 2b and 2”b are equiv-
alent, this observation indicates that the apparent difference between Axioms
2 and 2’ reduces to the difference between Axioms 2a and 2”a, that is, whether
a randomization between identical menus is indifferent to the original menu
or the Minkowski sum, which can readily be tested. On the other hand, Ax-
ioms 2b and 2”b, or consistent perceptions of random menus, create a common
ground to characterize preferences that evaluate random menus differently.

Next, we discuss the difference between the two axioms with respect to the
sensitivity to a change of membership, such as adding, deleting, or replacing
an alternative in the menu. As argued by Dekel et al. (2001), iteratively ap-
plying Axiom 2’ to the identical menu x, along with independence (or relevant
axioms) and continuity, implies the IR property, that is, any menu x being
indifferent to its convex hull. This property derives random utility (i.e., the
exact maximization of the state-dependent utility), and a change of member-
ship does not affect the evaluation of the menu unless the menu’s convex hull
is altered. In contrast, Axiom 2, which is imposed in ASC, identifies a ran-
domization between identical menus x with the menu x itself. Thus, even the
iterative application of the axiom does not render menu x indifferent to its
convex hull, which invalidates IR. This also derives a preference representa-
tion with a stochastic choice function (i.e., a probability measure over mental
states or alternatives) that is possibly full support as in trembling hands and
sensitive to a membership change of the menu, the latter of which is crucial
to accommodate the choice anomalies in Section 6.1.

6.3 Self vs. nature

As we have demonstrated, the DM chooses a probability measure over mental
states tomaximize her ex ante expected utility in ASC. Ergin and Sarver (2010,
2015) considered a model similar to ours, wherein a probability measure over
subjective states was chosen to maximize the expected utility. In contrast,
Gilboa and Schmeidler (1989) modeled ambiguity aversion using a probability
measure over the set of exogenous states that minimizes the expected utility,
while Epstein et al. (2007) extended this approach to endogenous states. Ahn
(2007), Olszewski (2007), and Chatterjee and Krishna (2012) endorsed the
latter view by adopting another approach.

The difference between the maximization and minimization approaches can
be summarized as whether self or nature chooses a probability measure over
states: if the DM has control over her subjective or mental states, she can
presumably maximize the expected utility by choosing a probability measure
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over states. However, if the ex post choice of alternative depends on the states
chosen by nature, such as weather, natural disasters, and economic booms
and recessions, the DM may only be concerned with the minimum possible
expected utility, because the realization of these states is beyond her control.

If we reverse the implication of ARI, while retaining the other axioms, the
resulting set of axioms yields the counterpart of an ASC representation; in this
counterpart, a probability measure on the set of states is chosen to minimize,
rather than maximize, the expected utility. However, the above discussion
indicates that the implication of this model differs significantly from that of
ours, because nature or other conditions beyond the DM’s control, and not
the DM herself, are assumed to set the probability measure.19

6.4 Related literature

This subsection reviews the relevant literature. First, several two-stage models
relevant to ASC have recently been considered. Ahn and Sarver (2013) char-
acterized the first-stage menu preference to uniquely identify the second-stage
stochastic choice generated by random utility. Unlike ASC, however, they did
not derive a cognitive-control structure. On the other hand, Ergin and Sarver
(2010, 2015) considered a model similar to cognitive control, wherein the DM
maximizes the expected utility by choosing some interim action that affects
the second-stage preference. In particular, Ergin and Sarver (2015) assumed
the domain of random menus, as we have, to derive a uniqueness result. As
noted in Section 6.2, however, this line of study implicitly or explicitly imposes
Axiom 2’, whereas ASC imposes Axiom 2. Thus, these two approaches are dif-
ferent with respect to their interpretations (i.e., random utility vs. stochastic
choice) as well as perceptions of random menus. Nehring (2006) considered a
model wherein the DM chooses the optimal preference over the alternatives
before an alternative is chosen from a menu. Unlike this model, however, ASC
allows for stochastic choice and is essentially unique.

Second, the interplay between the ex ante optimality and ex post choice
considered in this study resembles the dichotomy of deliberative and affective
systems (Loewenstein and O’Donoghue 2004). Similar dichotomies prevail in
economics (Chatterjee and Krishna 2009; Fudenberg and Levine 2006; Gul
and Pesendorfer 2001; Kahneman et al. 1997; Thaler and Shefrin 1981), as
well as in psychology and neuroscience. Particularly, the literature relevant
to cognitive control and higher cognitive abilities reducing vulnerability to
various psychological effects (Gross 1998; Krueger and Salthouse 2011; Larsen
2000; Sherman et al. 2008; Tentori et al. 2001) generally assumes such a model.
From this perspective, ASC can be interpreted as an affective system triggering
ex post stochastic choice and a deliberative system maximizing the expected
utility by cognitive control.

19 Nehring’s (1999) argument parallels the relationship between the maximization and
minimization approaches, as he used concave capacities to denote utility maximization. In
contrast, Schmeidler (1989) used convex capacities to model ambiguity aversion.
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7 Concluding remarks

This study has mainly characterized mistakes driven by position-dependent
choice in the context of menu preference. Our ASC model also includes a
range of subclasses relevant to the existing literature and choice anomalies.

Selten (1975), who first identified stochastic choice with bounded rational-
ity, noted that “[t]here cannot be any mistakes if the players are absolutely
rational. Nevertheless, a satisfactory interpretation of equilibrium points ...
seems to require that the possibility of mistakes is not completely excluded.
This can be achieved by a point of view which looks at complete rationality
as a limiting case of incomplete rationality.” He also argued that the proba-
bility distribution over alternatives generated by the DM’s possible mistakes
is determined by “some unspecified psychological mechanism.”

This study contributes to the literature in terms of a decision theoretic
foundation that unravels this “unspecified psychological mechanism”: focus-
ing on correlated choice triggered by position-relevant mental states, we have
derived subjective stochastic choice from a preference over menus, rather than
assuming an exogenous randomizing device over alternatives. The interper-
sonal comparison with respect to the sets of probability measures over mental
states also provides a foundation for Selten’s view that the error rate ε in the
trembling-hand model can be considered as an index of rationality. Thus, we
believe that our approach offers new insight into stochastic choice behavior.

Appendix

Proof of Theorem 1

For the sufficiency part of Theorem 1 (a regular ASC representation implies
the axioms), we only present proofs for Axioms 2, 7b, and 7c, because the
sufficiency for the other axioms is straightforward.

To confirm that Axiom 2 holds, we note that the affineness of u implies that∫
A u(φ(x, s)) dP (x) = λ1u(φ(x1, s))+ · · ·+λmu(φ(xm, s)) for all finite random
menus P = (λ1, x1; · · · ; λm, xm) that generate menu xi with probability λi for
i = 1, · · · , m, and all s ∈ S. Then, Axiom 2b follows from regularity conditions
(a) and (b), and considering P = (λ, x; 1− λ, x) also implies Axiom 2a.

On the other hand, Axioms 7b and 7c are implied by the regularity con-
ditions of φ. First, Axiom 7b is proved by induction. Let x∗

1 = {β1
1} for an

arbitrary β1
1 ∈ ∆(Z). Next, fix n ≥ 1 and assume that x∗

i satisfies the im-
plication of Axiom 7b for i = 1, · · · , n. The construction of φ implies, for
any given x∗

n+1 ∈ A such that |x∗
n+1| = n + 1, that λx∗

n ⊕ (1 − λ)x∗
n+1 ∼

∪n+1
i=1 {λφ(x∗

n, si) + (1 − λ)φ(x∗
n+1, si)} for all λ ∈ [0, 1]. By defining βn+1

i ≡
φ(x∗

n+1, si) for i = 1, · · · , n+ 1, regularity conditions (a) and (b) imply that

x∗
n+1 = {βn+1

1 , · · · , βn+1
n+1} and λx∗

n ⊕ (1 − λ)x∗
n+1 ∼ ∪n+1

i=1 {λβn
min{i,n} + (1 −

λ)βn+1
i } for all λ ∈ [0, 1]. Because the same argument holds for all n ≥ 1, we

obtain Axiom 7b. Second, regularity condition (c) implies that, for all x ∈ A,
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1 ≤ k ≤ |x|, and β̄ ∈ ∆(Z), there exists x′ ∈ A such that |x′| = |x|, φ(x′, si)
∼ φ(x, si) for all i 6= k, and φ(x′, sk) ∼ β̄, which implies Axiom 7c.

Below, we prove the necessity part of the theorem. The first lemma indi-
cates that Axiom 2 derives a bijection between menus of identical cardinality
that describes the DM’s perception of random menus.

Lemma 1 Axiom 2 implies the following axiom:

Axiom 2∗ For all x, y ∈ A such that |x| = |y|, there exists a bijection τ :
x → y such that λx⊕ (1− λ)y ∼ {λα+ (1− λ)τ(α) : α ∈ x} for all λ ∈ [0, 1].

Proof Axiom 2b (specifically, Definition 1a) implies that, for given x, y ∈
A such that |x| = |y|, there exists C ⊆ x × y such that λx ⊕ (1 − λ)y ∼
{λα + (1 − λ)β : (α, β) ∈ C} for all λ ∈ [0, 1]. By construction, we also have
λ′y⊕ (1−λ′)x ∼ {λ′β+(1−λ′)α : (α, β) ∈ C} for all λ′ ∈ [0, 1]. From Axiom
2b (Definition 1b), it follows that

λ′′x⊕ (1− λ′′)x ∼ {λ′′α+ (1− λ′′)α′ : (α, β) ∈ C and (α′, β) ∈ C} (4)

for all λ′′ ∈ [0, 1]. Axiom 2a implies that there exists some C such that the
right-hand side of (4) is equivalent to x.

Now, assume that for all C satisfying (4), there is no bijection τ : x → y,
such that β = τ(α) if and only if (α, β) ∈ C. This implies that (i) there exists
α̃ ∈ x such that (α̃, β) 6∈ C for all β ∈ y, (ii) there exist distinct α̃, α̂ ∈ x such

that (α̃, β), (α̂, β) ∈ C for some β ∈ y, or (iii) there exist distinct β̃, β̂ ∈ y

such that (α, β̃), (α, β̂) ∈ C for some α ∈ x. In case (i), we assume without
loss of generality that there is no C ′ ⊆ x × y such that C ′ ) C satisfies (4)
in replacing C. Then, the right-hand side of (4) cannot be indifferent to x for
all λ′′ ∈ [0, 1] because it never includes α̃. In case (ii), we assume without loss
of generality that there is no C ′ ⊆ x × y such that C ′ ( C satisfies (4) in
replacing C. Then, the right-hand side of (4) cannot be indifferent to x for all
λ′′ ∈ [0, 1], because it includes λα̃ + (1 − λ)α̂. Finally, case (iii) is equivalent
to case (ii) after exchanging the roles of x and y. Accordingly, all the cases
contradict Axiom 2a.

The above discussion holds for all such menus x and y, and thus, we obtain
the desired result. ut

Next, we construct the sets of mental states and a regular choice function.

Lemma 2 There exist Sn = {s1, · · · , sn}, S = ∪∞
n=1{Sn}, and a regular φ

such that

λx⊕ (1− λ)y ∼ ∪s∈Smax{|x|,|y|}{λφ(x, s) + (1− λ)φ(y, s)} (5)

for all x, y ∈ A and λ ∈ [0, 1].

24



Proof We prove the lemma by induction. First, define S1 = {s1} and φ(x, s1)
= β for all x = {β} ∈ A1. These definitions, combined with Lemma 1, imply
regularity condition (a) and (5) for all singleton menus x and y.

Next, set n ≥ 1 and assume that Sn and φ satisfy regularity condition (a)
and (5) for all x, y ∈ An. Axiom 7b implies that, for menus x∗

n = {βn
1 , · · · , βn

n}
and x∗

n+1 = {βn+1
1 , · · · , βn+1

n+1} defined in the axiom, λx∗
n ⊕ (1 − λ)x∗

n+1 ∼
∪n+1
i=1 {λβn

min{i,n} + (1 − λ)βn+1
i } for all λ ∈ [0, 1]. Accordingly, by defining

Sn+1 ≡ Sn ∪ {sn+1}, φ(x∗
n, si) ≡ βn

min{i,n}, and φ(x∗
n+1, si) ≡ βn+1

i for i = 1,

· · · , n+1, we obtain λx∗
n⊕(1−λ)x∗

n+1 ∼ ∪s∈Sn+1{λφ(x∗
n, s)+(1−λ)φ(x∗

n+1, s)}
for all λ ∈ [0, 1] and φ(x∗

n, sn+1) = φ(x∗
n, sn).

Now, iteratively applying Axiom 2b (i.e., % having consistent perceptions
of random menus) to the above argument implies that, for all m ≤ n + 1,
λx∗

m ⊕ (1 − λ)x∗
n+1 ∼ ∪s∈Sn+1{λφ(x∗

m, s) + (1 − λ)φ(x∗
n+1, s)} for all λ ∈

[0, 1] and φ(x∗
m, si) = φ(x∗

m, sm) for i = m+ 1, · · · , n+ 1. Moreover, Lemma
1 implies that, for all x, y ∈ A such that |x| = m and |y| = n + 1, there
exist bijections τ̂ : x∗

m → x and τ̃ : x∗
n+1 → y such that λ′x∗

m ⊕ (1 − λ′)x ∼
{λ′βm

i +(1−λ′)τ̂(βm
i ) : i = 1, · · · ,m} for all λ′ ∈ [0, 1] and λ′′x∗

n+1⊕(1−λ′′)y

∼ {λ′′βn+1
i +(1−λ′′)τ̃(βn+1

i ) : i = 1, · · · , n+1} for all λ′′ ∈ [0, 1]. Accordingly,
by defining φ(x, si) = τ̂(βm

min{i,m}) and φ(y, si) = τ̃(βn+1
i ) for i = 1, · · · , n+1,

Axiom 2b implies that λx⊕(1−λ)y ∼ ∪s∈Sn+1{λφ(x, s)+(1−λ)φ(y, s)} for all
λ ∈ [0, 1], and φ(x, si) = φ(x, sm) for i = m+1, · · · , n+1. This implies (5) for
all x, y ∈ An+1. The construction of φ(y, ·) also gives regularity condition (a)
for all y ∈ An+1. Moreover, because the above argument implies that φ(x, sn′)
= φ(x, s|x|) for all x ∈ A and n′ ∈ N such that n′ ≥ |x|, regularity condition
(b) is obtained.

Finally, by the construction of φ, Axiom 7c implies that, for all 1 ≤ k ≤
n, β̄ ∈ ∆(Z), and x = {β1, · · · , βn} such that φ(x, si) = βi for i = 1, · · · , n,
there exists x′ = {β′

1, · · · , β′
n} such that φ(x′, si) = β′

i for i = 1, · · · , n, β′
i ∼

βi for all i 6= k, and β′
k ∼ β̄. Regularity condition (c) is obtained by iteratively

applying the argument for k = 1, · · · , n. ut

The iterative application of (5) in Lemma 2 implies that a finite random
menu P = (λ1, x1; · · · ; λm, xm) is indifferent to a finite nonrandom menu Ψ(P )
≡ ∪s∈Sn̄(P )

{λ1φ(x1, s) + · · ·+ λmφ(xm, s)}. Thus, we focus on the preference
over finite menus, rather than that over random menus.

Next, we show that there is an affine function u (i.e., u(λβ + (1 − λ)γ)
= λu(β) + (1 − λ)u(γ) for all λ ∈ [0, 1] and β, γ ∈ ∆(Z)) representing the
commitment ranking.

Lemma 3 There is an affine function u that represents % on ∆(Z); that is,
for all β, β′ ∈ ∆(Z), u(β) ≥ u(β′) whenever {β} % {β′}. Furthermore, u is
unique up to a positive affine transformation.

Proof The conclusion is straightforward from Axioms 1, 3, and 4. Note that
the independence axiom for alternatives follows from singleton independence.
ut
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The following lemma indicates that there is a functional J representing the
restriction of % on A.

Lemma 4 Let u be an affine function derived from Lemma 3. Then, there is
a functional J : A → < such that

(a) for all x, y ∈ A, x % y if and only if J(x) ≥ J(y), and
(b) for all β ∈ ∆(Z) and x = {β}, J(x) = u(β).

Proof For singleton menus, J is uniquely defined by (b). To define J for all
menus, fix β̄ and β such that {β̄} % x % {β} for all x ∈ A. It follows from
Axiom 3 and Lemma 1 that there exists a unique λ ∈ [0, 1] such that x ∼
λ{β̄}⊕ (1−λ){β} ∼ {λβ̄+(1−λ)β}. Thus, by defining J(x) = J({λβ̄+(1−
λ)β}), J also satisfies (a). ut

Now, fix the cardinality n of the menus and the function u such that u(β)
> 1 and u(β′) < −1 for some β, β′ ∈ ∆(Z) (which is allowed by Axiom 7a).
We denote by B the linear space of all functions a : Sn → < endowed with
state-wise scalar multiplication and addition; that is, for all a, b ∈ B and λ ∈
<, λa and a+ b are defined by (λa)(s) = λ(a(s)) and (a+ b)(s) = a(s) + b(s)
for all s ∈ Sn, respectively. Because Sn is finite, B is equivalent to the linear
subspace of simple functions, which we denote by B0. We also define K =
u(∆(Z)) and denote by B0(K) the set of simple functions that have range K.
For all ξ ∈ <, we denote by ξ∗ ∈ B a constant function such that ξ∗(s) = ξ for
all s ∈ Sn. Now, define φx

n(·) ≡ φ(x, ·) on Sn. From regularity condition (c) of
φ, which we proved in Lemma 2, it follows that the set of functions u◦φx

n with
x ranging over An is equivalent to B0(K), i.e., {u ◦ φx

n : x ∈ An} = B0(K).
Let ũ : An → KSn be such that ũ(x) = u◦φx

n for all x ∈ An. The following
lemmas, which are counterparts of Gilboa and Schmeidler’s (1989) lemmas,
characterize the functional I on B derived from the axioms. Note that, unlike
Gilboa and Schmeidler’s argument, I is sublinear instead of superlinear and is
denoted by the maximum of integrals rather than the minimum.

Lemma 5 There is a functional I : B → < such that

(a) for all x ∈ A such that |x| = n, I(ũ(x)) = J(x),
(b) I is monotonic, that is, a ≥ b implies I(a) ≥ I(b) for all a, b ∈ B,
(c) I is sublinear (subadditive and homogeneous of degree one), and
(d) I is C-independent, that is, I(a+ ξ∗) = I(a) + I(ξ∗) for all a ∈ B and ξ
∈ <.

Proof We define I on B0(K) by condition (a). This also implies that I(ũ({β}))
= J({β}) = u(β) for all β ∈ ∆(Z), and thus, I(1∗) = 1. The monotonicity (b)
of I follows from Lemma 2 and Axiom 6. We indicate that I satisfies (c) and
(d).

First, we show I(λa) = λI(a) for all λ ∈ (0, 1] and a, λa ∈ B0(K). Let y ∈
A be such that |y| = n and a = ũ(y), and β ∈ ∆(Z) be such that ũ({β}) = 0∗.
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(The existence of such y is guaranteed by regularity condition (c) of φ.) Now,
let x = ∪s∈Sn{λφ(y, s)+(1−λ)β}. Lemma 2 implies x ∼ λy⊕ (1−λ){β}, and
thus, we have J(x) = I(ũ(x)) = I(λa+(1−λ)ũ({β})) = I(λa). Next, let β′ be
such that {β′} ∼ y. Then, by Axiom 4 and Lemma 1, x ∼ λy ⊕ (1− λ){β} ∼
λ{β′}⊕ (1−λ){β} ∼ {λβ′+(1−λ)β}. That is, J(x) = J({λβ′+(1−λ)β}) =
λJ({β′})+(1−λ)J({β}) = λI(ũ(y))+(1−λ)I(ũ({β})) = λI(a). Accordingly,
we obtain I(λa) = λI(a). Now, define I(a) = 1

λI(λa) for all λ > 0 and λa ∈
B0(K). By the positive homogeneity of I on B0(K) that we have shown, I(a)
is homogeneous of degree one for all a ∈ B.

Second, we show that I is C-independent. By homogeneity, it suffices to
show that I( 12a+

1
2ξ

∗) = 1
2I(a) +

1
2I(ξ

∗) for all a, ξ∗ ∈ B0(K). Let x ∈ A be
such that |x| = n and a = ũ(x), β′ ∈∆(Z) be such that {β′} ∼ x, and β ∈∆(Z)
be such that ũ({β}) = ξ∗. By Lemma 2 and Axiom 4, ∪s∈Sn{1

2φ(x, s) +
1
2β}

∼ 1
2x⊕

1
2{β} ∼ 1

2{β
′}⊕ 1

2{β} ∼ { 1
2β

′+ 1
2β}, which implies that I( 12a+

1
2ξ

∗) =
J({1

2β
′ + 1

2β}) =
1
2J({β

′}) + 1
2J({β}) =

1
2J(x) +

1
2J({β}) =

1
2I(a) +

1
2I(ξ

∗).
Finally, we show that I is subadditive. By homogeneity, it suffices to show

that I(12a + 1
2b) ≤

1
2I(a) +

1
2I(b) for all a, b ∈ B0(K). Let x, y ∈ A be such

that |x| = |y| = n, a = ũ(x), and b = ũ(y). Suppose I(a) = I(b), that is,
x ∼ y. Then, it follows from Axiom 5 and Lemma 2 that x % 1

2x ⊕ 1
2y ∼

∪s∈Sn
{1
2φ(x, s)+

1
2φ(y, s)}, implying that I(a) = 1

2I(a)+
1
2I(b) ≥ I( 12a+

1
2b).

Next, suppose that I(a) > I(b). Define ξ = I(a) − I(b) and c = b + ξ∗. Note
that I(c) = I(b + ξ∗) = I(b) + ξ = I(a) (the second equality follows from
C-independence). Accordingly, we obtain

I(
1

2
a+

1

2
b) +

1

2
ξ = I(

1

2
a+

1

2
c) ≤ 1

2
I(a) +

1

2
I(c) =

1

2
I(a) +

1

2
I(b) +

1

2
ξ,

which completes the proof. The first and third equalities follow from C-independence,
while the second inequality follows from I(a) = I(c). ut

Lemma 6 Let I be a monotonic, sublinear, and C-independent functional on
B with I(1∗) = 1. Then, there is a closed and convex set Mn of finitely additive
probability measures over Sn such that I(b) = maxµ∈Mn

∫
Sn

bdµ for all b ∈ B.
Furthermore, Mn is unique.

Proof Fix b ∈ B such that I(b) > 0. We first show that there is a (finitely
additive) probability measure µb over Sn such that I(b) =

∫
Sn

bdµb and I(a)

≥
∫
Sn

adµb for all a ∈ B. Define

D1 = co({a ∈ B : a ≥ 1∗} ∪ {a ∈ B : a ≥ b/I(b)})

(where co(·) denotes the convex hull of the set (·)) and

D2 = {a ∈ B : I(a) < 1}.

Let d1 = λa + (1 − λ)a′, where a ≥ 1∗, a′ ≥ b/I(b), and λ ∈ [0, 1]. Then,
it follows from monotonicity, homogeneity, and C-independence that I(d1) ≥
λ+ (1− λ)I(a′) ≥ 1, which implies that D1 ∩D2 = ∅. Furthermore, both D1
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and D2 have inner points and are convex (the convexity of D2 follows from the
sublinearity of I). Thus, by a separating hyperplane theorem (e.g., Aliprantis
and Border 2006), there is a linear functional Fb and λ ∈ < such that

Fb(d1) ≥ λ ≥ Fb(d2) (6)

for all d1 ∈ D1 and d2 ∈ D2. Because we clearly have λ > 0 (otherwise Fb

must be identically zero), we set λ = 1 without loss of generality.
Then, (6) implies that Fb(1

∗) ≥ 1. In addition, because 1∗ is a limit point
of D2, the inverse inequality also holds, and we can conclude that Fb(1

∗) =
1. Furthermore, Fb is nonnegative because, for all nonempty E ⊆ Sn and the
indicator function 1E of E, we have 1∗ − 1E ∈ D2 and Fb(1E) + Fb(1

∗ − 1E)
= Fb(1

∗) = 1, which implies that Fb(1E) ≥ 0.
Accordingly, because Fb is a nonnegative linear functional, the Riesz rep-

resentation theorem (e.g., Aliprantis and Border 2006) implies that there is a
finitely additive probability measure µb such that Fb(a) =

∫
Sn

adµb for all a ∈
B. We show that Fb(a) ≤ I(a) for all a ∈ B and Fb(b) = I(b). First, assume
that I(a) > 0. Because a/I(a)− (1/m)∗ ∈ D2 for all m ∈ N and Fb(a) is con-
tinuous with respect to a, we have Fb(a) ≤ I(a) from (6). A similar implication
for I(a) ≤ 0 follows from C-independence (set ξ ∈ < such that I(a+ ξ∗) > 0).
Second, we focus on the special case a = b. Note that b/I(b) ∈ D1, and so it
follows from (6) that Fb(b) ≥ I(b). Because the previous argument indicates
that the inverse inequality also holds, we have Fb(b) = I(b).

Now, let Mn ≡ co({µb : b ∈ B, I(b) > 0}), for µb defined above. It follows
from the previous paragraph that I(a) ≥ maxµ∈Mn

∫
Sn

adµ for all a ∈ B.

It has also been shown that, for all a ∈ B such that I(a) > 0, there is a
probability measure µa ∈ Mn such that I(a) =

∫
Sn

adµa, which implies that

I(a) ≤ maxµ∈Mn

∫
Sn

adµ. Applying C-independence, a similar argument also

holds for I(a) ≤ 0.
Finally, we show the uniqueness of Mn. Suppose that there are distinct

sets Mn and M′
n satisfying the statements of this lemma; that is, I(ũ(x))

= maxµ∈Mn

∫
Sn

u(φ(x, s))dµ(s) and I ′(ũ(x)) = maxµ∈M′
n

∫
Sn

u(φ(x, s))dµ(s)

both represent % for all x ∈ A such that |x| = n. Choose µ̃ ∈ Mn\M′
n (if such

µ̃ does not exist, choose µ̃ ∈M′
n\Mn instead and proceed accordingly). Then,

because M′
n is convex, the separating hyperplane theorem indicates that there

exists a ∈ B such that
∫
Sn

adµ̃ > maxµ∈M′
n

∫
Sn

adµ. It follows from regularity

condition (c) that there exists y ∈ A such that |y| = n and a(·) = u ◦ φ(y, ·),
implying I(ũ(y)) > I ′(ũ(y)), which is a contradiction. ut

We now conclude the proof of Theorem 1. Because Lemmas 5 and 6 hold
for an arbitrary n ∈ N, Lemmas 1–6 imply that, by defining S = {s1, s2, · · · },
M = ∪∞

i=nMn, and a regular φ, we obtain an ASC representation for all x ∈
A. The essential uniqueness follows from the construction of S, M, and φ.

In particular, the uniqueness of φ with respect to the relevant mental states
is shown as follows. Suppose that there exist regular φ and φ′ representing the
preference, and x, y ∈ A such that φ(x, s̃) = φ′(x, s̃) and φ(y, s̃) 6= φ′(y, s̃)
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for some relevant s̃ ∈ S. Without loss of generality, we assume |x| = |y|. By
construction, λy⊕(1−λ)x∼ ∪s∈S|y|{λφ(y, s)+(1−λ)φ(x, s)} and λ′x⊕(1−λ′)y
∼ ∪s′∈S|y|{λ′φ′(x, s′) + (1 − λ′)φ′(y, s′)} for all λ, λ′ ∈ [0, 1], and so Axiom
2b implies that λ′′y ⊕ (1 − λ′′)y ∼ {λ′′φ(y, s) + (1 − λ′′)φ′(y, s′) : φ(x, s) =
φ′(x, s′) for some s, s′ ∈ S|y|} ≡ zλ′′ for all λ′′ ∈ [0, 1]. However, because zλ′′

includes λ′′φ(y, s̃) + (1 − λ′′)φ′(y, s̃), φ(y, s̃) 6= φ′(y, s̃), and s̃ is relevant, we
conclude without loss of generality that zλ′′ is not indifferent to y for all λ′′ ∈
[0, 1], contradicting Axiom 2a.

Finally, the desired representation for all random menus P follows from
the affineness of u. ut

Proof of Theorem 2

The sufficiency (Mn = ∆(Sn) implies monotonicity) is straightforward. We
show the necessity. First, we prove the following lemma.

Lemma 7 Suppose that % admits a regular ASC representation (u, φ, S,M)

and satisfies monotonicity. Let x ∈ A, β̂ ∈ x, and ŝ ∈ S|x| be such that β̂ � β

for all β ∈ x, β 6= β̂, and φ(x, ŝ) = β̂. Then, there exists µ ∈ M|x| such that
µ(ŝ) = 1.

Proof Let x ∈ A, β̂ ∈ x, and ŝ ∈ S|x| be such that β̂ � β for all β ∈ x, β 6= β̂,

and φ(x, ŝ) = β̂. Suppose that µ(ŝ) < 1 for all µ ∈ M|x|. Then, we have u(β̂)

> V (x) = maxµ∈M|x|

∫
S|x|

u(φ(x, s))dµ(s), or {β̂} � x, which contradicts the

monotonicity. ut

Because Lemma 7 applies to all such x and β̂, there exists µ ∈ Mn such
that µ(s) = 1 for any given n ∈ N and s ∈ Sn. Furthermore, because Mn

is closed and convex, Mn ⊇ co({µ ∈ ∆(Sn) : µ(s) = 1 for some s ∈ Sn}) =
∆(Sn). Mn ⊆ ∆(Sn) is straightforward, which concludes the proof. ut

Proof of Theorem 3

The sufficiency (M1 ⊇ M2 implies that %2 exhibits a greater preference for
commitment to a singleton menu than %1) is straightforward.

Conversely, we show that %2 with a greater preference for commitment
to a singleton menu than %1 implies M1 ⊇ M2. Assume that there exists
n ∈ N such that µ′ ∈ M2

n \ M1
n, where Mi

n ∈ Mi for i = 1 and 2 denote
the sets of probability measures over Sn in each ASC representation. Because
M1

n is convex, the separating hyperplane theorem implies that there exists
a : Sn → < such that maxµ∈M1

n

∫
Sn

adµ <
∫
Sn

adµ′, and so it follows from

regularity condition (c) that there exists some x ∈ A such that |x| = n and
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a(·) = u ◦ φ(x, ·). Without loss of generality, we also assume that β ∈ x exists
such that u(β) =

∫
Sn

u(φ(x, s))dµ′(s) < maxµ∈M2
n

∫
Sn

u(φ(x, s))dµ(s). Then,

max
µ∈M1

n

∫
Sn

u(φ(x, s))dµ(s) <

∫
Sn

u(φ(x, s))dµ′(s) = u(β) < max
µ∈M2

n

∫
Sn

u(φ(x, s))dµ(s),

implying that {β} �1 x and x �2 {β}, which is a contradiction. ut

Proof of Observation 2

Showing that Axiom 2’ implies Axiom 2” is straightforward. Conversely, let x,
y ∈ A be such that |x| ≤ |y|. Axiom 2”b (specifically, Definition 1a) implies that
there exist a nonempty C0 ⊆ x×y and (α̃, β̃) ∈ C0 such that λ0x⊕(1−λ0)y ∼
{λ0α+(1−λ0)β : (α, β) ∈ C0} for all λ0 ∈ [0, 1]. Next, Axiom 2”a implies that
for C1 ≡ x×x and all λ1 ∈ [0, 1], λ1x⊕(1−λ1)x ∼ {λ1α+(1−λ1)α

′ : (α, α′) ∈
C1}, which gives (α, α̃) ∈ C1 for all α ∈ x. Axiom 2”a also implies that for C2

≡ y× y and all λ2 ∈ [0, 1], λ2y⊕ (1−λ2)y ∼ {λ2β
′+(1−λ2)β : (β′, β) ∈ C2},

which obtains (β̃, β) ∈ C2 for all β ∈ y. The iterative application of Axiom 2”b
(specifically, Definition 1b) implies that for C = {(α, β) : (α, α̃) ∈ C1, (β̃, β) ∈
C2} = x× y and all λ ∈ [0, 1], λx⊕ (1− λ)y ∼ {λα + (1− λ)β : (α, β) ∈ C}
= λx+ (1− λ)y, which concludes the proof. ut
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