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Abstract—An important aspect of human perception is antici-
pation, which we use extensively in our day-to-day activities when
interacting with other humans as well as with our surroundings.
Anticipating which activities will a human do next (and how) can
enable an assistive robot to plan ahead for reactive responses
in human environments. Furthermore, anticipation can even
improve the detection accuracy of past activities. The challenge,
however, is two-fold: We need to capture the rich context for
modeling the activities and object affordances, and we need to
anticipate the distribution over a large space of future human
activities.

In this work, we represent each possible future using an
anticipatory temporal conditional random field (ATCRF) that
models the rich spatial-temporal relations through object af-
fordances. We then consider each ATCRF as a particle and
represent the distribution over the potential futures using a set
of particles. In extensive evaluation on CAD-120 human activity
RGB-D dataset, we first show that anticipation improves the
state-of-the-art detection results. For new subjects (not seen in the
training set), we obtain an activity anticipation accuracy (defined
as whether one of top three predictions actually happened) of
75.4%, 69.2% and 58.1% for an anticipation time of 1, 3 and
10 seconds respectively. Finally, we also use our algorithm on a
robot for performing a few reactive responses.

I. INTRODUCTION

For a personal robot to be able to assist humans, it is impor-

tant for it to be able to detect what a human in currently doing

as well as anticipate what she is going to do next and how.

The former ability is useful for applications such as monitoring

and surveillance, but we need the latter for applications that

require reactive responses (e.g., see Figure 1). In this paper,

our goal is to use anticipation for predicting future activities

as well as improving detection (of past activities).

There has been a significant amount of work in detecting

human activities from 2D RGB videos [37, 31, 29], from

inertial/location sensors [23], and more recently from RGB-D

videos [21, 36, 27]. The primary approach in these works is

to first convert the input sensor stream into a spatio-temporal

representation, and then to infer labels over the inputs. These

works use different types of information, such as human

pose, interaction with objects, object shape and appearance

features. However, these methods can be used only to predict

the labeling of an observed activity and cannot be used to

anticipate what can happen next and how.

Our goal is to enable robots to predict the future activities

as well as the details of how a human is going to perform them

in short-term (e.g., 1-10 seconds). For example, if a robot has

seen a person move his hand to a coffee mug, it is possible

(a) Robot’s RGB-D view. (b) Heatmap of object affordances.

(c) Heatmap of trajectories. (d) Robot opening the door.

Fig. 1: Reactive robot response through anticipation: Robot
observes a person holding an object and walking towards a fridge
(a). It uses our ATCRF to anticipate the object affordances (b), and
trajectories (c). It then performs an anticipatory action of opening the
door (d).

he would move the coffee mug to a few potential places such

as his mouth, to a kitchen sink or just move it to a different

location on the table. If a robot can anticipate this, then it

would rather not start pouring milk into the coffee when the

person is moving his hand towards the mug, thus avoiding

a spill. Such scenarios happen in several other settings, for

example, manufacturing scenarios in future co-robotic settings

(e.g., [8, 28]).

There are three aspects of activities that we need to model.

First, we need to model the activities through a hierarchical

structure in time where an activity is composed of a sequence

of sub-activities [21]. Second, we need to model their inter-

dependencies with objects and their affordances. We model

the object affordances in terms of the relative position of the

object with respect to the human and the environment.1 Third,

we need to anticipate the motion trajectory of the objects and

humans, which tells us how the activity can be performed.

Modeling trajectories not only helps in discriminating the

activities,2 but is also useful for the robot to reactively plan

1For example, a drinkable object is found near the mouth of the person
performing the drinking activity and a placeable object is near a stable surface
in the environment where it is being placed.

2For example, in stirring activity, the target position of the stirrer is
immaterial but the circular trajectory motion is.



motions in the workspace.

For anticipation, we present an anticipatory temporal con-

ditional random field (ATCRF), where we start with modeling

the past with a standard CRF (based on [21]) but augmented

with the trajectories and with nodes/edges representing the

object affordances, sub-activities, and trajectories in the future.

Since there are many possible futures, each ATCRF represents

only one of them. In order to find the most likely ones, we

consider each ATCRF as a particle and propagate them over

time, using the set of particles to represent the distribution

over the future possible activities. One challenge is to use

the discriminative power of the CRFs (where the observations

are continuous and labels are discrete) for also producing

the generative anticipation—labels over sub-activities, affor-

dances, and spatial trajectories.

We evaluate our anticipation approach extensively on CAD-

120 human activity dataset [21], which contains 120 RGB-D

videos of daily human activities, such as microwaving food,

taking medicine, etc. We first show that anticipation improves

the detection of past activities: 85.0% with vs 82.3% with-

out. Our algorithm obtains an activity anticipation accuracy

(defined as whether one of top three predictions actually

happened) of (75.4%,69.2%,58.1%) for predicting (1,3,10)

seconds into the future. Our experiments also show good

performance on anticipating the object affordances and trajec-

tories. For robotic evaluation, we measure how many times the

robot anticipates and performs the correct reactive response.

Videos showing our robotic experiments and code are available

at: http://pr.cs.cornell.edu/anticipation/.

II. OVERVIEW

In this section, we present an overview of our approach.

Our goal is to anticipate what a human will do next given

the current observation of his pose and the surrounding en-

vironment. Since activities happen over a long time horizon,

with each activity being composed of sub-activities involving

different number of objects, we first perform segmentation in

time. Each temporal segment represents one sub-activity, and

we then model the activity using a spatio-temporal graph (a

CRF) shown in Figure 2-left, described in Section III-A.

However, this graph can only model the present observa-

tions. In order to predict the future, we augment the graph with

an ‘anticipated’ temporal segment, with anticipated nodes for

sub-activities, objects (their affordances), and the correspond-

ing spatio-temporal trajectories. We call this augmented graph

an anticipatory temporal CRF (ATCRF), formally defined in

Section III-B.

Our goal is to obtain a distribution over the future possibil-

ities, i.e., a distribution over possible ATCRFs. Motivated by

particle filtering algorithm [25], we represent this distribution

as a set of weighted particles, where each particle is a sampled

ATCRF. Partial observations become available as the sub-

activity is being performed and we use these partial obser-

vations to improve the estimation of the distribution. Section

III-C describes this approach. Since each of our ATCRF

captures strong context over time (which sub-activity follows

another) and space (spatial motion of humans and objects,

and their interactions), each of our particles (i.e., possible

future) is rich in its modeling capacity. Later, our experiments

in Section V will show that this is essential for anticipating

human actions.

Anticipated temporal segments are generated based on the

available object affordances and the current configuration of

the 3D scene. For example, if a person has picked up a

coffee mug, one possible outcome could be drinking from it.

Therefore, for each object, we sample possible locations at

the end of the anticipated sub-activity and several trajectories

based on the selected affordance. The location and trajectory

generation are described in Section III-D and Section III-E

respectively.
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 past time ‘t’  future time ‘d’ 

HH

L3

L2L1
L1

L3

L2

A

O2O1

O3

A

O2

O3

O1

Fig. 2: An ATCRF that models the human poses H, object affordance
labels O, object locations L, and sub-activity labels A, over past time
‘t’, and future time ‘d’. Two temporal segments are shown in this
figure: kth for the recent past, and (k + 1)th for the future. Each
temporal segment has three objects for illustration in the figure.

III. OUR APPROACH

A robot observes a scene containing a human and objects

for time t in the past, and its goal is to anticipate future

possibilities for time d.

However, for the future d frames, we do not even know

the structure of the graph—there may be different number of

objects being interacted with depending on which sub-activity

is performed in the future. Our goal is to compute a distribu-

tion over the possible future states (i.e., sub-activity, human

poses and object locations). We will do so by sampling several

possible graph structures by augmenting the graph in time,

each of which we will call an anticipatory temporal conditional

random field (ATCRF). We first describe an ATCRF below.

A. Modeling Past with an CRF
MRFs/CRFs are a workhorse of machine learning and

have been applied to a variety of applications. Recently,

with RGB-D data they have been applied to scene labeling

[20, 1] and activity detection [21]. Conditioned on a variety

of features as input, the CRFs model rich contextual relations.

Learning and inference is tractable in these methods when the

label space is discrete and small.

Following [21], we discretize time to the frames of the

video3 and group the frames into temporal segments, where

each temporal segment spans a set of contiguous frames

corresponding to a single sub-activity. Therefore, at time ‘t’

3In the following, we will use the number of videos frames as a unit of
time, where 1 unit of time ≈ 71ms (=1/14, for a frame-rate of about 14Hz).



we have observed ‘t’ frames of the activity that are grouped

into ‘k’ temporal segments. For the past t frames, we know

the structure of the CRF but we do not know the labels of

the nodes in the CRF. We represent the graph until time t

as: Gt = (Vt, Et), where Et represents the edges, and Vt

represents the nodes {Ht,Ot,Lt,At}: human pose nodes Ht,

object affordance nodes Ot, object location nodes Lt, and sub-

activity nodes At. Figure 2-left part shows the structure of this

CRF for an activity with three objects.

Our goal is to model the P (Ht,Ot,Lt,At|Φt
H
,Φt

L
), where

Φt
H

and Φt
L

are the observations for the human poses and ob-

ject locations until time t. Using the independencies expressed

over the graph in Figure 2, for a graph Gt, we have:

PGt(Ht
,Ot

,Lt
,At|Φt

H,Φt
L) =

P (Ot
,At|Ht

,Lt)P (Ht
,Lt|Φt

H,Φt
L) (1)

The second term P (Ht,Lt|Φt
H
,Φt

L
) models the distribution

of true human pose and object locations (both are continuous

trajectories) given the observations from the RGB-D Kinect

sensor. We model it using a Gaussian distribution. The first

term P (Ot,At|Ht,Lt) predicts the object affordances and

the sub-activities that are discrete labels—this term further

factorizes following the graph structure as:

P (Ot
,At|Ht

,Lt)∝

object affordance
� �� �
�

oi∈O

ΨO(oi|�oi)

sub-activity
� �� �
�

ai∈A

ΨA(ai|hai
)
�

vi,vj∈E

edge terms
� �� �

ΨE(vi, vj |·)

(2)

Given the continuous state space of H and L, we rely on

[21] for powerful modeling using a discriminative framework

for the above term.

B. ATCRF: Modeling one Possible Future with an augmented

CRF.
We defined the anticipatory temporal conditional random

field as an augmented graph Gt,d = (Vt,d, Et,d), where t is

observed time and d is the future anticipation time. Vt,d =
{Ht,d,Ot,d,Lt,d,At,d} represents the set of nodes in the past

time t as well as in the future time d. Et,d represents the set

of all edges in the graph (see Figure 2.) The observations (not

shown in the figure) are represented as set of features, Φt
H

and

Φt
O

, extracted from the t observed video frames. Note that we

do not have observations for the future frames.

In the augmented graph Gt,d, we have:

PGt,d(H
t,d

,Ot,d
,Lt,d

,At,d|Φt
H,Φt

L) =

P (Ot,d
,At,d|Ht,d

,Lt,d)P (Ht,d
,Lt,d|Φt

H,Φt
L) (3)

The first term is similar to Eq. (2), except over the augmented

graph, and we can still rely on the discriminatively trained

CRF presented in [21]. We model the second term with a

Gaussian distribution.

C. Modeling the Distribution over Future Possibilities with

ATCRFs.
There can be several potential augmented graph structures

Gt,d because of different possibilities in human pose configu-

rations and object locations that determines the neighborhood

graph. Even the number of nodes to be considered in the future
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Fig. 3: Figure showing the process of augmenting the CRF structure
to obtain multiple ATCRFs at time t for an activity with three objects.
The frame level nodes are not shown for the sake of clarity.

changes depending on the sub-activity and the configuration

of the environment.

Let gt,d represent a sample augmented graph structure with

particular values assigned to its node variables. I.e., one sample

may represent that a person and object move in a certain way,

performing a sub-activity with certain object affordances, and

another sample may represent a person moving in a different

way performing a different sub-activity.

Figure 3 shows the process of augmenting CRF structure

corresponding to the seen frames with the sampled anticipa-

tions of the future to produce multiple ATCRF particles at time

t. The frame level nodes are not shown in the figure. The left

portion of the figure shows the nodes corresponding to the k

observed temporal segments. This graph is then augmented

with a set of anticipated nodes for the temporal segment

k + 1, to generate the ATCRF particles at time t. The frame

level nodes of k + 1 temporal segment are instantiated with

anticipated human poses and object locations.

The goal of the robot is now to compute the distribution

over these ATCRFs g
t,d, i.e., given observations until time t,

we would like to estimate the posterior distribution p(gt,d|Φt)
from Eq. (3). However, this is extremely challenging because

the space of ATCRFs is a very large one, so to even represent

the distribution we need an exponential number of labels.

We therefore represent the posterior using a set of weighted

particles as shown in Eq. (4) and choose the weights using

importance sampling as shown in Eq. (5).

p(gt,d|Φt) ≈
S�

s=1

ŵ
s
t δgt,d(s)(g

t,d) (4)

ŵ
s
t ∝

p(gt,d(s)|Φt)

q(gt,d(s)|Φt)
(5)

Here, δx(y) is the Kronecker delta function which takes the

value 1 if x equals y and 0 otherwise, ŵs
t is the weight

of the sample s after observing t frames, and q(gt,d|Φt)
is the proposal distribution. We need to perform importance

sampling because: (a) sampling directly from p(gt,d|Φt) is

not possible because of the form of the distribution in a

discriminative framework, and (b) sampling uniformly would

be quite naive because of the large space of ATCRFs and most

of our samples would entirely miss the likely futures.

We now describe how we sample particles from the proposal



Fig. 4: Affordance heatmaps. The first two images show the reachability affordance heatmap (red signifies most likely reachable locations
on the object) and the last two images show the drinkability affordance heatmap (red signifies the locations where the object is drinkable).

distribution q(gt,d|Φt) and how to evaluate the posterior for

the generated samples.

Sampling. In order to generate a particle ATCRF, we need to

generate possible human pose and object locations for the d

future frames. We write the desired distribution to sample as:

q(gt,d|Φt) = PGt,d(H
t,d

,Ot,d
,Lt,d

,At,d|Φt
H,Φt

L)

= PGt(Ht
,Ot

,Lt
,At|Φt

H,Φt
L)

P (Hd
,Ld|Od

,Ad
,Φt

H,Φt
L, )P (Od

,Ad|Ot
,At

,Φt
H,Φt

L) (6)

We first sample the affordances, one per object in the

scene, and the corresponding sub-activity from the distribution

P (Od,Ad|Φt
H
,Φt

L
). This is discrete distribution generated

from the training data based on the object type (e.g., cup,

bowl, etc.) and object’s current position with respect to the

human in the scene (i.e., in contact with the hand or not).

For example, if a human is holding an object of type ‘cup’

placed on a table, then the affordances drinkable and movable

with their corresponding sub-activities (drinking and moving

respectively) have equal probability, with all others being 0.

Once we have the sampled affordances and sub-activity,

we need to sample the corresponding object locations and

human poses for the d anticipated frames from the distribu-

tion P (Hd,Ld|Od,Ad,Φt
H
,Φt

L
). In order to have meaningful

object locations and human poses we take the following

approach. We sample a set of target locations and motion

trajectory curves based on the sampled affordance, sub-activity

and available observations. We then generate the correspond-

ing object locations and human poses from the sampled end

point and trajectory curve. The details of sampling the target

object location and motion trajectory curves are described in

Section III-D and Section III-E respectively.

Scoring. Once we have the sampled ATCRF particles, we

obtain the weight of each sample s by evaluating the posterior

for the given sample, q(gt,d(s)|Φt), as shown in Eq. (6) and

normalize the weights across the samples.

D. Object Affordance Heatmaps

To represent object affordances we define a potential func-

tion based on how the object is being interacted with, when

the corresponding affordance is active. The kind of interaction

we consider depends on the affordance being considered. For

example, when the active affordance of an object is drinkable,

the object is found near the human’s mouth, the interaction

considered is the relative position of the object with respect to

the human skeleton. In case of the affordance placeable, the

interaction is the relative position of the object with respect to

the environment, i.e., an object is placeable when it is above

a surface that provides stability to the object once placed. The

general form of the potential function for object affordance o

given the observations at time t is:

ψo =
�

i

ψdisti

�

j

ψorij (7)

where ψdisti is the ith distance potential and ψorij is the jth

relative angular potential. We model each distance potential

with a Gaussian distribution and each relative angular potential

with a von Mises distribution. We find the parameters of the

affordance potential functions from the training data using

maximum likelihood estimation. Since the potential function

is a product of the various components, the parameters of

each distribution can be estimated separately. In detail, the

mean and variance of the Gaussian distribution have closed

form solutions, and we numerically estimate the mean and

concentration parameter of the von Mises distribution.

We categorize these functions into three groups depending

on the potentials used: (1) affordances drinkable and reachable

have one distance potential per skeleton joint and one angular

potential with respect to the head orientation, (2) affordances

depending on the target object, such as pourable which de-

pends on a pour-to object, have a distance potential and an

angular potential with respect to the target object’s location, (3)

the rest of the affordances which depend on the environment,

such placeable and openable, have a distance potential with

respect to the closest surface and an angular potential with

respect to the head orientation.

We generate heatmaps for each affordance by scoring the

points in the 3D space using the potential function, and the

value represents the strength of the particular affordance at

that location. Figure 4 shows the heatmaps generated for the

reachable and drinkable affordances. We obtain the future

target locations of an object by weighted sampling of the

scored 3D points.

E. Trajectory Generation

Once a location is sampled from the affordance heatmap,

we generate a set of possible trajectories in which the object

can be moved form its current location to the predicted target

location. We use parametrized cubic equations, in particular

Bézier curves, to generate human hand like motions [5]. We es-

timate the control points of the Bézier curves for the proposal

distribution component from the trajectories in the training

data. Figure 5 shows some of the anticipated trajectories for

moving sub-activity.

Note that the aforementioned methods for the affordance

and trajectory generation are only for the proposal distribution



Fig. 5: Figure showing the heatmap of anticipated trajectories for moving sub-activity and how the trajectories evolve with time.

to sample. The estimated trajectories are finally scored using

our ATCRF model.

IV. RELATED WORK

Activity Detection. In recent years, much effort has been

made to detect human activities from still images as well

as videos. These works use human pose for action recogni-

tion by detecting local pose features [39] and modeling the

spatial conguration between human body parts and objects

[9, 40, 15, 16, 21]. There are also a few recent works which

address the task of early recognition [32, 12]. Recently, with

the availability of inexpensive RGB-D sensors, some works

[41, 27, 36] consider detecting human activities from RGB-D

videos. Koppula el al. [21] proposed a model to jointly

predict sub-activities and object affordances by taking into

account both spatial as well as temporal interactions between

human poses and object interactions. However, all these work

only predict the activities and affordance after the action is

performed. None of these methods can anticipate what is going

to happen next.

Anticipation of Human Actions. Anticipation or forecasting

future human actions has been the focus of few recent works.

Maximum entropy inverse reinforcement learning was used

by [42, 18, 22] to obtain a distribution over possible human

navigation trajectories from visual data, and also used to

model the forthcoming interactions with pedestrians for mobile

robots [42, 22]. However, these works focus only on human

actions which are limited to navigation trajectories. Wang et

al. [38] propose a latent variable model for inferring unknown

human intentions, such as the target ball position in a robot

table tennis scenario, to plan the robot’s response. Dragan et

al. [4] use inverse reinforcement learning to improve assistive

teleoperation by combining user input with predictions of

future goal for grasping an object and the motion trajectory

to reach the goal. In comparison, we address the problem of

anticipation of human actions at a fine-grained level of how

a human interacts with objects in more involved activities

such as microwaving food or taking medicine compared to

the generic navigation activities or task-specific trajectories.

Learning Algorithms. Our work uses probabilistic graphical

models to capture rich context. Such frameworks as HMMs

[13, 26], DBNs [7], CRFs [30, 35], semi-CRFs [33] have

been previously used to model the temporal structure of videos

and text. While these previous works maintain their template

graph structure over time, in our work new graph structures

are possible. More importantly, our goal is anticipation and

we use importance sampling for efficient estimation of the

likelihood of the potential future activities.

Particle filters have been applied with great success to a

variety of state estimation problems including object tracking

[17, 11], mobile robot localization [6, 14], people tracking

[34], etc. However, the worst-case complexity of these meth-

ods grows exponentially in the dimensions of the state space, it

is not clear how particle filters can be applied to arbitrary, high-

dimensional estimation problems. Some approaches use factor-

izations of the state space and apply different representations

for the individual parts of the state space model. For example,

Rao-Blackwellised particle filters sample only the discrete and

non-linear parts of a state estimation problem. The remaining

parts of the states are solved analytically conditioned on the

particles by using Kalman filters [3, 10, 24, 34]. In our work,

each of our particles is a CRF that models rich structure and

lies in a high-dimensional space.

V. EXPERIMENTS

Data. We use CAD-120 dataset [21] for our evaluations.

The dataset has 120 RGB-D videos of four different subjects

performing 10 high-level activities. The data is annotated

with object affordance and sub-activity labels and includes

ground-truth object categories, tracked object bounding boxes

and human skeletons. The set of high-level activities are:

{making cereal, taking medicine, stacking objects, unstacking

objects, microwaving food, picking objects, cleaning objects,

taking food, arranging objects, having a meal}, the set of

sub-activity labels are: {reaching, moving, pouring, eating,

drinking, opening, placing, closing, scrubbing, null} and the

set of affordance labels are: {reachable, movable, pourable,

pourto, containable, drinkable, openable, placeable, closable,

scrubbable, scrubber, stationary}. We use all sub-activity

classes for prediction of observed frames but do not anticipate

null sub-activity.

Baseline Algorithms. We compare our method against the

following baselines: 1) Chance. The anticipated sub-activity

and affordance labels are chosen at random.

2) Nearest Neighbor Exemplar. It first finds an example from

the training data which is the most similar to the activity

observed in the last temporal segment. The sub-activity and

object affordance labels of the frames following the matched

frames from the exemplar are predicted as the anticipations.

To find the exemplar, we perform a nearest neighbor search in

the feature space for the set of frames, using the node features

described in [21].

3) Co-occurrence Method. The transition probabilities for sub-

activities and affordances are computed from the training data.

The observed frames are first labelled using the MRF model

proposed by [21]. The anticipated sub-activity and affordances

for the future frames are predicted based on the transition

probabilities given the inferred labeling of the last frame.

4) ATCRF without {H,L} anticipation (ATCRF-discrete). Our



TABLE I: Anticipation Results of Future Activities and Affordances, computed over 3 seconds in the future (similar trends hold for other
anticipation times).

model
Anticipated Sub-activity Anticipated Object Affordance

micro P/R macro F1-score robot anticipation metric micro P/R marco F1-score robot anticipation metric

chance 10.0 ± 0.1 10.0 ± 0.1 30.0 ± 0.1 8.3 ± 0.1 8.3 ± 0.1 24.9 ± 0.1
Nearest-neighbor 22.0 ± 0.9 10.6 ± 0.6 48.1 ± 0.5 48.3 ± 1.5 17.2 ± 1.0 60.9 ± 1.1
Koppula et al. [21] + co-occurence 28.6 ± 1.8 11.1 ± 0.4 34.6 ± 2.8 55.9 ± 1.7 11.6 ± 0.4 62.0 ± 1.8
ATCRF-discrete 34.3 ± 0.8 12.2 ± 0.2 44.8 ± 1.1 59.5 ± 1.5 12.4 ± 0.3 67.6 ± 1.3
ATCRF 47.7 ± 1.6 37.9 ± 2.6 69.2 ± 2.1 66.1 ± 1.9 36.7 ± 2.3 71.3 ± 1.7

ATCRF model with only augmented nodes for discrete labels

(sub-activities and object affordances).

Evaluation: We follow the same train-test split described in

[21] and train our model on activities performed by three

subjects and test on activities of a new subject. We report

the results obtained by 4-fold cross validation by averaging

across the folds. We consider the following metrics:

1) Labeling Metrics. For detecting and anticipating labels (for

sub-activity and affordances), we compute the overall micro

accuracy (P/R), macro precision, macro recall and macro F1

score. Micro accuracy is the percentage of correctly classified

labels. Macro precision and recall are the averages of precision

and recall respectively for all classes.

2) Robot Anticipation Metric. It is important for a robot to

plan ahead for multiple future activity outcomes. Therefore,

we measure the accuracy of the anticipation task for the top

three predictions of the future. If the actual activity matches

one of the top three predictions, then it counts towards positive.

3) Trajectory Metric. For evaluating the quality of anticipating

trajectories, we compute the modified Hausdorff distance

(MHD) as a physical measure of the distance between the

anticipated object motion trajectories and the true object

trajectory from the test data.4

Table I shows the frame-level metrics for anticipating sub-

activity and object affordance labels for 3 seconds in the future

on the CAD-120 dataset. We use the temporal segmentation

algorithm from [21] for obtaining the graph structure of the

observed past frames for all the methods. ATCRF outperforms

all the baseline algorithms and achieves a significant increase

across all metrics. Improving temporal segmentation further

improves the anticipation performance [19]. We will now

study our results on anticipation in the form of the following

questions:

How does the performance change with the duration

of the future anticipation? Figure 6 shows how the macro

F1 score and the robot anticipation metric changes with the

anticipation time. The average duration of a sub-activity in the

CAD-120 dataset is around 3.6 seconds, therefore, an anticipa-

tion duration of 10 seconds is over two to three sub-activities.

With the increase in anticipation duration, performance of

the others approach that of a random chance baseline, the

performance of our ATCRF declines. It still outperforms other

baselines for all anticipation times.

4The MHD allows for local time warping by finding the best local point
correspondence over a small temporal window. When the temporal window
is zero, the MHD is same as the Euclidean distance between the trajectories.
We normalize the distance by the length of the trajectory in order to compare
performance across trajectories of different lengths. The units of the MHD
are centimeters.
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Fig. 7: Plot showing how macro F1 score depends on observed time
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Fig. 8: Plot showing how the trajectory distance error (MHD) changes
with the progress of the activity for our ATCRF (top particle and local
mean) and other baselines (Kalman Filter velocity model using object
affordance as target, and one without object affordance information).

How does the performance change with the duration

of the past observations? Figure 7 shows how the macro

F1 score changes with the past observation time and future

anticipation time. The algorithm has lower performance when

predicting longer into the future, but this improves as more

observations from the activity become available. Therefore,

context from the past helps in anticipating longer into the

future.

How good are the anticipated trajectories? Since tra-

jectories are continuous variables, we perform two types of

estimation: MAP, where we take the highest scored particle

generated by our model, and MLE where we take the weighted

sum. Figure 8 shows how these distance errors, averaged

over all the moving sub-activities in the dataset, change with

the progress of the sub-activity. Figure 5 shows the sampled

trajectories along with the heatmap corresponding to the

distribution of trajectories. At the beginning of the sub-activity

the anticipations correspond to moving the cup to other places

on the table and near the mouth to drink. As the sub-activity
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TABLE II: Online Detection Results of Past Activities and Affor-
dances.

model
Past Sub-activity Detection Past Object Affordance Detection

micro macro micro macro
P/R Prec. Recall P/R Prec. Recall

chance 10.0 (0.1) 10.0 (0.1) 10.0 (0.1) 8.3 (0.1) 8.3 (0.1) 8.3 (0.1)
Koppula et al. [21] - online 80.3 (1.5) 78.0 (1.3) 68.1 (2.6) 89.6 (0.8) 80.7 (2.8) 67.8 (1.4)
ATCRF-discrete 84.0 (1.3) 72.2 (2.3) 60.7 (2.3) 87.7 (1.0) 67.9 (2.4) 48.9 (2.6)
ATCRF 84.7 (1.4) 80.6 (1.0) 75.6 (2.4) 92.3 (0.7) 84.8 (2.3) 77.1 (1.1)

progresses, depending on the current position of the cup, a

few new target locations become probable, such as moving the

cup on to the lap (such instances are observed in the training

data). These new possibilities tend to increase the distance

measure as can be seen in the plot of Figure 8. However, on

observing more frames, the intent of the human is inferred

more accurately resulting in better anticipated trajectories, for

example in Figure 5-last frame, anticipating only moving to

drink trajectories.

Effect of anticipation on detection of past activities. Table

II shows the detection results of the sub-activities and object

affordances of the past temporal segments, computed in an

online fashion. When we label each past segment, we observe

that segment’s features but not the future. The online metrics

are computed by aggregating performance on the recent past

of three segments. (Koppula et al. [21]’s method was to label

a segment given past, present, as well as the future.) In

this experiment, we assumed ground-truth segmentation and

object tracks for consistent comparison across the methods.

If we instead use an algorithm to segment [21], the overall

performance drops, however similar trends hold. We see that

both the anticipation methods (rows 3-4) improve the detection

results over the one that does not anticipate (row 2). This

shows that anticipating the future can improve present and

past performance on detection.

A. Robotic Experiments
In this section we show how future activity predictions can

help the robot perform appropriate actions in response to what

the human is going to do next. By incorporating such reactive

responses, the robot can better assist humans in tasks which

they are unable to perform as well as work along side the

humans much more efficiently.

We use a PR2 robot to demonstrate the following anticipa-

tory response scenarios:

• Robot is instructed to refill water glasses for people seated

at a table, but when it sees a person reaching a glass to

drink, it waits for him to finish drinking before refilling,

in order to avoid spilling.

• Robot opens the fridge door when a person approaches

the fridge to place something inside the fridge.

PR2 is mounted with a Kinect as its main input sensor to

obtain the RGB-D video stream. We used the OpenRAVE

libraries [2] for programing the robot to perform the pre-

programmed tasks described in the aforementioned scenarios

by incorporating the anticipations generated with our ATCRFs.

Figure 1 and Figure 9 show the snapshots of the robot

observing the human, the anticipated actions and the response

executed by the robot.

In our experiments, on the first scenario, we evaluate the

success rate which is defined as the percentage of times the

robot identifies the correct response. We have a new subject

(not seen in the training data) performing the interaction task

multiple times in addition to other activities which should

not effect the robot’s response, such as reaching for a book,

etc. We considered a total of 10 interaction tasks which

involve four objects including the cup, and 5 of these tasks

were to reach for the cup and drink from it. The robot is

given an instruction to pour water in the cup at four random

time instants during each interaction tasks (40 total pour

instructions). The robot makes a decision whether to execute

the pouring task or not, based on the anticipated activity

and object affordance. For example, if the robot anticipates

a reaching action, where the cup is the reachable object, it

will not perform the pouring action. The robot considers the

three top scored anticipations for taking the decision following

the robot anticipation metric.

We obtain a success rate of 85%, which is the fraction of

times the robot correctly identifies its response (‘pour’ or ‘not

pour’). Out of the 6 failed instances, 3 instances are false-

negatives, i.e., the robot anticipated an interaction with the

cup when no interaction occurred in future. Videos showing

the results of our robotic experiments and code are available

at: http://pr.cs.cornell.edu/anticipation/.

VI. CONCLUSION

In this work, we considered the problem of using anticipa-

tion of future activities so that a robot could perform look-

ahead planning of its reactive responses. We modeled the

human activities and object affordances in the past using a rich

graphical model (CRF), and extended it to include future pos-

sible scenarios. Each possibility was represented as a potential

graph structure and labeling over the graph (which includes

discrete labels as well as human and object trajectories), which

we called ATCRF. We used importance sampling techniques

for estimating and evaluating the most likely future scenarios.

We showed that anticipation can improve performance of



Fig. 9: Robot Anticipatory Response for refilling water task. See Figure 1 for opening fridge door task.

detection of even past activities and affordances. We also

extensively evaluated our algorithm, against baselines, on the

tasks of anticipating activity and affordance labels as well as

the object trajectories in the future.
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