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ANTICIPATING LINEAR STOCHASTIC DIFFERENTIAL

EQUATIONS WITH ADAPTED COEFFICIENTS

HUI-HSIUNG KUO, PUJAN SHRESTHA*, AND SUDIP SINHA

Abstract. Stochastic differential equations with adapted integrands and ini-
tial conditions are well studied within Itô’s theory. However, such a general
theory is not known for corresponding equations with anticipation. We use
examples to illustrate essential ideas of the Ayed–Kuo integral and techniques
for dealing with anticipating stochastic differential equations. We prove the
general form of the solution for a class of linear stochastic differential equa-
tions with adapted coefficients and anticipating initial condition, which in
this case is an analytic function of a Wiener integral. We show that for such
equations, the conditional expectation of the solution is not the same as the
solution of the corresponding stochastic differential equation with the initial
condition as the expectation of the original initial condition. In particular,
we show that there is an extra term in the stochastic differential equation,
and give the exact form of this term.

1. Introduction

Let B(t), where t ∈ [a, b], be a Brownian motion starting at 0 and let {Ft}
be the filtration generated by B(t), that is, Ft = σ{B(s); a ≤ s ≤ t}. In the
framework of Itô’s calculus, a stochastic differential equation

{
dX(t) = α(t,X(t)) dB(t) + β(t,X(t)) dt, t ∈ [a, b],

X(a) = ξ,

with the initial condition ξ being Fa-measurable, is a symbolical representation of
the stochastic integral equation

X(t) = ξ +

∫ t

a
b(s,X(s)) ds+

∫ t

a
σ(s,X(s)) dB(s), t ∈ [a, b],

where
∫ t
a σ(s,X(s)) dB(s) is defined as an Itô integral. In Itô’s framework, we

require both the coefficients b(t, x,ω) and σ(t, x,ω) to be adapted apart from
usual integrability constraints, and and the initial condition ξ to be measurable
with respect to the initial σ-algebra Fa. The question of how the stochastic integral
can be defined when any of these quantities are not adapted (called anticipating)
has been an open question in the field of stochastic analysis for past decades.
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There have been numerous approaches for solving this problem, a few of which are
through the expansion of filtration, white-noise theory, Skorokhod integral, and
numerous others. For a brief overview of these, see [7].

In 2008, Ayed and Kuo[1], gave a new definition of integrating anticipating
stochastic processes. This naturally led to the question of the corresponding sto-
chastic differential equations. The anticipation in a stochastic differential equation
can come from the initial condition or from the coefficients. Let us look at two
simple examples of such stochastic differential equations.

Example 1.1. The anticipation in the stochastic differential equation
{

dZ(t) = Z(t) dB(t), t ∈ [a, b],

Z(a) = B(b),

arises solely from the initial condition since B(b) is not measurable with respect
to Fa.

Example 1.2. The anticipation in the stochastic differential equation
{

dZ(t) = B(b)Z(t) dB(t), t ∈ [a, b],

Z(a) = 1,

comes purely from the coefficient.

The paper is organized as follows. In section 2, we introduce the relevant
notation and the background theory for defining the general integral. This allows
us to assign meaning to anticipating stochastic differential equations. Section 3
contains motivating examples of anticipating stochastic differential equations. In
section 4, we find the general solution of linear stochastic differential equations
with adapted coefficients and anticipating initial conditions. In section 5, we show
a relation between the solution found in section 4 and its conditional expectation.

2. The Ayed–Kuo Stochastic Integral

From here on, we fix an interval [a, b] and assume t ∈ [a, b] unless otherwise
specified. We also fix a Brownian motion B(t) and a filtration {Ft} satisfying the
following conditions:

(i) B(t) is adapted to {Ft}.
(ii) For any t ≤ s, B(s)−B(t) and Ft are independent.

A stochastic process φ(t) is called instantly independent with respect to {Ft} if
for each t ∈ [a, b], the random variable φ(t) and the σ-algebra Ft are independent.

The new stochastic integral of a stochastic process Φ(t) introduced in [1] is
defined in the following three steps.

(1) Suppose f(t) is an Ft-adapted continuous stochastic process and φ(t) be an
continuous stochastic processes that is instantly independent with respect
to Ft. Then the stochastic integral of Φ(t) = f(t)φ(t) is defined by
∫ b

a
f(t)φ(t) dB(t) = lim

‖∆n‖→0

n∑

j=1

f(tj−1)φ(tj)(B(tj)−B(tj−1)),

provided that the limit exists in probability.
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(2) For a process of the form Φ(t) =
∑n

i=1 fi(t)φi(t), the stochastic integral is
defined by

∫ b

a
Φ(t) dB(t) =

n∑

i=1

∫ b

a
fi(t)φi(t) dB(t).

(3) Let Φ(t) be a stochastic process such that there is a sequence (Φn(t))
∞
n=1

of stochastic processes of the form in step 2 satisfying

(a)
∫ b
a |Φn(t)− Φ(t)|2 dt → 0 as n → ∞, and

(b)
∫ b
a Φn(t) dB(t) converges in probability as n → ∞.

Then the stochastic integral of Φ(t) is defined by
∫ b

a
Φ(t) dB(t) = lim

n→∞

∫ b

a
Φn(t) dB(t) in probability.

This integral is well defined, as demonstrated in Lemma 2.1 of [3].

Example 2.1 (Equation (1.6) in [1]). By writing B(1) = B(t) + (B(1) − B(t))
and then following step 1 in the above definition, we obtain

∫ t

0
B(1) dB(s) = B(1)B(t)− t, 0 ≤ t ≤ 1. (2.1)

Now, we look at an extension of Itô’s formula that can also account for instantly
independent processes. First, Let Xt and Y (t) be stochastic processes of the form

Xt = Xa +

∫ t

a
g(s) dB(s) +

∫ t

a
h(s) ds, (2.2)

Y (t) = Y (b) +

∫ b

t
ξ(s) dB(s) +

∫ b

t
η(s) ds, (2.3)

where g(t), h(t) are adapted (so Xt is an Itô process), and ξ(t), η(t) are instantly
independent such that Y (t) is also instantly independent.

Theorem 2.2 (Theorem 3.2 of [3]). Suppose {X(i)
t }ni=1 and {Y (t)

j }mj=1 are stochas-
tic processes of the form given by equations (2.2) and (2.3), respectively. Suppose
θ(t, x1, . . . , xn, y1, . . . , ym) is a real-valued function that is C1 in t and C2 in other

variables. Then the stochastic differential of θ(t,X(1)
t , . . . , X(n)

t , Y (t)
1 , . . . , Y (t)

m ) is
given by

dθ(t,X(1)
t , . . . , X(n)

t , Y (t)
1 , . . . , Y (t)

m )

= θt dt+
n∑

i=1

θxidX
(i)
t +

m∑

j=1

θyjdY
(t)
j

+
1

2

n∑

i,k=1

θxixkdX
(i)
t dX(k)

t − 1

2

m∑

j,l=1

θyjyldY
(t)
j dY (t)

l .

Now, we come to an important class of processes that occur ubiquitously in
solutions of stochastic differential equations.
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Definition 2.3. The exponential process associated with adapted stochastic pro-
cesses α(t) and β(t) is defined as

Eα,β(t) = exp

[∫ t

a
α(s) dB(s) +

∫ t

a

(
β(s)− 1

2
α(s)2

)
ds

]
. (2.4)

If β ≡ 0, then we write

Eα(t) = exp

[∫ t

a
α(s) dB(s)− 1

2

∫ t

a
α(s)2 ds

]
.

Remark 2.4. The exponential process Eα,β(t) is an Itô process satisfying the sto-
chastic differential equation

{
dEα,β(t) = α(t)Eα,β(t) dB(t) + β(t)Eα,β(t) dt, t ∈ [a, b],

Eα,β(a) = 1.
(2.5)

Similarly, the exponential process Eα(t) is an Itô process satisfying the stochastic
differential equation

{
dEα(t) = α(t)Eα(t) dB(t), t ∈ [a, b],

Eα(a) = 1.
(2.6)

The proof of the result follows from a direct application of Itô’s formula.

3. Motivating Examples of Anticipating SDEs

We use examples to demonstrate the non-trivial nature of the extension regard-
less of the origin of the anticipation. These serve as motivations for our main
results. In this section, we fix t ∈ [0, 1].

3.1. Anticipation due to coefficients. In the following examples, we progres-
sively increase the complexity of the diffusion coefficient of the stochastic differ-
ential equation and see its effect on the solution. This will help us to develop
our intuition about the non-trivial nature of the results related to anticipating
coefficients.

Example 3.1. Let α be a constant. The process

Eα(t) = exp

[
αB(t)− 1

2
α2t

]
, t ∈ [0, 1]

is a solution of the stochastic differential equation
{

dEα(t) = αEα(t)dB(t), t ∈ [0, 1],

Eα(0) = 1.

Example 3.2. Suppose α(t) is a deterministic function. The process

Eα(t) = exp

[∫ t

0
α(s) dB(s)− 1

2

∫ t

0
α(s)2 ds

]
, t ∈ [0, 1]

is a solution of the stochastic differential equation
{

dEα(t) = α(t)Eα(t)dB(t), t ∈ [0, 1],

Eα(0) = 1.
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Example 3.3. Consider the adapted coefficient α(t) = B(t). The process

X(t) = exp

[
1

2

(
B(t)2 − t−

∫ t

0
B(s)2 ds

)]
, t ∈ [0, 1]

is a solution of the stochastic differential equation
{

dX(t) = B(t)X(t) dB(t), t ∈ [0, 1],

X(0) = 1.

From the above examples and equation (2.1), one might guess that the process

Z(t) = exp

[∫ t

0
B(1) dB(s)− 1

2

∫ t

0
B(1)2 ds

]

= exp

[
B(1)B(t)− t− 1

2
B(1)2t

]
, t ∈ [0, 1]

is a solution of the stochastic differential equation
{

dZ(t) = B(1)Z(t) dB(t), t ∈ [0, 1],

Z(0) = 1.

But this is not true. In fact, we can apply the generalized Itô formula to derive
the following result.

Theorem 3.4 (Theorem 3.3 of [2]). The stochastic process

Z(t) = exp

[
B(1)B(t)− t− 1

2
B(1)2t

]

is a solution of
{

dZ(t) = B(1)Z(t) dB(t) +B(1)(B(t)− tB(1))Z(t)dt, t ∈ [0, 1],

Z(0) = 1.

Then what is the solution of the following stochastic differential equation?
{

dZ(t) = B(1)Z(t) dB(t), t ∈ [0, 1],

Z(0) = 1.

The answer is given by the following theorem.

Theorem 3.5 (Theorem 3.1 of [2]). The process

Z(t) = exp

[
B(1)

∫ t

0
e−(t−s) dB(s)− 1

4
B2

1(1− e−2t)− t

]
, t ∈ [0, 1]

is a solution of the stochastic differential equation
{

dZ(t) = B(1)Z(t) dB(t), t ∈ [0, 1],

Z(0) = 1.

The above examples demonstrate the non-trivial nature of anticipating coeffi-
cients.
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3.2. Anticipation due to initial condition. We start our discussion on sto-
chastic differential equations with anticipating initial conditions with the following
example.

Example 3.6 (Examples 4.1-3 of [1]).
{
dX(t) = X(t)dB(t), t ∈ [0, 1],

X(0) = x, x ∈ R. (3.1)

It is well known that the solution to (3.1) is

X(t) = xeB(t)− 1
2 t

However, if we take this solution and replace x with B(1) and apply the gen-
eralized Itô formula to the resultant expression, we obtain a different stochastic
differential equation. In particular,

Y (t) = B(1)eB(t)− 1
2 t (3.2)

is a solution of 



dY (t) = Y (t)dB(t) +

1

B(1)
Y (t)dt, t ∈ [0, 1],

Y (0) = B(1).
(3.3)

Here, the initial condition is outside the classical theory of Itô calculus since
B(1) is not F0-measurable. We can use the generalized Itô formula along with the
Picard iteration method to show that Y (t) is indeed the unique solution.

On the other hand, if we replace all the B(1) terms in (3.3) with x ∈ R then
we obtain the following stochastic differential equation





dZ(t) = Z(t)dB(t) +

1

x
Z(t)dt, t ∈ [0, 1],

Z(0) = x, x ∈ R.
with its solution

Z(t) = xeB(t)− 1
2 t+

1
x t

The differences in (3.1) and (3.3) demonstrates that replacing the non antici-
pating term in the solution with an anticipating term yields an extra drift term
in the SDE. Furthermore, by replacing all the anticipating terms in (3.3) with a
real number, we obtained an extra drift factor in (3.2). These examples highlights
some of the differences and interesting patterns between adapted linear stochastic
differential equations and non-adapted ones.

Example 3.7 (Section 3 of [5]). Consider the following motivational example:
{
dX(t) = X(t)dB(t), t ∈ [0, 1],

X(0) = B(1).

Equation (3.1) would suggest that our solution would be (3.2). However, that
is not the case. We have an extra drift term as demonstrated by (3.3). With that
in mind, we “guess” that the solution has the form

X(t) = (B(1)− ξ(t)) eB(t)− 1
2 t
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with ξ being a deterministic function that needs to be determined. Via a simple ap-
plication of the generalized Itô formula to the function θ(t, x, y) = (y− ξ(t))ex− 1

2 t,
we get that

dX(t) = (B(1)− ξ(t))eB(t)− 1
2 t dB(t) +

[
eB(t)− 1

2 t − ξ′(t)eB(t)− 1
2 t
]
dt.

The dt term in the above equation must be zero for X(t) to be a solution.
Therefore, by solving the following ordinary differential equation

{
ξ′(t) = 1 , t ∈ [0, 1],

ξ(0) = 0,

we get our solution

X(t) = (B(1)− t)eB(t)− 1
2 t.

This is the inspiration for the following theorem that provides solutions for a
class of stochastic differential equations with anticipating initial conditions.

Theorem 3.8 (Theorem 5.1 of [8]). Let α(t), h(t) ∈ L2[0, 1], β(t) ∈ L1[0, 1] .
Assume that ψ(t) is a C2 function. Then the unique solution of the stochastic
differential equation






dX(t) = α(t)X(t)dB(t) + β(t)X(t) dt, t ∈ [0, 1],

X(0) = ψ

(∫ 1

0
h(s)dB(s)

)
,

is given by the equation

X(t) = ψ

(∫ 1

0
h(s)dB(s)−

∫ t

0
α(s)h(s)ds

)
Eα,β(t),

where Eα,β(t) is the stochastic process defined in equation (2.4).

Remark 3.9. In Theorem 4.1 of [5], the authors proved a similar result for the
particular case where h(t) ≡ 1 and ψ is a function on R having power series
expansion at t = 0 with infinite radius of convergence. In Theorem 3.8 and in [5],
α(t) is assumed to be deterministic.

Example 3.10 (Example 5.2 of [8]). Consider the stochastic differential equation





dX(t) = X(t)dB(t), t ∈ [0, 1],

X(0) =

∫ 1

0
B(s)ds.

We can use stochastic integration by parts and the results of Theorem 3.8 to obtain
the solution,

X(t) =

(∫ 1

0
B(s)ds− (t− 1

2
t2)

)
eB(t)− 1

2 t.

Thus we have solutions for a class of linear stochastic differential equations with
deterministic coefficients.
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4. Anticipating Stochastic Differential Equations

Motivated by the earlier examples and theorems, we turn to the main result
of this paper. In Theorem 3.8 , we had assumed that α(t) ∈ L2[0, 1] and β(t) ∈
L1[0, 1]. In the following theorem, we generalize that condition to allow both α(t)
and β(t) to be adapted to the filtration generated by the Brownian motion.

Hypothesis 4.1. Assume that α(t), β(t) and h(t), where t ∈ [a, b], have the
following properties:

(1) α(t) is an adapted process with E
(∫ b

a |α(t)|2 dt
)
< ∞,

(2) β(t) is an adapted process with E
(∫ b

a |β(t)| dt
)
< ∞,

(3) h(t) ∈ L2[a, b] is a deterministic function.

Theorem 4.2. Let α(t), β(t), and h(t) satisfy Hypothesis 4.1, and ψ ∈ C2(R).
Then the solution of the stochastic differential equation






dZ(t) = α(t)Z(t) dB(t) + β(t)Z(t) dt, t ∈ [a, b],

Z(0) = ψ
(∫ b

a
h(s) dB(s)

)
,

(4.1)

is given by

Z(t) = ψ
(∫ b

a
h(s) dB(s)−

∫ t

a
h(s)α(s) ds

)
Eα,β(t). (4.2)

Proof. Suppose Z(t) = ψ
( ∫ b

a h(s) dB(s)−Q(t)
)
Eα,β(t). We need to determine the

Itô process Q(t) with Q(a) = 0. In order to apply the generalized Itô formula, we
write

Z(t) = ψ
(∫ t

a
h(s) dB(s)−Q(t) +

∫ b

t
h(s) dB(s)

)
Eα,β(t). (4.3)

We define the instantly independent process Y (t) =
∫ b
t h(s) dB(s) and the fol-

lowing adapted processes

X(1)
t = Eα,β(t), X(2)

t =

∫ t

a
h(s) dB(s)−Q(t).

From the definitions of X(1)
t , X(2)

t , and Y (t) above, we get the differentials

dX(1)
t = α(t)X(1)

t dB(t) + β(t)X(1)
t dt,

dX(2)
t = h(t) dB(t)− dQ(t),

(dX(1)
t )2 = α(t)2(X(1)

t )2 dt,

(dX(2)
t )2 = h(t)2 dt− 2h(t) dB(t)dQ(t) + (dQ(t))2,

dX(1)
t dX(2)

t = h(t)α(t)X(1)
t dt− α(t)X(1)

t dB(t)dQ(t),

dY (t) = −h(t) dB(t),

(dY (t))2 = h(t)2 dt.
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Now, define θ(x1, x2, y) = ψ(x2 + y)x1, so that Z(t) = θ
(
X(1)

t , X(2)
t , Y (t)

)
.

From this, we get the partial derivatives

θx1 = ψ, θx1x1 = 0,

θx2 = ψ′x1, θx2x2 = ψ′′x1,

θy = ψ′x1, θx1x2 = ψ′,

θyy = ψ′′x1.

Applying Theorem 2.2 and putting everything together, we can easily find the
stochastic differential of Z(t):

dZ(t) = dθ(X(1)
t , X(2)

t , Y (t))

= θx1dX
(1)
t + θx2dX

(2)
t

+
1

2
θx1x1(dX

(1)
t )2 +

1

2
θx2x2(dX

(2)
t )2

+ θx1x2(dX
(1)
t )(dX(2)

t )

+ θy dY
(t) − 1

2
θyy(dY

(t))2

= ψ ·
(
α(t)X(1)

t dB(t) + β(t)X(1)
t dt

)
+ ψ′ ·X(1)

t

(!!!!!h(t) dB(t)− dQ(t)
)

+ 0 +
1

2
ψ′′ ·X(1)

t

(
""""h(t)2 dt− 2h(t) dB(t)dQ(t) + (dQ(t))2

)

+ ψ′
(
h(t)α(t)X(1)

t dt− α(t)X(1)
t dB(t)dQ(t)

)

−
#########ψ′ ·X(1)

t h(t) dB(t)−
"""""""""1

2
ψ′′ ·X(1)

t h(t)2 dt

= ψ ·
(
α(t)X(1)

t dB(t) + β(t)X(1)
t dt

)

+ ψ′ ·X(1)
t · (−dQ(t) + h(t)α(t) dt− α(t) dB(t)dQ(t))

+
1

2
ψ′′ ·X(1)

t ·
(
−2h(t) dB(t)dQ(t) + (dQ(t))2

)
.

Therefore, in order for Z(t) to be the solution of equation (4.1), we need to
satisfy the following conditions

dQ(t) = h(t)α(t) dt− α(t) dB(t)dQ(t) (4.4)

(dQ(t))2 = 2h(t) dB(t)dQ(t) (4.5)

From equation (4.4), we see that if dQ(t) contains only a dt term (no dB(t)
term), then dQ(t) dB(t) = 0. On the other hand, if dQ(t) contains a dB(t)
term, then dQ(t) dB(t) = γ(t) dt for some γ(t). Then we have dQ(t) = (h(t) −
γ(t))α(t) dt, which again gives dQ(t) dB(t) = 0. Therefore, in either case, dQ(t) =
h(t)α(t) dt. Note that this also agrees with equation (4.5).

Imposing the initial condition Q(a) = 0, we get that Q(t) =
∫ t
a h(t)α(t) dt.

Putting this in the assumed form of the solution, we get our result. !

Now we look at a specific case of Theorem 4.2 where h(t) ≡ 1.
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Corollary 4.3. Under the same assumptions for α(t), β(t) and ψ as in Theorem
4.2, the solution of the stochastic differential equation






dZ(t) = α(t)Z(t) dB(t) + β(t)Z(t) dt, t ∈ [a, b],

Z(0) = ψ
(
B(b)−B(a)

)
,

(4.6)

is given by

Z(t) = ψ
(
B(b)−B(a)−

∫ t

a
α(s) ds

)
Eα,β(t).

Remark 4.4. This corollary extends Theorem 4.1 of [5] to include adapted coeffi-
cients for the anticipating stochastic differential equation.

We apply these new results to obtain solutions for some examples of stochastic
differential equations with anticipating initial conditions and adapted coefficients.
In the first example, the diffusion and drift terms are adapted while the anticipa-
tion comes from X(0) = B(1). The second example demonstrates a case where
the initial condition is a Riemann integral of a Brownian motion.

Example 4.5. Consider the stochastic differential equation
{
dX(t) = B(t)X(t)dB(t) +X(t) dt, t ∈ [0, 1],

X(0) = B(1).

Here α(t) = B(t), β(t) ≡ 1, h(t) ≡ 1, and ψ(x) = x. Thus, by Corollary 4.3, we
have the solution

X(t) =

(
B(1)−

∫ t

0
B(s) ds

)
exp

[
1

2

(
B2(t) + t−

∫ t

0
B2(s) ds

)]
.

Example 4.6. Consider the stochastic differential equation





dX(t) = B(t)X(t) dB(t), t ∈ [0, 1],

X(0) =

∫ 1

0
B(s) ds.

As in Example 3.10, we use stochastic integration by parts to modify the initial
condition. Namely,

∫ 1

0
B(s) ds =

∫ 1

0
(1− s) dB(s).

Hence with α(t) = B(t) , β(t) ≡ 0, h(t) = 1− t, and ψ(x) = x in Theorem 4.2, we
have the solution

X(t) =

(∫ 1

0
B(s) ds−

∫ t

0
(1− s)B(s) ds

)
exp

[
1

2

(
B(t)2 − t−

∫ t

0
B(s)2 ds

)]
.
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5. Conditional Expectation of Solutions of SDEs

Given a stochastic process Z(t), its conditional expectation plays a key role in
the theory of the generalized stochastic integral [4]. It allows us to project our
anticipating stochastic differential equation into the realm of classical Itô theory.
As such, analysis of X(t) = E (Z(t)|Ft) is of particular interest as it provides
a better lens for understanding the anticipating nature of the process itself. It
is natural to ask which stochastic differential equation would X(t) satisfy? How
different are dX(t) and dZ(t)? With that motivation, we show the following result.

Theorem 5.1. Let α(t), β(t), and h(t) satisfy Hypothesis 4.1, and ψ an analytic
function on the reals. Suppose that Z1(t) and Z2(t) are the solutions of the linear
stochastic differential equations






dZ1(t) = α(t)Z1(t) dB(t) + β(t)Z1(t) dt, t ∈ [a, b],

Z1(a) = ψ
(∫ b

a
h(s) dB(s)

)
,

(5.1)

and 




dZ2(t) = α(t)Z2(t) dB(t) + β(t)Z2(t) dt, t ∈ [a, b],

Z2(a) = ψ′
(∫ b

a
h(s) dB(s)

)
,

(5.2)

respectively. Let X1(t) = E (Z1(t)|Ft) and X2(t) = E (Z2(t)|Ft). Then X1(t)
satisfies the stochastic differential equation





dX1(t) = α(t)X1(t) dB(t) + β(t)X1(t) dt+ h(t)X2(t) dB(t), t ∈ [a, b],

X1(a) = E
[
ψ
(∫ b

a
h(s) dB(s)

)]
.

(5.3)

Remark 5.2. In Theorem 4.1 of [8], the authors proved a similar result for the
special case where α is deterministic, β is adapted, and h ≡ 1.

Proof. By the assumption and Theorem 4.2, the solution processes Z1(t) can be
written as

Z1(t) = Eα,β(t) · ψ
((∫ t

a
h(s) dB(s)−

∫ t

a
h(s)α(s) ds

)
+

∫ b

t
h(s) dB(s)

)

= Eα,β(t) ·
∞∑

k=0

1

k!
ψ(k)

(∫ t

a
h(s) dB(s)−

∫ t

a
h(s)α(s) ds

)(∫ b

t
h(s) dB(s)

)k
.

For brevity, we henceforth denote

ψk(t) = ψ(k)
(∫ t

a
h(s) dB(s)−

∫ t

a
h(s)α(s) ds

)
(5.4)

In this notation, the expression for Z1(t) becomes

Z1(t) = Eα,β(t) ·
∞∑

k=0

1

k!
ψk(t)

(∫ b

t
h(s) dB(s)

)k
. (5.5)
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Note that Eα,β(t) and ψk(t) are adapted for all k. Moreover, since h(t) is

deterministic,
∫ b
t h(s) dB(s) is a Wiener integral, and therefore,

∫ b
t h(s) dB(s) has

the Gaussian distribution with mean 0 and variance

V (t) =

∫ b

t
h(s)2 ds. (5.6)

Therefore, for any k, we have E
[( ∫ b

t h(s) dB(s)
)2k+1

]
= 0 and

E
[(∫ b

t
h(s) dB(s)

)2k
]
= V (t)k(2k − 1)!!,

where !! denotes the double factorial defined as

n!! =

'n
2 (∏

k=0

(n− 2k)

for any natural number n.

Moreover,
∫ b
t h(s) dB(s) is independent of Ft for every t. Using all of these

information, we get

X1(t) = Eα,β(t) ·
∞∑

k=0

1

(2k)!
ψ2k(t) E

[(∫ b

t
h(s) dB(s)

)2k
]

= Eα,β(t) ·
∞∑

k=0

1

(2k)!
ψ2k(t)V (t)k(2k − 1)!!

= Eα,β(t) ·
∞∑

k=0

1

(2k)!!
ψ2k(t)V (t)k, (5.7)

and similarly,

X2(t) = Eα,β(t) ·
∞∑

k=0

1

(2k)!!
ψ2k+1(t)V (t)k, (5.8)

Now we look at the differentials. From equations (5.4) and (5.6), we get

d
(
V (t)k

)
= kV (t)k−1 (−h(t)2 dt),

and

dψ2k(t) = ψ2k+1(t)(h(t) dB(t)− h(t)α(t) dt) +
1

2
ψ2k+2(t)(h(t)

2 dt)

= ψ2k+1(t)h(t) dB(t) +
(1
2
ψ2k+2(t)h(t)

2 − ψ2k+1(t)h(t)α(t)
)
dt.



ANTICIPATING SDES 13

Using the expressions for d
(
V (t)k

)
and dψ2k(t), and Remark 2.4, we get

d
(
Eα,β(t)ψ2k(t)V (t)k

)

= ψ2k(t)V (t)k dEα,β(t) + Eα,β(t)V (t)k dψ2k(t) + Eα,β(t)ψ2k(t) dV (t)k

+ Eα,β(t) dψ2k(t) · dV (t)k + ψ2k(t) dEα,β(t) · dV (t)k + V (t)k dEα,β(t) · dψ2k(t)

= ψ2k(t)V (t)k
(
α(t)Eα,β(t) dB(t) + β(t)Eα,β(t) dt

)

+ Eα,β(t)V (t)k
[
ψ2k+1(t)h(t) dB(t) +

(1
2
ψ2k+2(t)h(t)

2 −$$$$$$$$
ψ2k+1(t)h(t)α(t)

)
dt
]

+ Eα,β(t)ψ2k(t)
(
−kV (t)k−1h(t)2 dt

)

+ 0 + 0 + V (t)k
(

$$$$$$$$$$$
Eα,β(t)ψ2k+1(t)α(t)h(t)

)
dt

= Eα,β(t)V (t)k (ψ2k(t)α(t) + ψ2k+1(t)h(t)) dB(t)

+ Eα,β(t)V (t)k−1
(
ψ2k(t)V (t)β(t) +

1

2
ψ2k+2(t)V (t)h(t)2 − kψ2k(t)h(t)

2
)
dt.

At this point, we note that
∞∑

k=0

1

(2k)!!
kψ2k(t) =

∞∑

k=1

1

(2k)(2k − 2)!!
kψ2k(t)

=
1

2

∞∑

k−1=0

1

(2(k − 1))!!
ψ2(k−1)+2(t)

=
1

2

∞∑

k=0

1

(2k)!!
ψ2k+2(t). (5.9)

Now, since X1(t) =
∑∞

k=0
1

(2k)!!Eα,β(t)ψ2k(t)V (t)k (see equation (5.7)), we get

dX1(t) =
∞∑

k=0

1

(2k)!!
d
(
Eα,β(t)ψ2k(t)V (t)k

)

=
∞∑

k=0

1

(2k)!!
Eα,β(t)V (t)kψ2k(t)α(t) dB(t)

+
∞∑

k=0

1

(2k)!!
Eα,β(t)V (t)kψ2k+1(t)h(t) dB(t)

+
∞∑

k=0

1

(2k)!!
Eα,β(t)V (t)kψ2k(t)β(t) dt

+
$$$$$$$$$$$$$$$$$$∞∑

k=0

1

(2k)!!

1

2
Eα,β(t)V (t)kψ2k+2(t)h(t)

2 dt

−
$$$$$$$$$$$$$$$$$$∞∑

k=0

1

(2k)!!
kEα,β(t)V (t)k−1ψ2k(t)h(t)

2 dt

= α(t)X1(t) dB(t) + h(t)X2(t) dB(t) + β(t)X1(t) dB(t),
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where, in the second step, we used the result of equation (5.9). This completes
the proof of the theorem. !

The presence of the extra term in the conditional stochastic differential equation
in (5.3) poses an interesting question. Note that the stochastic differential equation
for X1(t) is defined via X2(t). However, X2(t) is defined in equation (5.8) as an
infinite series and a closed form is not guaranteed. It is important to note that
X2(t) arose from taking the first derivative of ψ as the initial condition. Similarly,
we can use the second derivative of ψ as the initial condition to arrive at X3(t).
Then, the results of Theorem 5.1 would provide the link between dX2(t) to dX3(t).
This way, we can form an infinite chain by using the infinite derivatives of the
analytic function ψ as initial conditions. However, there is again no guarantee of
a closed form. Nevertheless, since we know that the derivative of the exponential
function is itself, we have the following example.

Example 5.3. Let α(t), β(t), and h(t) satisfy Hypothesis 4.1, and let ψ(x) = ex.
In this case, ψ ≡ ψ′, so Z1(t) ≡ Z2(t). Consequently, X1(t) = X2(t), which we
call X(t) for convenience. Then by Theorem 5.1,

X(t) = Eα,β(t) exp
(∫ t

a
h(s) dB(s)−

∫ t

a
h(s)α(s) ds

)
, t ∈ [a, b], (5.10)

and X(t) satisfies the stochastic differential equation
{
dX(t) = (α(t) + h(t))X(t) dB(t) + β(t)X(t) dt,

X(a) = 1.
(5.11)

In general, the absence of a closed form does not pose significant problems.

Recall that the scaled Hermite polynomials
{

1√
n!ρnHn(x; ρ)

}
form an orthonormal

basis for the space L2(R, γ), where γ is the Gaussian measure with mean 0 and
variance ρ. Therefore, if we are able to arrive at a closed form reformulation
of Theorem 5.1 for Hermite polynomials, we can use this to state the result for
conditional expectation of the solution when the initial condition is any L2(R, γ)-
function of a Wiener integral. In what follows, we derive such a result.

Recall that the Hermite polynomial of degree n with parameter ρ defined by

Hn(x; ρ) = (−ρ)ne
x2

2ρ Dn
xe

− x2

2ρ ,

where Dx is the differentiation operator with respect to the variable x. From page
334 of [6], we state the following identities:

DxHn(x; ρ) = nHn−1(x; ρ) (5.12)

DρHn(x; ρ) = −1

2
D2

xHn(x; ρ) (5.13)

Hn(x+ y; ρ) =
n∑

k=0

(
n

k

)
Hn−k(x; ρ)y

k (5.14)

We use these facts to prove the following lemma.
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Lemma 5.4. The stochastic process X(t) = Hn

( ∫ t
a h(s) dB(s);

∫ t
a h(s)2 ds

)
with

h(t) ∈ L2[a, b] is a martingale with respect to the filtration generated by the Brow-
nian motion B(t) and

dX(t) = nHn−1

(∫ t

a
h(s) dB(s);

∫ t

a
h(s)2 ds

)
h(t) dB(t) (5.15)

Proof. Here x =
∫ t
a h(s) dB(s) and ρ =

∫ t
a h(s)2 ds. So we have dx = h(t) dB(t)

and dρ = h(t)2 dt, and (dx)2 = dρ. Using Itô’s formula, we get

dX(t) = DxHn(x; ρ)dx+
"""""""""1

2
D2

xHn(x; ρ)(dx)
2 +$$$$$$$

DρHn(x; ρ)dρ

= nHn−1

(∫ t

a
h(s) dB(s);

∫ t

a
h(s)2 ds

)
h(t) dB(t),

where we used equation (5.13) for the cancellation and (5.12) to get the final
term. !

This leads to the following result.

Theorem 5.5. Let α(t), β(t), and h(t) satisfy Hypothesis 4.1. For a fixed n ≥ 1,
suppose Z(t) is the solution of the linear stochastic differential equation






dZ(t) = α(t)Z(t) dB(t) + β(t)Z(t) dt, t ∈ [a, b],

Z(a) = Hn

(∫ b

a
h(s) dB(s);

∫ b

a
h(s)2 ds

)
.

(5.16)

Then X(t) = E (Z(t)|Ft) is given by

X(t) = Hn

(∫ t

a
h(s) dB(s)−

∫ t

a
h(s)α(s) ds;

∫ t

a
h(s)2 ds

)
Eα,β(t), t ∈ [a, b].

(5.17)
Moreover, X(t) satisfies the following stochastic differential equation






dX(t) = α(t)X(t) dB(t) + β(t)X(t) dt

+ nHn−1

(∫ t

a
h(s) dB(s)−

∫ t

a
h(s)α(s) ds;

∫ t

a
h(s)2 ds

)
Eα,β(t)h(t) dB(t)

X(a) = 0.
(5.18)

Remark 5.6. For any x and ρ, we have H0(x; ρ) = 1. Hence the stochastic differ-
ential equation (5.16) is identically equation (2.5).

Proof. We first prove equation (5.17). Using Theorem 4.2 and equation (5.14), we
can write
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Z(t) = Eα,β(t)Hn

(∫ b

a
h(s) dB(s)−

∫ t

a
h(s)α(s) ds;

∫ b

a
h(s)2 ds

)

= Eα,β(t)
n∑

k=0

(
n

k

)
Hn−k

(∫ b

a
h(s) dB(s);

∫ b

a
h(s)2 ds

)(
−
∫ t

a
h(s)α(s) ds

)k

= Eα,β(t)
n∑

k=0

(
n

k

)
Jn−k(b)

(
−
∫ t

a
h(s)α(s) ds

)k
,

where we used the notation

Jn(t) = Hn

(∫ t

a
h(s) dB(s);

∫ t

a
h(s)2 ds

)
. (5.19)

Using Lemma 5.4, we get E (Jn−k(b)|Ft) = Jn−k(t). Taking the conditional ex-
pectation with the knowledge that Eα,β(t) is adapted and that stochastic integrals
of adapted processes are adapted,

X(t) = Eα,β(t)
n∑

k=0

(
n

k

)
E (Jn−k(b)|Ft)

(
−
∫ t

a
h(s)α(s) ds

)k

= Eα,β(t)
n∑

k=0

(
n

k

)
Jn−k(t)

(
−
∫ t

a
h(s)α(s) ds

)k

= Eα,β(t)Hn

(∫ t

a
h(s) dB(s)−

∫ t

a
h(s)α(s) ds;

∫ t

a
h(s)2 ds

)
,

which proves equation (5.17).
Since Hn(0; 0) = 0, we see that X(a) = 0. Using Itô’s formula and equation

(5.15),

dHn = dHn

(∫ t

a
h(s) dB(s)−

∫ t

a
h(s)α(s) ds;

∫ t

a
h(s)2 ds

)

= DxHn · (h(t) dB(t)− h(t)α(t) dt)

+
"""""""""1

2
D2

xHn · (h(t)2 dt) +$$$$$$$$
DρHn · (h(t)2 dt)

= nHn−1 · h(t)(dB(t)− α(t) dt).

Finally, using equation (5.17), we get

dX(t) = Hn Eα,β(t) + Eα,β(t) dHn + dEα,β(t) · dHn

= HnEα,β(t)(α(t) dB(t) + β(t) dt)

+ Eα,β(t)nHn−1 · h(t)(dB(t)−%%α(t) dt) +$$$$$$$$$$
Eα,β(t)α(t)nHn−1h(t) dt.

= α(t)X(t) dB(t) + β(t)X(t) dt+ nHn−1h(t)Eα,β(t) dB(t),

which gives us equation (5.18). !
In Equation (5.18), we specify an explicit form of the extra term in the stochastic

differential equation for the conditioned process X(t). We use this result in the
following examples.
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Example 5.7. Consider the stochastic differential equation
{
dZ(t) = B(t)Z(t)dB(t), t ∈ [0, 1],

Z(0) = B(1).

Here α(t) = B(t), β(t) ≡ 0, h ≡ 1, and B(1) = H1(B(1); 1). From Theorem 5.5,

X(t) = E (Z(t)|Ft) =

(
B(t)−

∫ t

0
B(s)ds

)
exp

[
1

2

(
B(t)2 − t−

∫ t

0
B(s)2 ds

)]

and X(t) satisfies the following stochastic differential equation




dX(t) =

{
B(t)X(t) + exp

[
1

2

(
B(t)2 − t−

∫ t

0
B(s)2 ds

)]}
dB(t), t ∈ [0, 1],

X(0) = 0.

Example 5.8. Consider the stochastic differential equation
{
dZ(t) = B(t)Z(t)dB(t), t ∈ [0, 1],

Z(0) = B(1)2 − 1.

From Theorem 5.5,

X(t) =

[(
B(t)−

∫ t

0
B(s)ds

)2

− t

]
exp

[
1

2

(
B(t)2 − t−

∫ t

0
B(s)2 ds

)]
,

and for t ∈ [0, 1], X(t) satisfies the following stochastic differential equation.




dX(t) =

{
B(t)X(t) + 2 exp

[
1

2

(
B(t)2 − t−

∫ t

0
B(s)2 ds

)]}
dB(t),

X(0) = 0.
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