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is paper is concerned with anticontrol of chaos for a class of delay di�erence equations via the feedback control technique. 
e
controlled system is �rst reformulated into a high-dimensional discrete dynamical system. 
en, a chaoti�cation theorem based
on the heteroclinic cycles connecting repellers for maps is established.
e controlled system is proved to be chaotic in the sense of
both Devaney and Li-Yorke. An illustrative example is provided with computer simulations.

1. Introduction

Anticontrol of chaos (or called chaoti�cation) is a process
thatmakes a nonchaotic system chaotic or enhances a chaotic
system to produce a stronger or di�erent type of chaos. In
recent years, it has been found that chaos can actually be use-
ful under some circumstances, for example, in human brain
analysis [1, 2], heartbeat regulation [3, 4], encryption [5], dig-
ital communications [6], and so forth. So, sometimes it is
useful and even important to make a system chaotic or create
new types of chaos. 
is has attracted increasing interest in
research on chaoti�cation of dynamical systems due to the
great potential of chaos in many nontraditional applications.

In the pursuit of chaotifying discrete dynamical systems,
a simple yet mathematically rigorous chaoti�cation method
was �rst developed by Chen and Lai [7–9] from a feedback
control approach. A�er that, many chaoti�cation schemes
appeared for discrete dynamical systems based on the feed-
back control approach.
e reader is referred to Chen and Shi
[10] and Wang and Chen [11] for a survey of chaoti�cation of
discrete dynamical systems, as well as some references cited
therein.

It is well known that the time delay appears in many real-
istic systems with feedback in science and engineering.
Meanwhile, it has been shown that introducing delays to an
undelayed system can be bene�cial, especially for chaotic
systems. 
is is the delayed feedback control method, which
is widely used in chaos control. For continuous-time control

systems, we refer to [12] and the references therein. In [12],
the authors developed a uni�ed computational approach for
solving optimal state-delay control problems and proved that
the approach was very e�ective for parameter identi�cation
and delayed feedback control. For discrete-time control sys-
tems, we refer to [13] and the references therein. In [13], the
authors obtained the necessary and su�cient conditions for
stabilizability of discrete-time systems via delayed feedback
control.

To the best of our knowledge, there are few results on
chaoti�cation of delay di�erence equations. Motivated by the
delayed feedback control method, we studied the chaoti�ca-
tion problem for a class of delay di�erence equations with at
least two �xed points. Since the sawtooth function and the
sine function have some favourable properties, some ofwhich
are similar, they are o�en used as controllers; see [10, 11, 14–
16] and so forth. Particularly, we succeeded in using the sine
function as a controller to chaotify linear delay di�erence
equations in [16]. 
is motivates us to use the sine function
as the controller and employ a feedback control approach to
study the chaoti�cation problem for a class of delay di�erence
equations. It is proved that the controlled system is chaotic
in the sense of both Devaney and Li-Yorke, by applying the
result of heteroclinic cycles connecting repellers; see [17] for
the result and some references therein.


e rest of the paper is organized as follows. In Section 2,
the chaoti�cation problem under investigation is described,
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and some concepts, lemmas, and reformulation of the con-
trolled system are introduced. In Section 3, the chaoti�cation
problem is studied and a chaoti�cation scheme is established.
An example is provided to illustrate the theoretical result
with computer simulations in Section 4. Finally, Section 5
concludes the paper.

2. Preliminaries

In this section, we describe the chaoti�cation problem, give a
reformulation of the delay di�erence equation, and introduce
some fundamental concepts and lemmas, which will be used
in the next section.

2.1. Description of Chaoti�cation Problem. In this paper, we
consider chaoti�cation of the following delay di�erence equa-
tion: � (� + 1) = � (� (� − �) , � (�)) , � ≥ 0, (1)

where � ≥ 1 is a �xed integer and � : � ⊂ R2 → R is a map.
Equation (1) can be viewed as a discrete analogue of many
one-dimensional delay di�erential equations by using the for-
ward Euler scheme, such as the well-known Mackey-Glass
equation �̇ (�) = −�� (�) + 
 (� (� − �)) , (2)

where � > 0, � > 0 is the delay, and 
 is a one-dimensional
nonlinear function. Equation (2) is a prototype for a retarded
functional di�erential equation which has many applications
in sciences. Special cases of (2) or its discretization have been
studied by many authors; for instance, see [18–22] and the
references therein.

From the above discussion, we see that the delay di�er-
ence equation (1) is indeed very general. 
ere exist many
papers which are concerned with the existence of chaotic
behavior for special forms of functions �. For example, see
[21, 22] and references therein.However, (1) cannot be chaotic
for a more general class of functions �. 
e object of this
paper is to design a simple control input sequence {V(�)} such
that the output of the controlled system� (� + 1) = � (� (� − �) , � (�)) + V (�) , � ≥ 0, (3)

exhibits chaos in the sense of both Devaney and Li-Yorke
for a more general class of functions �. 
e controller to be
designed in this paper is in the form of

V (�) = � sin (�� (� − �)) , (4)

where � and � are two undetermined positive parameters.

For convenience, de�ne 
(�, �) := �(�, �) + � sin(��)
throughout the rest of the paper. Let ��(�, �) and ��(�, �)
denote the �rst-order partial derivatives of � with respect to
the �rst and the second variables at the point (�, �), respec-
tively. In the following, by ��(�) and ��(�) denote the open
and closed balls of radius � centered at �.

2.2. Reformulation. Here, we reformulate (1) and (3) into two
special high-dimensional discrete dynamical systems. 
e
following transformmethod is used by many researchers; for
example, see [16, 21] and some references therein.

By setting�� (�) := � (� + � − � − 1) , 1 ≤ � ≤ � + 1, � ≥ 0,
(5)

equation (1) and the controlled system (3) with controller (4)
can be written as the following � + 1-dimensional discrete

systems on R
�+1: � (� + 1) = � (� (�)) , (6)� (� + 1) = � (� (�)) , (7)

respectively, where � = (�1, �2, . . . , ��+1)� ∈ R
�+1, and the

maps �, � : R�+1 → R
�+1 are given by

�(
(
�1 (�)�2 (�)

...�� (�)��+1 (�)
)
)
=(
(

�2 (�)�3 (�)
...��+1 (�)� (�1 (�) , ��+1 (�))

)
)
,

�(
(
�1 (�)�2 (�)

...�� (�)��+1 (�)
)
)

=(
(

�2 (�)�3 (�)
...��+1 (�)� (�1 (�) , ��+1 (�)) + � sin (��1 (�))

)
)
.

(8)


e map � is called the map induced by 
. System (7) is

called the system induced by (3) in the Euclidean space R�+1.
It is evident that a solution {�(� − �), . . . , �(�)}∞	=1 of (3)
with an initial condition {�(−�), . . . , �(0)} corresponds to
a solution {�(�)}∞	=1 of system (7) with an initial condition�(0) = (�1(0), . . . , ��+1(0))� ∈ R�+1. We say that the solution{�(�)}∞	=1 of system (7) is induced by the solution {�(� − �),. . . , �(�)}∞	=1 of (3). 
erefore, we can investigate the dynam-
ical behavior of system (3) by investigating that of its induced

system (7) inR�+1.
ere is the same conclusion between sys-
tems (6) and (1).
e idea in the above de�nitions ismotivated
by [21], where the authors say that the induced system and the
original system are equivalent.

2.3. Some Basic Concepts and Lemmas. Since Li and Yorke
[23] �rst introduced a precise mathematical de�nition of
chaos, there have been several di�erent de�nitions of chaos,
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some stronger and some weaker, depending on the require-
ments in di�erent problems; see [24–27] and so forth. For
convenience, we list two de�nitions of chaos in the sense of
Li-Yorke and Devaney, which are used in this paper.

De�nition 1. Let (!, ") be a metric space, � : ! → ! a map,
and # a set of ! with at least two distinct points. 
en # is
called a scrambled set of� if for any two distinct points �, � ∈#,

(i) lim inf	→∞"(�	(�), �	(�)) = 0;
(ii) lim sup	→∞"(�	(�), �	(�)) > 0.


emap� is said to be chaotic in the sense of Li-Yorke if there
exists an uncountable scrambled set # of �.
Remark 2. 
ere are three conditions in the original char-
acterization of chaos in Li-Yorke’s theorem [23]. Besides
conditions (i) and (ii), the third one is that, for all � ∈ # and
for all periodic points $ of �,

lim sup
	→∞
" (�	 (�) , �	 ($)) > 0. (9)

But conditions (i) and (ii) together imply that the scrambled
set # contains at most one point � that does not satisfy the
above condition. Hence, the third condition is not essential
and can be removed.

De�nition 3 (see [24]). Let (!, ") be a metric space. A map� : % ⊂ ! → % is said to be chaotic on% in the sense ofDev-
aney if

(i) the set of the periodic points of � is dense in %;
(ii) � is topologically transitive in %;
(iii) � has sensitive dependence on initial conditions in%.

Remark 4. By the result of Banks et al. [28], conditions (i)
and (ii) together imply condition (iii) if � is continuous in %.
Consequently, condition (iii) is redundant in the above def-
inition if � is continuous in %. It has been proved in [29]
that, under some conditions, chaos in the sense of Devaney
is stronger than that in the sense of Li-Yorke.

For convenience, some de�nitions of relevant concepts
given in [30] are listed below.

De�nition 5 (see [30, De�nitions 2.1 and 2.4]). Let (!, ") be a
metric space and � : ! → ! a map. A point � ∈ ! is called
an expanding �xed point (or a repeller) of� in��(�) for some
constant � > 0, if �(�) = � and there exists a constant & > 1
such that" (� (�) , � (�)) ≥ &" (�, �) ∀�, � ∈ �� (�) . (10)


e constant& is called an expanding coe�cient of� in��(�).
Furthermore, � is called a regular expanding �xed point of �
in ��(�) if � is an interior point of �(��(�)). Otherwise, � is
called a singular expanding �xed point of � in ��(�).

Now, we introduce some relative concepts for system (3),
which are motivated by [15, De�nitions 5.1 and 5.2].
ere are
identical concepts for system (1).

De�nition 6. Consider the following.

(i) A point � ∈ R
�+1 is called an *-periodic point of

system (3) if � ∈ R
�+1 is an *-periodic point of its

induced system (7); that is, ��(�) = �, ��(�) ̸= �, and1 ≤ � ≤ * − 1. In the special case of* = 1, � is called
a �xed point or a steady state of system (3).

(ii) 
e concepts of density of periodic points, topological
transitivity, sensitive dependence on initial condi-
tions, and the invariant set for system (3) are de�ned

similarly to those for its induced system (7) in R
�+1.

(iii) System (3) is said to be chaotic in the sense ofDevaney

(or Li-Yorke) on % ⊂ R
�+1 if its induced system (7)

is chaotic in the sense of Devaney (or Li-Yorke) on% ⊂ R�+1.

e following two lemmaswill be used in the next section.

Lemma 7. Assume that the map� in (1) is continuously di
er-
entiable in a neighborhood of (0, 0) with �(0, 0) = 0 and satis-
�es ////�� (0, 0)//// − /////�� (0, 0)///// > 1; (11)

then the �xed point 2 := (0, . . . , 0)� ∈ R�+1 of system (6) is a

regular expanding �xed point in some norm in R
�+1.

Proof. It follows from �(0, 0) = 0 that 2 is a �xed point of
system (6). Since � is continuously di�erentiable in a neigh-
borhood of (0, 0), � is continuously di�erentiable in some
neighborhood of 2. 
e Jacobian matrix of map � in system
(6) at 2 is
�� (2) = ( 0 1 0 ⋅ ⋅ ⋅ 00 0 1 ⋅ ⋅ ⋅ 0⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅0 0 0 ⋅ ⋅ ⋅ 1��(0, 0) 0 0 ⋅ ⋅ ⋅ ��(0, 0))(�+1)×(�+1),

(12)

and its characteristic equation is&�+1 − �� (0, 0) &� − �� (0, 0) = 0. (13)

From |��(0, 0)|−|��(0, 0)| > 1, we can show that all the eigen-
values of ��(2) have absolute values larger than 1. Other-
wise, suppose that there exists an eigenvalue&0 of��(2)with|&0| ≤ 1; then we get the following inequality:1 + /////�� (0, 0)///// ≥ /////&�+10 − �� (0, 0) &�0/////= ////�� (0, 0)//// > 1 + /////�� (0, 0)///// , (14)

which is a contradiction. 
en it follows from [31, 
eorem
4.3] that there exist a positive constant �∗ and a norm ‖ ⋅ ‖∗ in
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R
�+1 such that � is continuously di�erentiable in ��∗(2) and2 is an expanding �xed point of� in��∗(2) in the norm ‖ ⋅ ‖∗;

that is,7777� (�) − � (�)7777∗ ≥ �7777� − �7777∗, ∀�, � ∈ ��∗ (2) , (15)

where � > 1 is an expanding coe�cient of � in ��∗(2).
Further, it follows from [30, Lemma 2.2] that 2 is a regular

expanding �xed point of system (6) in the norm ‖ ⋅ ‖∗ inR�+1.

is completes the proof.

Since the result in the following lemma is related to
the one-sided symbolic dynamical system (∑+2 , 9), we brie�y
recall some results of it for convenience. Let

+∑
2
:= {@ = (@0, @1, @2, . . .) : @� = 0 or 1} (16)

with the distance B (@, �) := ∞∑

=0

////@
 − �
////2
 , (17)

where @ = (@0, @1, @2, . . .) and � = (�0, �1, �2, . . .). 
en(∑+2 , B) is a complete metric space and a Cantor set. 
e shi�

map 9 : ∑+2 → ∑+2 de�ned by 9((@0, @1, @2, . . .)) =(@1, @2, . . .) is continuous. 
e dynamical system de�ned by9 is called a one-sided symbolic dynamical system. It has
plentiful dynamical behaviors; we refer to [24, 26] for details.
Particularly, it is chaotic in the sense of both Devaney and Li-
Yorke and has a positive topological entropy.

Lemma 8 (see [17, 
eorem 4.3 and Corollary 4.2]). Let a
map � : R	 → R

	 have � (≥2) di
erent �xed points �1, . . . ,�� ∈ R	. Assume that

(i) for each D, 1 ≤ D ≤ �, �
 is an expanding �xed point of �
in some norm ‖ ⋅ ‖
;

(ii) � has a �-heteroclinic cycle connecting �xed points�1, . . . , �� and is continuously di
erentiable in some
neighborhood of each point �0 on the cycle satisfying
det��(�0) ̸= 0.

�en for each D, 1 ≤ D ≤ �, and for each neighborhood E
 of �
,
there exist a positive integer �
 and a Cantor set Λ 
 ⊂ E
 such
that �	� : Λ 
 → Λ 
 is topologically conjugate to the one-sided
symbolic dynamical system9 : ∑+2 → ∑+2 . Consequently, there
exists a compact and perfect invariant set�
 = ⋃	�−1�=0 ��(Λ 
) ⊂
R
	, containing the Cantor set Λ 
, such that � is chaotic on �


in the sense of Devaney as well as in the sense of Li-Yorke.

Remark 9. Under the conditions in Lemma 8, there exists a
positive integer$, such that�� has a regular and nondegener-
ate �-heteroclinic cycle connecting repellers �1, . . . , �� in the
Euclidean norm ‖⋅‖.
erefore, Lemma 8 can be brie�y stated
as the following: “a regular and nondegenerate heteroclinic
cycle connecting repellers in R

	 implies chaos in the sense of
both Devaney and Li-Yorke.” We refer to [17] for details.

3. A Chaotification Scheme

In this section, a chaoti�cation scheme for the controlled
system (3) with controller (4) is established for the case
that the original system (1) has at least two �xed points.
Here, we only need that the map � of the original system is
continuously di�erentiable in a region containing two �xed
points. In the case that the �xed points are more than two,
if two of them satisfy conditions in the following theorem,
then we can choose the two �xed points to establish a
chaoti�cation scheme by using Lemma 8 for � = 2. If none
of the two �xed points is the origin 2, then we can choose
a transformation of coordinates such that one �xed point
becomes the origin 2 in a new coordinate system.
erefore,
without loss of generality, we only discuss the case that the

original system (1) has two �xed points 2 = (0, . . . , 0)� andH := (�∗, . . . , �∗)� in R
�+1.

�eorem 10. Consider the controlled system (3) with control-
ler (4). Assume that

(i) � is continuously di
erentiable in [−�, �]2 for some � >0 with �(0, 0) = 0, which implies that there exist pos-
itive constants I and J such that for any (�, �) ∈[−�, �]2////� (�, �)//// ≤ I, ////�� (�, �)//// ≤ J, /////�� (�, �)///// ≤ J;

(18)

(ii) there exists a point �∗ ∈ (−�, �) with �∗ ̸= 0 such that�(�∗, �∗) = �∗.
�en there exist two positive constants �0 and �0 satisfying�0 > 2 (I + ////�∗////) , �0 = 2*0K|�∗| > 1 + 2J�0 , (19)

where*0 is some positive integer, such that, for any � > �0 and� = �0, the controlled system (3) with controller (4) is chaotic
in the sense of both Devaney and Li-Yorke.

Proof. In order to prove that system (3) with controller (4) is
chaotic in the sense of both Devaney and Li-Yorke, we only
need to prove that its reformulated system (7) is chaotic in
the sense of both Devaney and Li-Yorke. Lemma 8 is used
to prove this theorem. 
us it su�ces to show that all the
assumptions in Lemma 8 hold for � = 2.

For convenience, let � > �0 and � = 2*K/|�∗| > (1 +2J)/�0 throughout the proof, where * is an undetermined
integer.

By assumption (i), we �nd that 
 is continuously di�er-
entiable in [−�, �]2 and � is continuously di�erentiable in[−�, �]�+1. It is clear that 
(0, 0) = 0 and 
(�∗, �∗) = �∗. It can
also easily be proved that2 and H = (�∗, . . . , �∗)� ∈ R�+1 are
two �xed points of �. From the last two relations of (18), it
follows that////
� (0, 0)//// = ////�� (0, 0) + ��////≥ �� − ////�� (0, 0)//// ≥ �� − J> 1 + J ≥ 1 + /////�� (0, 0)///// = 1 + /////
� (0, 0)///// . (20)
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Similarly, it can also be shown that////
� (�∗, �∗)//// = ////�� (�∗, �∗) + ��//// > 1 + /////
� (�∗, �∗)///// .
(21)


en, it follows from Lemma 7 that 2 and H are two regular
expanding �xed points of system (7). 
at is, there exist two
positive constants �1 < �, �2 < � and two norms ‖ ⋅ ‖1, ‖ ⋅ ‖2
in R
�+1 such that 2 and H are two regular expanding �xed

points of � in ��1(2) in norm ‖ ⋅ ‖1 and in ��2(H) in norm‖ ⋅ ‖2, respectively. For convenience, we can choose �1 and �2
to be very small such that ��1(2) ∩ ��2(H) = 0.

Next, we need to show that � has a 2-heteroclinic cycle
connecting �xed points 2 and H. 
ere exist small intervalsE1 containing 0 and E2 containing �∗ such that E1 × E1 ×⋅ ⋅ ⋅ × E1 ⊂ ��1(2) and E2 × E2 × ⋅ ⋅ ⋅ × E2 ⊂ ��2(2). Consider
the following equation:ℎ1 (�) := � (�, �∗) + � sin (��) − �∗ = 0. (22)

Obviously, ℎ1 is continuously di�erentiable in [−�, �]. It is
easy to see from (18) thatℎ1 (////�∗////4* ) = �(////�∗////4* , �∗) + � − �∗ ≥ � −I − ////�∗//// > 0,ℎ1 (3 ////�∗////4* ) = �(3 ////�∗////4* , �∗) − � − �∗ ≤ I + ////�∗//// − � < 0,

(23)

which implies that there exists a point �1 with |�∗|/4* <�1 < 3|�∗|/4* such that ℎ1(�1) = 0 by the continuity of ℎ1.
Consider the following two equations:ℎ2 (�) := � (�, �1) + � sin (��) − �∗ = 0,ℎ3 (�) := � (�, 0) + � sin (��) = 0. (24)

With a similar method, we can also show that there exist
two points �2 with |�∗|/4* < �2 < 3|�∗|/4* and �3 with|�∗| + |�∗|/4* < �3 < |�∗| + 3|�∗|/4* such that ℎ2(�2) = 0
and ℎ3(�3) = 0. Similarly, the following equationℎ4 (�) := � (�, �3) + � sin (��) = 0 (25)

also has a solution �4 with |�∗| + |�∗|/4* < �4 < |�∗| +3|�∗|/4* such that ℎ4(�4) = 0.We can choose a large positive
integer *0 such that for any * ≥ *0 the points �1, �2 are inE1 and �3, �4 are in E2.

Take 20 = (�2, �1, . . . , �1)� ∈ R�+1. It is clear that 20 ∈��1(2) and 20 ̸= 2. Set 2� = �(2�−1) for 1 ≤ � ≤ �. We can

easily show that 2� = (�1, . . . , �1, �∗, . . . , �∗⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
�
)� ∉ ��1(2) for1 ≤ � ≤ �, and ��+1 (20) = H. (26)

Take H0 = (�4, �3, . . . , �3)� ∈ R
�+1. It is also clear thatH0 ∈ ��2(H) and H0 ̸= H. Set H� = �(H�−1) for 1 ≤ � ≤ �. It can

also easily be shown that H� = (�3, . . . , �3, 0, . . . , 0⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
�
)� ∉ ��2(H)

for 1 ≤ � ≤ �, and ��+1 (H0) = 2. (27)


erefore, � has a 2-heteroclinic cycle connecting repellers2 and H.
Finally, we will show that

det��(2�) ̸= 0, det��(H�) ̸= 0, for 0 ≤ � ≤ �.
(28)

We use the method of proof by contradiction to prove it. For
simplicity, we only prove that condition (28) holds for 20.
Suppose that det��(20) = 0. A direct calculation shows

that, for any � = (�1, . . . , ��+1)� ∈ R�+1,
det�� (�) = (−1)� [�� (�1, ��+1) + �� cos (��1)] . (29)


en it follows from (29) that�� (�2, �1) + �� cos (��2) = 0. (30)

Hence, cos(��2) = −(1/��)��(�2, �1). On the other hand, it
follows from ℎ2(�2) = 0 that sin(��2) = (1/�)[�∗−�(�2, �1)].

en, we get the following contradiction:1 = [�� (�2, �1)]2�2�2 + [�∗ − � (�2, �1)]2�2< J2(1 + 2J)2 + (I + ////�∗////)24(I + |�∗|)2 < 12 . (31)


erefore, det��(20) ̸= 0. Similarly, we can prove that con-
dition (28) holds for 0 ≤ � ≤ �.


erefore, all the assumptions in Lemma 8 are satis�ed
for � = 2. It follows from Lemma 8 that, for any � > �0 and� = �0, there exists regular and nondegenerate 2-heteroclinic
cycle repellers 2 and H. Consequently, system (7) and thus
system (3) with controller (4) are chaotic in the sense of both
Devaney and Li-Yorke. 
is completes the proof.

Remark 11. From the proof of 
eorem 10, we see that there
exists some positive integer*0 such that, for any � > �0, �0 =2*0K/|�∗| > (1 + 2J)/�0, system (7) is chaotic in the sense
of both Devaney and Li-Yorke. However, it is very di�cult
to determine the particular integer *0 since the expanding
area of a �xed point is not easy to obtain, and there are few
methods to determine the concrete expanding area of a �xed
point in the existing literatures. In practical problems, we can
take the positive integer*0 large enough such that controller
(4) can be used to chaotify system (1).

Remark 12. 
ere are many delay discrete dynamical systems
which have more than two �xed points. As all or some of
the �xed points satisfy assumptions in
eorem 10, which are
not very strict conditions, we can choose two of them and
use the chaoti�cation scheme of this paper to chaotify these
systems. Since the result of
eorem 10 follows from the result
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of Lemma 8, there will be many chaotic invariant sets when
using the chaoti�cation scheme to chaotify these systems.

erefore, the chaotic behaviors induced by a heteroclinic
cycle connecting repellers seemed to be more complex than
those induced by a single snap-back repeller. 
e di�erence
between them will be our future research.

4. An Example

In the last section, we present an example of chaoti�cation for
the delay di�erence equation (1) with computer simulations.

e map � in (1) is taken as follows:� (�, �) = 2 sin [ K12 (� + �)] . (32)

It is obvious that � is continuously di�erentiable on R
2

and satis�es condition (18); that is, for any (�, �) ∈ R2,////� (�, �)//// ≤ 2, ////�� (�, �)//// ≤ K6 , /////�� (�, �)///// ≤ K6 ,
(33)

whereI = 2 and J = K/6 in condition (18). It is also clear
that �(0, 0) = 0 and there exists a point �∗ = 1 such that�(1, 1) = 1. 
erefore, all the assumptions in 
eorem 10
are satis�ed. It follows from 
eorem 10 that there exist two
positive constants�0 > 2 (I + ////�∗////) = 6,�0 = 2*0K = 2*0K|�∗| > 3 + K18 > 1 + 2J�0 , (34)

where *0 is some positive integer, such that, for any � > �0
and � = �0, the controlled system (3) with controller (4) is
chaotic in the sense of both Devaney and Li-Yorke.

In fact, it is obvious that the solutions of the uncontrolled
system (6) are bounded in [−2, 2]2 for � = 1. 
ere are three
�xed points for the uncontrolled system (6); that is, 2 =(0, 0)�, H = (1, 1)�, d = (−1, −1)�. One can easily verify
that 2 is an unstable �xed point and that H and d are two
stable �xed points. When we take an initial condition �(0) =(0.01, 0.01)�, the solution �(�) of the uncontrolled system
(6) should tend to the stable �xed point H when � tends to
in�nity. 
is conforms to Figure 1, where the curve tends

from (0.01, 0.01)� to the stable �xed point (1, 1)� and � is
taken from 0 to 20000 for simulation. 
ere is a similar
conclusion for the case � = 2. For simplicity, we omit it.

In order to help better visualize the theoretical result of

eorem 10, we take � = 1, 2,*0 = 50 and� = 100, � = 100K, (35)

for computer simulations. Both of them satisfy the above
conditions. Consequently, the controlled system (7) should be
chaotic in the sense of both Devaney and Li-Yorke. It is obvi-
ous that the solutions of controlled system (7) are bounded

in [−102, 102]2 and [−102, 102]3 for � = 1 and � = 2, respec-
tively. 
e simulated results in Figures 2 and 4 show that
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Figure 1: 2D computer simulation result shows simple dynamical
behaviors of the uncontrolled system (6) in the (�1, �2) space for � =1, and � from 0 to 20000, with the initial condition �(0) = (0.01,0.01)�.
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Figure 2: 2D computer simulation result shows complex dynamical
behaviors of the controlled system (7) in the (�1, �2) space for � =100, � = 100 K, � = 1, and � from 0 to 20000, with the initial con-

dition �(0) = (0.01, 0.01)�.
the controlled system (7) indeed has complex behaviors,
where � is taken from 0 to 20000.

In summary, the simulated results show that the uncon-
trolled system (6), that is, system (1), has simple dynamical
behaviors, and the controlled system (7), that is, system (3)
with controller (4), has complex dynamical behaviors; see
Figures 1, 2, 3, and 4. 
e graphs presented indeed display
an expected well-behaved structure in one moment, and
a�er the chaoti�cation treatment the referred system presents
some behavior that resembles chaos. Nothing is less than
expected.
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Figure 3: 3D computer simulation result shows simple dynamical
behaviors of the uncontrolled system (6) in the (�1, �2, �3) space for� = 2, and � from 0 to 20000, with the initial condition �(0) =(0.01, 0.01, 0.01)�.
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Figure 4: 3D computer simulation result shows complex dynamical
behaviors of the controlled system (7) in the (�1, �2, �3) space for� =100, � = 100 K, � = 2, and � from 0 to 20000, with the initial con-

dition �(0) = (0.01, 0.01, 0.01)�.
5. Conclusion

In this paper, we consider anticontrol of chaos for a class of
delay di�erence equations via the feedback control technique.
Based on the result that a regular and nondegenerate het-
eroclinic cycle connecting repellers for maps implies chaos,
we establish a chaoti�cation theorem. 
e controlled system
is proved to be chaotic in the sense of both Devaney and
Li-Yorke. It is noted that there are many delay discrete
dynamical systems which have more than two �xed points.
As all or some of the �xed points satisfy assumptions in

eorem 10, which are not very strict conditions, we can
choose two of them and use the chaoti�cation scheme
established in this paper to chaotify these systems. Numerical
simulations con�rm the theoretical analysis. However, the
map of the original system needs to satisfy some conditions
in 
eorem 10. 
erefore, it is very interesting to explore the
chaoti�cation scheme for more general maps, which will be
our further research.
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