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1. Introduction

In recent years an upsurge of interest has been noticed in the new material class of

ferromagnetic metals with 100% spin polarization, so called half-metals, since they have

the potential to play an important role in the rapidly evolving field of magneto-electronics

(spintronics) [1, 2, 3]. The half-metallicity has first been predicted 1983 by de Groot et

al. for the half-Heusler alloy NiMnSb. For a long time the half-metals were considered as

exotic ferromagnets of mainly academic interest. This attitude has changed completely

with the appearance of the new field of spintronics. While in conventional electronics the

charge of the electrons plays the essential role, spintronic devices are designed to control

both the charge current and the spin current of the electrons in one single functional

unit. Ferromagnetic half-metals with only one spin direction at the Fermi level are

ideally suited as electrodes in these devices, e.g. for spin injection into semiconductors,

spin filtering, or in giant magnetoresistance (GMR) and tunneling magnetoresistance

(TMR) applications. This should support the design of non-volatile magnetic random

access memories (MRAM), since a high TMR ratio is a key parameter for the magnetic

tunnel junctions building the MRAM cells.

In the last 10 years a lot of materials have been predicted theoretically to have half-

metallic character, among them are some oxides (e.g. CrO2 and Fe3O4) [4], the mangan-

ites (e.g. La0.7Sr0.3MnO3) [4], the diluted magnetic semiconductors (e.g. GaAs or ZnO

doped with magnetic transition metal ions) [5, 6] and the fully spin polarized Heusler al-

loys, which are the subject of the present thesis. Heusler alloys are ternary intermetallic

compounds with the general composition A2BX, A and B being transition metal atoms

and X a non-magnetic atom. The fully ordered Heusler structure is a cubic lattice

with four interpenetrating fcc sublattices occupied by A, B or X atoms (L21 structure).

Recent intense theoretical investigations using energy band structure calculations pre-

dicted more than 20 different Heusler phases to exhibit half-metallic behaviour until now

[7, 8, 9, 10, 11]. The most prominent are the half-metals NiMnSb and PtMnSb (so-called

half-Heusler compounds, since one A sublattice is empty), the pseudo-ternary phase

Co2Cr0.6Fe0.4Al, and the phases Co2MnSi and Co2MnGe. Currently the half-metallic

Heusler phases are considered to be the most attractive candidates for application in
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1. Introduction

spintronic devices, since they exhibit extremely high Curie temperatures (905 K for

Co2MnGe) and a structure, which is closely related to conventional semiconductors.

Regardless of these promising properties of the Heusler half-metals experimental in-

vestigations in the last years revealed that it is very difficult to realize the predicted

full spin polarization even in single crystals. The performance of TMR devices using

Heusler thin films as an electrode has been somewhat disappointing at first. NiMnSb

integrated into a magnetic tunnel junction showed only 25% spin polarization at 4.2 K

[12]. Later these results could be improved and actually the highest value obtained for

spin polarization in a MTJ using a Co2MnSi electrode is 89% [13, 14]. However, irre-

spective of the experimental method applied to determine the degree of spin polarization

quantitatively, it is always definitely less than 100%. The main reason, which has been

suggested for this reduction, is site disorder in the film and at the interfaces, since only

the perfectly ordered Heusler alloy exhibits a gap in the minority spin band [15, 16]. In-

terfaces in thin film heterostructures combining the Heusler alloys with other materials

are of utmost importance for spintronic devices, since the spin polarization has to be

stable down to the first few monolayers of the interface. However, these compounds are

prone to interdiffusion and site disorder, which both have the tendency to suppress the

full spin polarization [15, 16].

Within the framework of this thesis a systematic investigation of single thin films of

the Heusler phase Co2MnGe and subsequently metallic multilayers of Co2MnGe com-

bined with other metals like V, Au and Cr [17] has been carried out. The aim of this

research has been twofold. On the one hand, high quality multilayers or superlattices are

ideally suited to study the structural quality of interfaces by x-ray or neutron reflectivity

methods. On the other hand, the basic question should be answered whether an oscilla-

tory interlayer exchange interaction (IEC), which exists in most magnetic/nonmagnetic

multilayer systems of the transition metals [18], can also be observed in Co2MnGe based

multilayers. This is interesting both from the fundamental point of view and also for

potential application in magneto-electronic devices. If an interlayer coupling could be

realized, the preparation of antiferromagnetically coupled multilayers with a large GMR

effect would be possible.

In fact, of the many different multilayer systems studied up to now in our group [17],

only the [Co2MnGe/V] system showed first indications from magnetization measure-

ments that an antiferromagnetic interlayer coupling might exist.

This thesis presents a detailed investigation of the structural and magnetic properties

of [Co2MnGe/V] multilayers with variable thickness of the V layers and investigates in

detail their magnetic ordering. It will turn out that the interlayer magnetic ordering in
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the multilayers is unconventional and definitely different from the IEC mechanism. The

magnetic order is directly related to peculiarities of the magnetism in very thin Heusler

layers.

In this thesis first conventional x-ray scattering was used to determine the structural

properties of the [Co2MnGe/V] multilayers. Since the ferromagnetism and the half-

metallic character of the thin Heusler layers might be lost at the interfaces due to

disorder and interdiffusion, it is valuable to resolve the magnetization profile or the

magnetic moment density profile. For this purpose systematic investigations of the

Heusler multilayers with x-ray resonant magnetic scattering (XRMS) using synchrotron

radiation in the soft x-ray regime have been carried out. XRMS combines the depth-

resolving power of conventional x-ray reflectivity with the element sensitivity of the

x-ray resonant scattering with circular polarized light [19, 20]. By tuning the energy to

the Co and Mn L2,3 edges, the element specific magnetization depth profile across the

interface to the non-ferromagnetic layer can be determined. As a complementary tool

magnetic neutron scattering has been applied on the multilayers. While resonant x-ray

scattering is sensitive to the atomic magnetic moment, neutrons probe the magnetic

induction in the sample. Spin polarized neutron reflectivity has been irreplaceable for

the analysis of vector magnetization profiles, magnetic domain distributions and for the

proof of antiferromagnetic coupling in the [Co2MnGe/V] multilayers.

The present thesis is divided into three parts: The first part introduces the basics for

the understanding of the physical properties of the [Co2MnGe/V] multilayers studied

here. An overview of the general properties of Heusler alloys is given in Chap. 2. Recent

applications in spintronic devices and the open questions will be discussed besides the

structural, magnetic and electronic properties. Chap. 3 gives an introduction to spin

glasses, whose characteristics turn out to be important for the understanding of the

magnetization measurements of the [Co2MnGe/V] samples. The second part of the thesis

explains the experimental scattering methods used. After a theoretical introduction

specular reflectivity and off-specular diffuse scattering is discussed both for the case

of neutron scattering (Chap. 4) and resonant soft x-ray scattering (Chap. 5). The

experimental results on the Co2MnGe based single layers and multilayers are presented in

the third part of the thesis. First, the measurements on single very thin Co2MnGe layers

are reported (Chap. 6). Their structural quality and magnetic properties are needed

for an understanding of the structural and magnetic properties of the [Co2MnGe/V]

multilayers presented in Chap. 7. Conclusions and a summary are provided in Chap. 8.
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2. Heusler Alloys

The Heusler compounds have a long history in magnetism, starting more than 100 years

ago with the detection of the ternary metallic compound Cu2MnAl by A. Heusler in

1903 [21]. Remarkably, this alloy is a ferromagnet even though none of its constituents

is one. Further investigations showed that a whole class of isostructural ternary metallic

alloys with the general composition X2YZ exists, where X denotes a transition metal

element such as Ni, Co, Fe or Pt, Y is a second transition metal element, e.g. Mn,

Cr or Ti and Z is an atom from 3rd , 4th or 5th group of the periodic system such as

Al, Ge, Sn or Sb. More than 1000 different Heusler compounds have been synthesized

until now, a comprehensive review of the experimental work until the year 1987 can

be found in Ref. [22]. They attracted considerable interest due to their very versatile

magnetism. Actually the driving force for the intense study of the Heusler compounds is

the predicted half-metallic ferromagnetic nature for some of these alloys [7, 10, 23, 24, 25].

Half-metals are particular ferromagnetic materials, which can be considered as hybrids

between metals and semiconductors. They possess an energy gap for one spin direction

at the Fermi level (EF ) leading to a complete spin polarization at EF . This makes them

ideal candidates for the application in spintronics.

This chapter gives a short review of the structural, magnetic and electronic properties

of the Heusler compounds in general with emphasis on the half-metallic Heusler alloys,

especially the Co-based ones, since Co2MnGe is the alloy studied within this thesis.

After the basic properties of the bulk Heusler compounds are discussed, some of the

recent results in spintronic applications and the open problems are presented.

2.1. Structural Properties

The Heusler alloys are defined as ternary intermetallic compounds with the stoichio-

metric composition X2YX and the crystal structure L21. Moreover there exist so-called

half-Heusler phases with the general formula XYZ, having C1b structure. The L21 or

C1b structure, respectively, is most important for the predicted half-metallic properties

of the Heusler compounds, since the theoretical band structure calculations usually re-
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2. Heusler Alloys

fer to this structure. The L21 unit cell is depicted in Fig. 2.1. It can be imagined to

be combined of four interpenetrating fcc sublattices occupied by X, Y and Z atoms,

respectively. The sublattices are shifted along the space diagonal with the corner of

the Z sublattice at (0,0,0), the first X sublattice at (1/4, 1/4, 1/4), the Y sublattice at

(1/2,1/2,1/2) and the second X sublattice at (3/4, 3/4, 3/4). In the C1b structure the

second X sublattice remains empty.

Z

X

Y

L 1 (X YZ) C1 (XYZ)2 2 b

Figure 2.1.: Schematic representation of the L21 and the C1b structure.

For many Heusler compounds the ordered L21 structure is the low temperature equi-

librium phase. In the majority of the Heusler alloys like the original Heusler phase

Cu2MnAl there exist several structural modifications with different degrees of site disor-

der of the atoms on the X, Y and Z position. At high temperatures the crystal structure

is bcc with random occupation of the atoms on the lattice sites of a simple bcc lattice

with half of the lattice parameter compared to the L21 structure. An intermediate struc-

ture with B2 symmetry occurs often for the Heusler compounds. It has the same lattice

parameter as the L21 phase, but the Y and the Z atoms are distributed at random on

the corresponding sublattices, whereas the two X sublattices remain intact.

2.2. Magnetic Properties

The magnetic phenomena of the Heusler alloys are very versatile and have been un-

der continuous discussion all over the years. In the family of Heusler compounds there

exists examples of itinerant and localized magnetism, antiferromagnetism, Pauli para-

magnetism or heavy-fermionic behaviour.

The majority of the Heusler alloys with a magnetic element on the Y position or-
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2.2. Magnetic Properties

der ferromagnetically, but several antiferromagnetic compounds also exists, for instance

Ni2MnAl or Pd2MnAl [26, 27]. The main contribution to the magnetic moments in the

Heusler phases usually stems from the atoms at the Y position. If magnetic atoms also

occupy the X positions, their moment is usually quite small or even vanishing. In the

above mentioned Ni2MnAl compound e.g. the Ni atoms are non-magnetic. Actually

there exist a few Heusler compounds with rather large magnetic moments on both the

X and the Y positions. In this case the ferromagnetic state is very stable and the fer-

romagnetic Curie temperature Tc becomes exceptionally high. The best examples are

provided by the Heusler phases Co2MnSi and Co2FeSi with a Co moment of about 1 µB

and Curie temperatures of 985 K [28] and 1100 K [29], respectively, the highest Tc values

known for the Heusler alloys. The mechanism which stabilizes the ferromagnetism is a

strong next-nearest neighbour ferromagnetic exchange interaction between the spins at

the X and the Y position [7, 30]. If a non-magnetic element occupies the X position, the

dominant exchange interaction between the Y spins is of weaker superexchange type due

to hybridization, mediated by the electrons of the non-magnetic Z atoms. Depending

on the valence of Z the interaction can have either sign [30].

Table 2.1.: Lattice constant, total spin moment and predicted spin magnetic moments
of Co2MnGe within the generalized gradient approximation (GGA) and
experiment, taken from Ref. [24].

a [nm] µtot [µB] µMn [µB] µCo [µB] µGe [µB]
experiment 0.574 [27] 5.11 - - -

theory 0.574 5.0 2.98 1.02 -0.03

The spin magnetic moments for Co2MnGe are listed in Tab. 2.1. The Co atoms are

ferromagnetically coupled to the Mn spin moments and they possess a spin moment of

∼ 1.0 µB. The Ge sp atom has a very small negative moment which is two orders of

magnitude smaller than the Co moment. The orbital moments are almost completely

quenched and their absolute values are negligible with respect to the spin magnetic

moments [24, 31].

Heusler compounds such as Cu2MnAl with a magnetic moment only on the Y position

are considered as good examples of localized 3d metallic magnetism [30]. Since in the

ideal L21 structure there are no Mn-Mn nearest neighbours, the Mn 3d wave functions

overlap only weakly and the magnetic moments remain essentially localized at the Mn

position. On the other hand, the compound Co2TiSn with magnetic moments only on

the X positions exhibits weak itinerant ferromagnetism with strongly delocalized mag-
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2. Heusler Alloys

netic moments [32]. As it is obvious from the crystallographic structure (Fig. 2.1), there

are nearest neighbour X atoms making the overlap of the 3d wavefunctions and the de-

localized character of the d electrons much larger than in the case of only the atoms at

the Y position being magnetic. Replacing the Co atoms in Co2TiSn by Ni, this delocal-

ization effect proceeds further, making the compound Ni2TiSn a Pauli paramagnet [33].

Even more interesting, the Heusler compounds Fe2TiSn and Fe2VAl also do not order

magnetically, but are marginally magnetic. They belong to the rare class of transition

metal compounds exhibiting heavy Fermion like properties in the low temperature spe-

cific heat and the electrical resistivity, which attracted much interest in the literature in

recent years [34, 35, 36].

2.3. Electronic Properties: Half-Metallicity

The spectacular property of full spin polarization at the Fermi level EF has first been de-

tected in 1983 for the half-Heusler alloy NiMnSb by electron energy band calculations.

Also PtMnSb and CoMnSb have been predicted to possess this property. NiMnSb,

PtMnSb and CoMnSb have been dubbed half-metals [37], since only for one spin di-

rection there is metallic conductivity, for the other spin direction the conductivity is of

semiconducting type. In a ferromagnetic transition metal alloy this half-metallicity is a

very rare property, since usually s or p bands with a small exchange splitting cross the

Fermi energy and contribute states of both spin directions. For several years the half-

Heusler alloys PtMnSb, NiMnSb and CoMnSb remained the only ferromagnetic alloys

with half-metallic character, before starting from 1990 a second group of half-metallic

Heusler alloys, Co2MnSi, Co2MnGe and Co2Mn(SbxSn1−x) has been found theoretically

[23, 38, 39]. The calculated indirect band gap for the minority carriers is smaller in

these materials than in the half-Heusler compounds [31], for Co2MnSi and Co2MnGe

one derives Egap = 0.81 eV and Egap = 0.54 eV, respectively. The spin-projected density

of states for Co2MnGe is depicted in Fig. 2.2.

The origin of the gap in the minority spin band is rather subtle, but recently theoretical

calculations allowed to reveal the basic mechanism for the formation of the gap. The

d−d hybridization between the transition atoms composing Heusler alloys is essential for

the formation of the gap at EF . In the case of half-Heusler compounds (e.g. NiMnSb)

the gap is created by the hybridization and bonding-antibonding splitting between the

Mn d and the Ni d states. In the case of full Heusler alloys (e.g. Co2MnGe) the gap

originates from the hybridization of the d states of the two Co atoms and the subsequent

interaction of these hybrids with the Mn d states [40].
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2.3. Electronic Properties: Half-Metallicity
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Figure 2.2.: Calculated spin-projected DOS for Co2MnGe, taken from Ref. [24].

The experimental proof of half-metallicity in these Heusler alloys is a long and still

ongoing controversial issue. The first attempts to prove the half-metallicity used elec-

tron transport measurement to test the existence of a gap in the spin down electron

band [41, 42]. Since in the half-metal for temperatures small compared to the gap in

the minority spin band there is only one spin direction at the Fermi level available, it is

expected that electronic scattering processes involving spin flips and longitudinal spin

wave excitations are inhibited. Thus one should expect an increasing electron mobility

and a change of the power law describing the temperature dependence of the resistivity,

when the thermal energy becomes smaller than the gap for the minority spin band.

Actually for NiMnSb this type of behaviour for temperatures below 80 K has been de-

tected. Additionally the Hall coefficient exhibits an anomalous temperature dependence

in this temperature range, strongly suggesting a thermal excitation of charge carriers

across a gap coexisting with metallic conductivity [41, 42]. More directly, positron an-

nihilation experiments on bulk single crystals from the NiMnSb phase were found to be

consistent with 100% spin polarization at the Fermi level [43], which could additionally

be confirmed by infrared absorption experiments [44]. Finally, analyzing the current-

voltage characteristic below the superconducting gap of a point contact between a Nb

superconductor and a bulk PtMnSb sample, which is dominated by Andreev reflections

at the ferromagnet/superconductor interface, the authors derived a spin polarization of

90% at the Fermi level [45].

For the Co2Mn(Si,Ge,Sn) fully spin polarized group of Heusler compounds spin polar-

ized neutron diffraction measurements on bulk samples have been employed to determine
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2. Heusler Alloys

the degree of spin polarization at the Fermi level [46]. This methods probe the spatial

distribution of the magnetization, details of which depend sensitively on the spin po-

larization. The results suggest a finite density of states in the minority spin d band of

manganese. Hence the spin polarization was found to be large, but not 100%. More

recent superconducting/ferromagnetic point contact measurements on a Co2MnSi single

crystal gave a spin polarization of 55% [47]. Similarly, the degree of spin polarization

determined from the analysis of spin resolved photoemission spectra was always found

to be definitely below 100% [48, 49].

During the first years after the discovery of the half-metallic character in the Heusler

compounds they were considered as exotic ferromagnets of mainly academic interest.

This attitude has changed completely with the development of new ideas of data storage

and processing designed to use both the charge and the spin degree of freedom of the

conduction electrons, nowadays called spin electronics (spintronics) [50, 51, 52]. Adding

the spin degree of freedom to conventional electronic devices has the advantages of non-

volatility, increased processing speed and decreased electric power consumption [50, 53].

In the spintronic community there is a strong belief that in the future these new concepts

have the perspective to complement or even substitute conventional Si technology. It was

rapidly realized, how valuable it would be for spintronic devices to have a ferromagnet

available with only one conduction electron spin direction at the Fermi level. With

an electrode possessing 100% spin polarization the generation of a fully spin polarized

current for spin injection into semiconductors would be very easy [54] and spin filtering

and spin accumulation in metallic thin film systems would be most effective [55]. The

giant magnetoresistance (GMR) [56] as well as the tunneling magnetoresistance (TMR)

[57] of a device prepared of two half-metallic electrodes should be huge, since one spin

direction is totally blocked to first order, if the two electrodes have an antiparallel

magnetization direction.

The novel concepts of spintronics started an upsurge of interest in ferromagnetic half-

metals in the literature. Besides the half and full Heusler alloys a large number of

half-metallic materials has been found, among them are some oxides (e.g. CrO2 and

Fe3O4) [4], the manganites (e.g. La0.7Sr0.3MnO3) [4], the transition metal chalcogenides

(e.g. CrSe) and pnictides (e.g. CrAs) in the zinc-blende or wurtzite structures [58], the

diluted magnetic semiconductors (e.g. GaAs or ZnO doped with magnetic transition

metal ions) [5, 6] and the fully spin polarized Heusler alloys.

For technical applications the Heusler alloys seem to be very attractive for several rea-

sons. Their crystal structure and lattice constant are closely related to the diamond and

zinc-blende structure of most industrial relevant semiconductors, the lattice mismatch
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2.4. Heusler Half-metals in Devices

is low, for instance for Co2MnSi with GaAs it is less than 0.4% [59]. The preparation of

Heusler thin films can be carried out by conventional metal film preparation methods,

thus they are compatible with current semiconductor technology. A further advantage is

their high ferromagnetic Curie temperature, even at room temperature the half-metallic

Heusler alloys are close to ferromagnetic saturation. This is of particular importance,

since the temperature dependence of the spin polarization scales with the corresponding

magnetic moment of the material [60].

Recent intense theoretical investigations using electronic energy band structure calcu-

lations by theoretical groups increased the number of Heusler compounds with predicted

half-metallic properties to more than 20, among them Co2CrAl, Fe2MnSi, Co2CrAl,

Co2Cr0.6Fe0.4Al and Co2FeSi, to mention a few of the new compounds [7, 8, 9, 10, 11].

The experimental work in the literature mainly concentrated on the classical Heusler

half-metallic phases NiMnSb and PtMnSb, the alloys Co2MnSi and Co2MnGe and the

newly discovered compound Co2(CrFe)Al [9], leaving a vast field for further experimental

investigations.

However, as already stated above the half-metallicity of the Heusler compounds is a

subtle property which is easily lost in a real sample.

2.4. Heusler Half-metals in Devices

Presently the main motivation behind the experimental research on the fully spin po-

larized Heusler compounds in the literature is the promising application in spintronic

devices. Hence it is obvious that thin films of the Heusler compounds are needed, bulk

samples are not very useful. On the other hand, thin film preparation in general and

especially the preparation of thin film heterostructures often imposes limits on the pro-

cess parameters and this might severely interfere with the needs to have a high degree

of spin polarization. For obtaining a large spin polarization a perfect crystal structure

with a small number of grain boundaries is important. This can best be achieved by

keeping the substrate at high temperatures during the thin film deposition. However,

most Heusler phases grow in the Vollmer-Weber mode (three-dimensional islands) at

high temperatures, thus when using high preparation temperatures there might be a

strong roughening of the surfaces, which for spintronic devices is strictly prohibited.

In addition, in thin film heterostructures combining different metallic, semiconducting

or insulating layers with the Heusler compounds, high preparation temperatures are

forbidden, since excessive interdiffusion at the interfaces must be avoided.

The half-metallic Heusler alloys are among the most promising materials to be inte-
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2. Heusler Alloys

grated as one magnetic electrode into technologically relevant magnetic tunnel junctions

(MTJ). The effective amplitude of the magnetoresistance in a simple layered system, con-

sisting of two ferromagnetic metals, separated by a thin insulating layer, which serves

as tunnel barrier, can be expressed as:

∆R

R
=

RA − RP

RP

, (2.1)

where RA and RP represent the resistance of the two ferromagnetic layers with their

magnetizations aligned antiparallel or parallel to each other. Julliere’s model [61] for

the TMR of this MTJ predicts that the TMR amplitude is linked to the effective spin

polarization Pi of each ferromagnetic layer by the relation:

TMR =
RA − RP

RP

=
2Player1Player2

1 − Player1Player2

, (2.2)

Thus, high TMR values can be achieved by employing high spin polarized ferromagnetic

electrodes on both sides of the MTJ.

Thin films and TMR devices have first been investigated systematically using the

half-Heusler compounds PtMnSb and NiMnSb [62, 63]. The performance was rather

disappointing. The spin polarization of NiMnSb integrated in a MTJ was measured to

be 25% at 4.2 K corresponding to a TMR amplitude of 19.5% [12]. The TMR value

at room temperature (RT) was 9% only. Later, TMR devices based on Co2MnSi were

shown to have much better performance. For tunnel junctions of textured Co2MnSi

with an Al oxide tunneling barrier a maximum TMR effect of 108% at 20 K and 33% at

RT has been achieved, corresponding to 72% and 41% of spin polarization, respectively

[64, 65, 66]. Recently a further improvement to 159% (89% spin polarization) at 2 K

and 70% at RT was obtained by a japanese group using high-quality epitaxially grown

Co2MnSi electrodes [13, 14]. This is actually the highest TMR value observed for junc-

tions using an amorphous Al oxide tunnel barrier. MTJs using a Co2MnGe electrode

were recently developed for the first time. The microfabricated epitaxial tunnel junctions

using MgO as tunneling barrier showed strongly temperature dependent characteristics

with TMR ratios of 14% at RT and 70% at 7 K [67]. For the newly predicted half-metal

Co2Cr0.6Fe0.4Al as magnetic electrode a TMR ratio of 74% at 55 K was found, using a

MgO tunneling barrier [68, 69, 67]. The maximum TMR values obtained for an Al oxide

barrier are 52% at RT and 83% at 5 K [70]. The spin polarization was found to be 81%

[71]. The obtained TMR ratio of 83% at 2 K in the MTJ with B2 ordered Co2MnAl

is large among the MTJs with an amorphous Al oxide tunnel barrier and suggest that
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2.5. Heusler Half-metals: Disorder and Interfaces

B2 ordered Co2MnAl still exhibits a high spin polarization [14]. Smaller values for the

TMR ratio were obtained in junctions using a Co2FeSi electrode, i.e. 41% at RT and

60% at 5 K [70].

There are only very few experiments concerning the GMR effect in antiferromag-

netically coupled metallic multilayers or in spin valves consisting of Heusler com-

pounds. A room temperature current-in-plane (CIP) GMR effect has been measured in

a [Co2MnGe/Rh2CuSn]10 multilayer and was found to be very small, exhibiting a value

of only 0.26% [72]. For spin valve structures employing the same material combination

the situation is even worse [73]. This is in good agreement with GMR measurements on

[Co2MnGe/V]N multilayers [74]. The GMR values are far below the values obtained in

transition metal multilayer system, which can be as large as 150% at room temperature

[75].

To date, efficient electrical spin injection into semiconductors has been demonstrated

only from magnetic semiconductors [76, 77] and conventional ferromagnetic metals [78,

79]. Fully spin polarized Heusler alloys are in principle ideal candidates for epitaxial

contacts. Furthermore they are an alternative solution to the conductivity mismatch

[54]. Spin injection experiments from the epitaxially grown half-Heusler NiMnSb into a

spin LED have shown injected spin polarizations up to 2.2% at 80 K [80]. This is rather

disappointing, since even a MnSb reference injector works better. More encouraging

results are obtained using the alloy Co2MnGe as spin injector. At 2 K the injected spin

polarization is calculated to be 27% [81].

2.5. Heusler Half-metals: Disorder and Interfaces

Although the TMR results just discussed show that Heusler based magnetic elements

are quite promising, the experimentally determined spin polarization is always definitely

smaller than 100%. This experience leads to the suspicion that at least for a few mono-

layers at the interfaces the full spin polarization is lost.

Interfaces of the Heusler compounds with other materials are a very delicate problem

for spintronic devices. For spin injection into semiconductors or a tunneling magnetore-

sistance the spin polarization of the first few monolayers at the interfaces is of utmost

importance. A large spin polarization in the bulk of a Heusler compound does not guar-

antee that it is a good spintronic material, unless it keeps its spin polarization down to

the interfaces. Hence there are various problems that have to be overcome in order to

reach full spin polarization in real devices.

Site disorder within the sublattices of the Heusler compounds disturbs the perfect L21
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point symmetry and may therefore destroy the half-metallicity. An essential question

is, which type of disorder is most detrimental for the spin polarization. Therefore the

effects of several types of defects in the Heusler alloys Co2MnSi and Co2MnGe have been

studied by theoretical model calculations [10]. According to the experiment, the most

frequent defects are: 1) Mn antisites where a Co atom is replaced by Mn, 2) Co antisites

where a Mn atom is replaced by Co, and 3) Co-Mn swaps where a Mn-Co nearest

neighbour pair shows exchanged position compared to the ideal bulk. The calculated

formation energies for these defects together with the total magnetic moment of the

32-atoms unit cell used for calculation is shown in Tab. 2.2. Due to their low formation

energy Co and Mn antisites are likely to be formed with a concentration as high as 8%

[11, 82]. Co-Mn swaps have lower defect-densities. Since Co2MnSi and Co2MnGe show

a very similar behaviour with respect to the defects, the results for Co2MnSi are valid

as well for Co2MnGe.

Table 2.2.: Formation energy and total magnetic moments for the different defects in
Co2MnSi and Co2MnGe, taken from Ref. [24].

Co2MnSi Co2MnGe
∆E [eV] Mtot [µB] ∆E [eV] Mtot [µB]

Co antisite 0.80 38.01 0.84 38.37
Mn antisite 0.33 38.00 0.33 38.00
Co-Mn swap 1.13 36.00 1.17 36.00

Mn antisite defects are most likely to occur in Co2Mn(Si,Ge). In this case the total

density of states (DOS) shows a shift of 0.04 eV towards higher binding energies in the

minority spin channel, resulting in a small increase of the spin gap. For this type of

antisite disorder the half-metallicity is kept. However, the Mn magnetic moment is now

coupled antiferromagnetically to the surrounding Mn spins, leading to a reduction of the

saturation. Fig. 2.3 depicts the region close to the defect as compared to the ideal case,

including the magnetic moments. Since the point defect-induced changes are efficiently

screened by the conduction electrons, only the nearest neighbour spins are affected.

Although Co antisites are theoretically expected to occur in concentrations typically

two orders a magnitude smaller than for the case of the Mn antisite, experimentally

these two defects are found to have the same density. The Mn atom sitting on the Co

position leads to a sharp peak in the electron DOS located just in proximity to the

Fermi level (see Fig. 2.4) and therefore destroys the half-metallicity. The calculated

spin polarization for the case presented in Fig. 2.4 is as low as 6%. The defect-induced

states at the Fermi level are spatially localized, as shown in the inset of Fig. 2.4. The
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Co

a) ideal b) Mn antisite

Mn X=Si,Ge
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-0.87
(-1.39)

Figure 2.3.: Magnetic moments for (a) the ideal system and (b) the Mn antisite system
in Co2MnSi (Co2MnGe) around the defect. Values are taken from Ref. [24].

analysis of magnetic moments (Fig. 2.5) shows that in the case of an Co antisite defect

the magnetic moments remain virtually unchanged and couple ferromagnetically to the

surrounding Co spins.
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Figure 2.4.: Total DOS for defective (bold line) and ideal (dashed line) Co2MnSi with
Co antisite. The inset shows the minority DOS at EF projected on the
different neighbours (denoted as roman numbers) as one moves away from
the Co antisite defect [24].
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Co

a) ideal

Mn X=Si,Ge
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b) Co antisite
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Figure 2.5.: Magnetic moments for (a) the ideal system and (b) the Co antisite system
in Co2MnSi (Co2MnGe) around the defect [24].

Co-Mn swaps can be viewed as the sum of two different Mn and Co atomic antisites.

The calculated minority DOS is shifted to higher energies, along with a defect-induced

peak located -0.2 eV below the Fermi level, the majority DOS remains essentially un-

affected. Hence the half-metallic character is kept by the Co-Mn swaps. However, the

total magnetic moment per unit cell is drastically reduced by about 4µB.

Comparable results were also discovered for the full Heusler compound Co2Cr1−xFexAl

[83, 84]. While a partial exchange of Cr/Fe atoms with Al leaves the half-metallicity

unaffected, an exchange of Co atoms with Cr, Fe or Al destroys the half-metallicity. The

appearance of states in the minority spin gap accompanying site disorder was also found

for the half-Heusler phases PtMnSb [85] and NiMnSb [86]. For the latter compound

various kinds of disorder were considered and it was found that for 1% disorder the spin

gap is reduced, but not destroyed, while 5% disorder results in a complete loss of the

half-metallic properties [86].

This low degree of point disorder tolerable for the Heusler compounds presents a

strong experimental challenge, since in thin films a larger amount of disorder than in

the bulk material is expected due to lower preparation temperatures. The best choice

to avoid disorder is to grow thin films epitaxially in the well ordered L21 structure, as

has been realized for Co2MnGe on GaAs [81, 82, 87] and MgO [67]. Another possibility

to avoid point defects is to find Heusler alloys with particularly high energies for the

defect formation.
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2.5. Heusler Half-metals: Disorder and Interfaces

A fundamental explanation for the loss of the full spin polarization in devices, which is

favored by theoreticians, is a modification in the electronic energy band structure at the

surfaces and interfaces. The half-metallicity in Heusler alloys is symmetry induced [88],

and is thus very sensitive to any symmetry breaking at surfaces and interfaces. Ab-initio

calculations revealed that even at stoichiometric surfaces the half-metallic character is

generally lost [89]. For the half-Heusler alloys NiMnSb, CoMnSb and PtMnSb the spin

polarization at the surfaces depends on the orientation and the termination, but is

always less than 100% [89, 90, 91]. In the case of the full Heusler phases containing

Mn the results are similar [89, 92], for instance at the MnGe terminated (110)-surface

of Co2MnGe the spin polarization is completely lost. However, there are Heusler alloys,

which show high spin polarization even at the surface, as e.g. Co2CrAl, with a CrAl

terminated surface, which nearly maintains the half-metallicity.

For high-performance spintronic devices it is of special importance to restore the HMF

behaviour at the interfaces with an isolator or semiconductor. Theoretical model calcula-

tions were first carried out for NiMnSb/semiconductor interfaces [90, 93], mainly showing

the loss of half-metallicity at the interfaces, except in the case of NiMnSb/CdS. Further

calculations revealed the presence of interface states at almost all Heusler/semiconductor

contacts [94, 95]. Here, the half-metallicity is destroyed only for a few atomic layers close

to the interface and completely restored far away from it.

Beside the fundamental problem of surface states the half-metallic materials suffer

from a tendency of the surface to adopt a different composition than the bulk. As usual

at alloy interfaces this surface segregation is driven by a difference in the free energy [96].

Segregation occurs in order to minimize the surface energy. Unfortunately, segregation

too, has the tendency to destroy the half-metallic behaviour, as has been proven both

experimentally and theoretically for the case of the half-Heusler compounds [91, 97].

The discussion above makes clear that for a device design not only the bulk, but neces-

sarily the surface/interface properties have to be taken into account. A controlled surface

and interface engineering is needed. However, the use of Heusler alloys in devices is still

promising, if material combinations can be found, which preserve the half-metallicity

even at the interface. Theoretical calculations have already demonstrated that this is

possible, for instance in the case of the NiMnSb(111)/CdS(111) surface [90]. To sum

up the introductory part, there are challenges, but the gate to Heusler based spintronic

devices has been opened.
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Since in the [Co2MnGe/V] multilayers at low temperature a complicated spin glass type

of phase transition is observed, as will be discussed in Chap. 7, the basic concepts of

spin glass order will be shortly reviewed here.

Spin glasses are magnetic systems, in which the interactions between the magnetic

moments compete with each other due to some frozen-in structural disorder. They

can be defined as random mixed-interacting systems characterized by a random, yet

cooperative, freezing of spins at a well defined (freezing) temperature Tf , below which a

highly irreversible metastable frozen state occurs without the usual long-range ferro- or

antiferromagnetic order [98]. Although the nature of this kind of order has been studied

extensively and much efforts have been put into appropriate theoretical descriptions, the

character of the freezing transition is still not solved completely. It is clear that spin

glass freezing involves strong cooperative effects, but while there are hints for a true

magnetic phase transition, no convincing evidence could be found.

The two important ingredients of spin glasses are randomness in either position of

the spins or sign of their exchange interactions and frustration, i.e. a given spin cannot

satisfy all the magnetic interactions in the system.

An archetypal and well studied example of a spin glass is the alloy Cu1−xMnx [99],

where the concentration of Mn is a few atomic percent. The Mn ions are therefore

present only in dilute quantities and their magnetic moments interact with each other

via a RKKY interaction mediated by the conduction electrons in Cu. Site-randomness in

CuMn leads to a distribution of distances between spins. Since the RKKY interaction

oscillates in sign, i.e. can be either ferro- or antiferromagnetic as a function of the

distance between the spins, the alloy exhibits intrinsic frustration and does not possess

a magnetic ground state. At high temperatures the Mn moments fluctuate thermally,

but with decreasing temperature magnetic short range order will built up. At Tf the

moments freeze in a highly degenerate spin glass state.

Already in the 1930s experimental investigations on CuMn indicated some strange

properties and around late 1960s there were some unusual effects observed on a series

of magnetic alloys. The name ’spin glass’ came up in 1970. At that time the sharp
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cusps in the low-field susceptibility of spin glasses were discovered and correlated with

a magnetic-ordering temperature [100]. Distinctions were made between spin glasses

and so-called ’mictomagnets’ (cluster glass), where the former category was reserved for

dilute magnetic metallic alloys and cluster glass referred to alloys with higher concen-

tration of magnetic atoms, when the magnetic behavior is dominated by the presence

of large magnetic clusters (of order 20-20000 µB). It is now widely accepted that there

is no fundamental distinction between these two classes, and hence all these systems

are considered as spin glasses [101]. Returning to history, in the mid 1970s finally the

theorists became interested and used some new concepts and models to explain the ex-

perimental facts. The spin glasses became very important and gave new impulses to

many other fields, such as neural networks, biomolecules and the vortex-glass state in

high-Tc superconductors [98, 102]. While the basic phenomena have been understood

qualitatively, a full description by the theory was still lacking. Today the spin glass

has become a fundamental and general form of magnetism and is still an active field of

research [103, 104, 105, 106, 107, 108, 109, 110].

This chapter shortly introduces the physics of spin glasses via an experimental ap-

proach following the review of Mydosh [111]. An overview about the theoretical concepts

can be found in Ref. [101]. Firstly, randomness as an important prerequisite of a spin

glass will be discussed (Sec. 3.1). Equally essential is the presence of competing interac-

tions, which lead to frustration of the spins. Hence the spin glass system exhibits a highly

degenerate ground state and shows a cooperative freezing process (Sec. 3.2). Many spin

glasses, including the [Co2MnGe/V] system, exhibit superparamagnetic behaviour above

Tf , thus superparamagnetism will be introduced in Sec. 3.3.

3.1. Randomness and Magnetic Interactions

In the constitution of a spin glass, there must be disorder, either site or bond randomness.

Examples of metallic site-random spin glasses are provided by the archetypal spin glasses

Au1−xFex and Cu1−xMnx with x ≪ 1. Here the substitution of small amounts of the

magnetic ions into the non-magnetic matrix occurs completely randomly with no short-

range ordering. This directly leads to a random distribution of distances between the

magnetic ions. Insulating and conducting chemical compounds can also made random

by diluting the sublattices, examples are the semiconductor EuxSr1−xS [112] and the

metal La1−xGdxAl2. Random-site occupancy can be realized by taking an intermetallic

compound and making it amorphous. This is achieved by a very rapid cooling from the

melt, so that the crystalline lattice is destroyed. Once the randomness is established, it
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remains forever fixed and is therefore named quenched-disorder.

Another possibility to produce a spin glass is bond-randomness, in which the nearest

neighbour exchange interactions vary between ferromagnetic coupling J+ and antiferro-

magnetic coupling J−. The existence of such a random-bond system was experimentally

discovered e.g. in Rb2Cu1−xCrxF4.

As mentioned above, competing interactions are the second ingredient of a spin glass

order, thus the typical interactions important for a spin glass are shortly introduced.

In metals the exchange interaction between distant magnetic ions can be mediated

by the conduction electrons of a non-magnetic metallic matrix. A localized magnetic

moment spin-polarizes the conduction electrons and this polarization couples to a neigh-

bouring localized moment at a distance r. This indirect interaction is known as the

famous Rudermann, Kittel, Kasuya, Yosida (RKKY) interaction [113]. Its Hamiltonian

is H = J(r)SiSj, where Si,j are the local spins and the coupling strength J describes a

damped oscillation. At large distances one yields

J(r) =
J0 cos(2kF r)

(2kF r)3
, (3.1)

with the Fermi momentum kF and the distance r between the magnetic moments. The

(1/r)3 fall-off is sufficiently long-ranged so that it can effectively reach many nearest

neighbour sites. Combining the oscillating RKKY polarization with the site disorder

discussed above, a random distribution of coupling strengths and directions can be

generated.

In insulating materials the exchange mechanism operating is known as superexchange.

It can be defined as an indirect exchange interaction between next-nearest neighbouring

magnetic ions, which is mediated by a non-magnetic ligand placed in between (see

Fig. 3.1). The ligand transfers an electron (usually in a p state) to the magnetic atom.

A sort of covalent mixing of the p and d wave functions occurs. Due to the Pauli

exclusion principle the two p electrons of the ligand must be opposite in direction and

thus cause antiparallel pairing with the d electrons on the magnetic atoms.

An interaction always present in magnetic materials is the dipolar coupling. The

corresponding Hamiltonian takes the form:

Hij =
1

r3
ij

[µi · µj − 3(µi · r̂ij)(µj · r̂ij)], (3.2)

with the spin magnetic moments µi,j at a distance rij. In addition to the (1/rij)
3 distance

dependence there is also a built-in anisotropy which can favour ferro- or antiferromag-
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d-element d-element

ligand

Figure 3.1.: Superexchange between two magnetic d ions and a p state (e.g. in MnO).
The arrows show the spins of the electrons and how they are distributed
over the atoms.

netic alignment. If the spins are oriented along rij they will couple ferromagnetically, if

the spins are oriented perpendicular to rij then they couple antiferromagnetically. Thus

the dipolar interaction in a two- or three-dimensional magnet introduces to some degree

a competing interaction.

Competing interactions may lead to frustration of the spin orientation. As a simple

example a square lattice of four Ising spins with four ±J bonds is depicted in Fig. 3.2.

For the left-hand configuration all the exchange interactions can easily be satisfied. The

system exhibits a two-fold-degenerate ordered state and is unfrustrated. The degeneracy

is caused by the arbitrariness of the initial choice of the first spin. For the right-hand

configuration there is frustration. Whichever choice is made, all the exchange inter-

actions cannot be satisfied simultaneously. As a result the system possesses an 8-fold

degenerate, metastable ground state. It should be noted that frustration is a direct

consequence of the disorder and mixed interactions. While it is a necessary condition

for a spin glass, it is not a sufficient one.

3.2. The Freezing Process

A naive picture of the evolution of a spin glass, when the temperature is reduced from

far above the freezing temperature Tf to below, shall be presented here.

At high temperatures the behaviour of a spin glass system is dominated by thermal

fluctuations, i.e. there will simply be a collection of paramagnetic spins, which are

28



3.2. The Freezing Process
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Figure 3.2.: Square lattice with mixed interactions. The left plaquette shows the unfrus-
trated and the right one the frustrated case. ’+’ denotes a ferromagnetic,
’-’ an antiferromagnetic interaction.

rotating independently. As the spin glass is cooled, the rotating spins slow down and

build up magnetic short-range order, leading to small, randomly oriented clusters. The

remaining spins, which are not coupled to clusters, are independent of each other, but

help to transmit the interactions between the clusters, allowing for changes in the cluster

size. As the temperature reaches Tf , the thermal disorder is gradually removed and the

correlations between the clusters become more long-ranged. At Tf the system freezes in

one of its multi-degenerate ground states. Since the free energy of the system exhibits

many valleys separated by energy barriers (see Fig. 3.3), it may become trapped in one

of the many metastable configurations.

spin configuration
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Figure 3.3.: Schematic picture of the free energy of a spin glass in a magnetic field in
dependence of the spin configuration of its lattice atoms below Tf .
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The exact nature of the spin glass freezing process is still not very clear. It is defini-

tively different from a gradual blocking of spin clusters, the freezing process is a co-

operative transition. On the other hand it is not clear up to now, if the spin glass

exhibits a true phase transition or a glass type slowing down of the spin dynamics.

The spin glass phase usually does not possess long-range magnetic order, there are no

magnetic Bragg peaks found in scattering experiments due to a lack of translational

invariance [114, 115].

Phenomenologically the spin ordering can be described via a spin-spin correlation

function 〈SiSj〉t, here for the simplified case of Ising spins. Since the sign of this corre-

lations will be random 〈SiSj〉t = 0 holds, but

〈SiSj〉2t ≈ exp

(

−|Ri − Rj|
ξSG

)

(3.3)

where |Ri − Rj| is the distance between the spins and ξSG is the spin glass correlation

length. One observes that ξSG grows as T → Tf , showing that important collective

effects are taking place [101].

3.3. Superparamagnetism

Superparamagnetism is a magnetic phenomenon observed in many spin glasses at higher

temperatures.

A model superparamagnet is an ensemble of small, non-interacting, single-domain fer-

romagnetic particles, whose magnetization points in the direction of an easy axis. This

can be due to magnetocrystalline or shape anisotropy. The energy of the particles can

thus be written as E = KV sin2 θ − µH cos θ, where K is the anisotropy constant, V is

the volume of a particle with magnetic moment µ, and θ denotes the angle between the

magnetization and the easy axis. The energy is minimized when θ = 0 or π. The energy

barrier Ea = KV has to be overcome to flip the magnetization direction from θ = 0 to

π or the other way round. This can be managed with either field energy (M · H) or

thermal energy (kBT ). For small particles the activation energy KV is small compared

to kBT , and the magnetization can easily be flipped by thermal fluctuations. At high

temperatures (kbT ≫ KV ) the system will therefore show paramagnetic behaviour with

fluctuating clusters, each owing a large magnetic moment (up to 105µB). Therefore, the

system is called superparamagnet. The magnetization of this superparamagnet at high
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temperatures scales like [116]

M(H, T ) = NcµcL(
µcH

kbT
), (3.4)

with the number of magnetic clusters Nc, the cluster magnetic moment µc and the

Langevin function L(x). The relaxation time τ of the moment on a particle is given by

thermal activation

τ = τ0exp
(

KV

kBT

)

, (3.5)

where τ0 is typically 10−9 s. Thus the fluctuations slow down with decreasing tempera-

ture. When the relaxation time τ is much longer than the measuring time t (τ > αt with

α = 100), the system will appear magnetically ordered. This defines a blocking tem-

perature TB, given by TB = KV/kBln(αt/τ0). The blocking temperature TB is of order

KV/25kB, since t can be changed by a few orders of magnitude with only a relatively

small change in TB. The blocking temperature will not be the same for all particles, if

they exhibit a distribution in V or K.

There is an important difference between the superparamagnetic blocking at TB and

a spin glass freezing process at Tf . The non-interacting particles are blocked gradually

as given by their volume and anisotropy energy. In a spin glass freezing or cluster glass

freezing process the interaction between the clusters leads to a phase transition like

collective phenomenon at Tf .

3.4. Spin Glass Phenomena

In this section typical magnetization and susceptibility measurements on spin glasses will

be introduced. A survey of the various other measuring techniques is given in Ref. [101].

Far above the freezing temperature the spin glass behaviour resembles that of a (su-

per)paramagnet with a collection of freely rotating magnetic moments. For a paramag-

net, the susceptibility χ is just χ = M/H, since usually it is measured in the low-field

limit of the magnetization’s Brillouin function. Fig. 3.4 shows a systematic susceptibility

study on many different concentrations of the spin glass alloy CuMn. The results are

plotted as inverse susceptibility versus temperature. The susceptibility at high temper-

atures follows a Curie-Weiss law

χ =
C

T − Θ
, (3.6)

C being the Curie constant and Θ the Curie paramagnetic temperature. The rapid

increase of Θ with the concentration of Mn reflects the increasing ferromagnetic interac-
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Figure 3.4.: Reciprocal susceptibility of Cu1−xMnx with different concentrations as a
function of temperature. Figure taken from Ref. [117].

tion. Both in metallic and insulating spin glasses [99, 118] even at temperatures as high

as about 5Tf the first deviations from the Curie-Weiss law have been observed. Thus on

a local scale strong magnetic correlations develop far above the freezing temperature.

A fairly universal characteristic phenomenon in spin glasses was found in the early

1970s by Cannella and Mydosh [100], who discovered sharp cusps in the frequency-

dependent susceptibility of AuFe and CuMn in low fields. Both canonical spin glasses

were studied many years before, but only in high fields. While the random interactions

in a spin glass cause a freezing of the spins in random directions, a magnetic field aligns

them parallel to the field. Therefore, a strong magnetic field can destroy the spin glass

state.

Fig. 3.5 shows the frequency-dependent (ac-)susceptibility χac for CuMn (1 at%) as
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Figure 3.5.: Zero-field susceptibility χ’ as a function of temperature for the alloy CuMn;
from Ref. [119].

a function of temperature. The cusp clearly defines the freezing temperature Tf . How-

ever, on the fine scale of the inset there is a slight rounding of the cusp into a peak,

contradictory to the hypothesis of a phase transition. With decreasing frequency of the

ac measurements the peak is shifted downwards in temperature. For the frequency vari-

ation of 2.5 decades in Fig. 3.5, Tf is reduced by about 1%. This frequency shift is not

expected or found in usual long-range ordered anti- or ferromagnetic materials up to the

mega or giga Hertz range. This exemplifies that spin glasses exhibit a unique transition

with unconventional dynamics.

Fig. 3.6 illustrates the two measurement procedures to cool a spin glass in a dc mag-

netization experiment. The first is to cool the sample in zero field to T ≪ Tf (a → b)

and at this temperature apply the field. Instantaneously this will give rise to a jump in

the magnetization (b → c) to a value comparable with that found from χac. The tem-

perature is then increased and the zero-field cooled (ZFC) warming curve (c → d → e)

is recorded. Secondly, the sample can be cooled with a measuring field applied, while

recording the field-cooled (FC) magnetization (e → d → f). At Tf the FC susceptibility

becomes independent of the procedures and nearly independent of time. Furthermore,

the process of field cooling followed by field warming is reversible; the temperature can

be cycled back and forth, while the FC susceptibility traces the same path. On the

other hand, the entire ZFC curve (c → d) exhibits a slow time evolution up to Tf . Thus
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Figure 3.6.: Field cooled (e→f) and zero-field cooled (e→c) magnetizations for CuMn as
a function of temperature; from Ref. [120].

the dc field, if applied below Tf , creates a metastable, irreversible state and the freezing

temperature is defined by the onset of the irreversibilities. This can qualitatively be

understood in the picture of the spin glass hypersurface in Fig. 3.3. The coarse-grained

free energy is strongly temperature dependent near Tf . Above Tf all valleys are very

shallow, but some of them become very deep as the temperature is lowered. Thus on

cooling the system may be trapped in a side-minimum and many rearrangements of

clusters of spins are necessary until the system can relax.

For T < Tf the spin glass is in its frozen state without having a true long-range

magnetic order. The initial magnetization Mzfc(H) after zero-field cooling shows a

characteristic S-shaped form, not observed above Tf [121]. However, Mzfc(H) does not

yield information on the thermal equilibrium behaviour of spin glasses, since it shows

a time dependence [122]. On the other hand, the magnetization Mfc(H) found in field

cooling shows only weak time effects and is therefore suggested to be the true equilibrium

magnetization of a spin glass [123].

Spin glasses exhibit pronounced irreversibility effects, when the field is changed at

a fixed temperature. The hysteresis phenomena can resemble those in ferromagnets.

However, there exists a wide variation in the shape of the hysteresis loops, which also

depend on the magnetic history of the sample. For instance in dilute AuFe the loops

are rather narrow and flat and antisymmetric around the origin (see Fig. 3.7(a)). In

comparison CuMn with low concentration of Mn has been found to show a squared hys-

teresis loop with sharp steps (see Fig. 3.7(b)). Almost the entire remanence is reversed

in a very short time and at a very sharp value of the field, indicating a macroscopically
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3.4. Spin Glass Phenomena

coherent reversal of the magnetization. This phenomenon points towards a cooperative

behavior among a large number of frozen spins. This is confirmed by theoretical model

calculations revealing that for such a magnetization reversal ferromagnetic short-range

order is predominant [124].

a) b)

Figure 3.7.: Hysteresis behaviour of (a) AuFe and (b) CuMn at low temperatures given
in the figure; taken from Ref. [125, 126].
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4. Neutron Scattering

The neutron was discovered 1932 by Chadwick [127]. It attained its name by the ob-

servation that it does not possess an electric charge and hence is neutral. Today it is

known that the neutron is composed of one up and two down quarks with charge 2/3

and −1/3, respectively.

1936 Hahn, Meitner and Strassmann observed the first man-made nuclear fission and

already in the same year also the first neutron scattering experiment was performed

using neutrons from a radium beryllium source. In 1942 Fermi built the first nuclear

reactor in Chicago and 1945 the first neutron diffractometer became operational. After

crucial developments in neutron sources and scattering methods, in the 60’s the first high

flux reactor specially designed for beam hole experiments became critical in Brookhaven.

1972 the reactor at the Institute Laue Langevin in Grenoble went into operation, which

is still the most powerful neutron source worldwide [128].

The reason for the success of neutron scattering in the scientific research is the fact that

neutrons provide a series of properties making them a unique probe for the investigation

of structure and dynamics of condensed matter and biomolecules:

• The mass of the neutrons leads to a de Broglie wavelength of thermal neutrons

(E ∼= 25 meV) being of the order of interatomic distances in solids and liquids and

thus can yield information on the structure of the scattering system.

• The energy of thermal neutrons is of the same order as that of many excitations

in condensed matter. So the measurement of the neutron energies in an inelastic

scattering experiment provides information on the interatomic forces.

• Neutrons exhibit a magnetic moment and therefore interact with the unpaired

electrons in magnetic atoms. This makes neutron scattering unique for the inves-

tigation of magnetic structures.

• Neutrons interact differently with different isotopes of the same atomic species,

which can give rise to a strong contrast in neutron scattering experiments, while

there is only little contrast in x-ray scattering.
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4. Neutron Scattering

• Since the neutron is an uncharged particle it is scattered by nuclear forces and can

penetrate deeply into the target. In addition, the interaction is weak and can be

treated within the first Born approximation.

This chapter is organized as follows: After providing a survey above fundamental prop-

erties of the neutrons, a short review of the scattering theory is given. Subsequently the

theory and the experimental realization of neutron reflectivity and off-specular scattering

are presented.

Fundamental Properties of the Neutron

Neutrons as nuclear constituents are stable, whereas free neutrons are radioactive par-

ticles with a mass of mn = 1.675 · 10−27 kg [129]. As an effect of the weak interaction

the neutron decays after a half-life of τ = 890 s ± 60 s into a proton, an electron and

an antineutrino, according to:

n → p+ + e− + ν̃ (+0.77 MeV). (4.1)

The energy of the neutron is given by its kinetic energy E = 1
2
mnv

2. The velocity spec-

trum of neutrons emerging from a nuclear reactor and being thermalized by a moderator

is close to Maxwellian with the temperature T of the moderator. This yields the energy

for the most probable velocity vmax = (2kBT
mn

)
1

2 [130]:

E = kBT. (4.2)

The de Broglie wavelength of a neutron with velocity v is λ = h
mnv

where h is the Planck

constant. The wavevector k is defined to have the magnitude k = 2π
λ

, its direction being

that of v. The momentum of the neutron is p = h̄k, yielding

E = kBT =
1

2
mnv

2 =
h2

2mnλ2
=

h̄2k2

2mn

. (4.3)

Thermal neutrons with a temperature of T = 290 K possess an energy of approx.

25 meV. Hence they have a wavelength of 0.18 nm and a velocity of 2200 m/s.

The neutron carries a spin of 1
2

which is accompanied by a magnetic dipolar moment

µn = −1.913µNσ, (4.4)

where µN is the nuclear magneton and σ the Pauli spin operator for a particle with spin
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quantum number 1/2. The negative value of the magnetic moment indicates that it is

directed antiparallel to the spin direction.

The magnetic moment of the neutron interacts with both the electrons and the mag-

netic moment of the nuclei. Since the latter interaction is small, it will be neglected

within the framework of this thesis.

4.1. Scattering Theory

This chapter provides the theoretical background for nuclear scattering processes on a

quantum mechanical basis. It should elucidate the fundamental aspects only; detailed

descriptions of the scattering problem can be found in textbooks on quantum mechanics

[131, 132] or neutron scattering [133, 134].

For an idealized neutron scattering experiment a beam is assumed with a current

density j0(r) incident on the target. The scattering is assumed to be elastic, i.e. the

energy of the scattered neutrons is equal to that of the incident particles. The scattering

process is considered to be a sum of incoherent single processes and thus can be reduced

to a two-body-problem. The scattering center shall exhibit an interaction range centered

at the coordinate origin. Thus in the far field the incident neutron can be described as

a plane wave Ψ0(r) = eikr with the wave vector k (see Fig. 4.1). The scattering object

located at r = 0 interacts with the neutron at r via the potential V (r) and can be

considered as a perturbation of the incident beam wave function Ψ0 leading to the

creation of a scattered spherical wave Ψs(r). As the interaction potential V (r) is only

short ranged the motion should be free of forces at r → ∞. Thus for the scattered wave

it follows:

Ψs(r)
r→∞→ f(Q)

eik′r

r
, (4.5)

where k′ denotes the wavevector of the scattered wave and Q is the so-called scattering

vector, defined by

Q = k − k′. (4.6)

As the scattering events are elastic, i.e. |k| = |k′|, one gets

|Q| = 2|k| sin(Θ). (4.7)

f(Q) is called scattering amplitude and is the central parameter in scattering processes

as it contains all the information about the scattering potential.

The connection to the experiment is given by the differential scattering cross section,
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k

k’

z

2Q

dW

dF

Figure 4.1.: Scattering geometry for an incident plane wave scattered at a target.

(dσ/dΩ), which is defined as the ratio of flux of neutrons, scattered into the solid angle

dΩ, to the incoming flux (see Fig. 4.1),

dσ

dΩ
=

js · dF
|j0|dΩ

, (4.8)

where dF = r2dΩ denotes the area covered by the detector and js is the flux of the

scattered wave.

Quantum mechanically the flux is given by

j = ρa
h̄

2mi
(Ψ∗∇Ψ − Ψ∇Ψ∗), (4.9)

where ρa is the particle density of the incident beam. For the incident plane wave Ψ0

Eq. (4.9) leads to j0 = ρa
h̄k
m

. The flux of the scattered spherical wave for large r is given

as js = ρa
h̄k
m

|f(Q)|2

r2 er. Inserting the incoming and scattered flux into Eq. (4.8) finally the

cross section is obtained:
dσ

dΩ
= |f(Q)|2. (4.10)

The scattering cross-section is completely determined by the scattering amplitude. dσ

has the dimension of an area and is given in barn (1 barn=10−24cm2). It should be

emphasized that scattering gives information on the absolute value of the scattering

amplitude only, information on the phases are lost. This is the so-called phase-problem.

The total cross section is found by integrating the differential cross-section over all
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possible scattering angles:

σ =
∫

dΩ
dσ

dΩ
. (4.11)

The cross-sections and therefore |f(Q)|2 can be determined experimentally. The next

task is now to create a connection between |f(Q)|2 and the interaction potential V (r).

4.1.1. Scattering and Born Approximation

For the calculation of the scattering amplitude f(Q) the time-independent Schrödinger

equation

(∆r + k2)Ψ(r) = v(r)Ψ(r) (4.12)

has to be solved, with the abbreviation

k2 =
2mE

h̄2 ; v(r) =
2m

h̄2 V (r). (4.13)

Here k denotes the wave vector for propagation in empty space.

Now the linear partial differential equation will be transformed into an integral equa-

tion. This has the advantage that for such an integral equation a solution can be found

by iteration.

Ψ0(r) is the solution of the homogenous differential equation:

(∆r + k2)Ψ0(r) = 0. (4.14)

Then, however, every solution of the integral equation

Ψ(r) = Ψ0(r) +
∫

d3r′G(r − r′)v(r′)Ψ(r′) (4.15)

is simultaneously a solution of the Schrödinger equation (4.12), if the Greens-function

G(r − r′) fulfills the equation

(∆r + k2)G(r − r′) = δ(r − r′). (4.16)

Ψ0(r) and G(r − r′) have to be determined with respect to the boundary conditions.

Ψ0(r) is a plane wave in empty space

Ψ0(r) = eikr. (4.17)

In the far field limit the scattered wave behaves like an outgoing spherical wave. One
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can verify that

G(r − r′) = − eik|r−r′|

4π|r − r′| , (4.18)

fulfills this condition and is a solution of Eq. (4.16). The integral equation equivalent

to the Schrödinger equation with boundary conditions can now be written as:

Ψ(r) = eikr − m

2πh̄2

∫

d3r′V (r′)
eik|r−r′|

|r − r′|Ψ(r′). (4.19)

The interpretation is as follows: the incident wave Ψ0(r) is superimposed by spherical

waves emitted from scattering at positions r′. The intensity of these spherical waves is

proportional to the interaction potential V (r′) and the amplitude of the wave field at

the position r′. To obtain the total scattering amplitude, one has to integrate over the

entire sample volume.

The equation (4.19) has still to be solved, which can be done now by iteration. For

simplification the operator G is introduced, giving the integral over the Greens function

in Eq. (4.19), which then can be expressed by:

Ψ = Ψ0 + GV Ψ. (4.20)

In the first order Born approximation, which is usually called kinematical scattering

theory, the wave function Ψ on the right-hand side is substituted by Ψ0:

Ψ(1) = Ψ0 + GV Ψ0. (4.21)

This approximation is only valid, if the scattering is weak, since it neglects multiple

scattering processes. For neutron scattering this approximation often holds well. To

analyze neutron reflectivity data however, one has to go beyond the kinematical theory

(see Chap.4.3).

In the asymptotical limit the interaction range R0 of the potential V (r) is much smaller

than the distance scattering center - detector, so that r ≫ R0 and r′ ≪ r (see Fig. 4.2).

Hence the scattered wave is given by:

Ψ(1)(R) = eikR − eikR

R

m

2πh̄2

∫

d3r′V (r′)e−iQr
′

, (4.22)

and the scattering amplitude can be written as:

f (1)(Q) = − m

2πh̄2

∫

d3r′V (r′)e−iQr
′

. (4.23)
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Figure 4.2.: Scattering geometry for the calculation of the far field limit at the detector
D. The interaction range of the local potential V is R0. The wavevector of
the incoming wave is k.

In first order approximation this shows that the scattering amplitude is proportional to

the Fourier transform V (Q) of the scattering potential.

If the special case of a spherically symmetric potential (V (r′) = V (r′)) is assumed,

the scattering amplitude becomes a function of |Q|. In the case of thermal neutron

scattering on the nuclear potential, the interaction range is so short compared to the

wavelength that it can be considered as δ-function. This potential is called Fermi’s

pseudo potential:

V (r) =
2πh̄2

m
bδ(r), (4.24)

where b denotes the nuclear scattering length, which is a phenomenological parameter.

Using Eq. (4.23) one obtains the scattering amplitude for Fermi’s pseudo potential

f (1)(Q) = −b. (4.25)

Apparently f (1) is isotropic and independent of the scattering vector.

4.1.2. Magnetic Scattering

Only the nuclear scattering has been considered so far. Since the neutrons have a

magnetic moment, they can interact with the magnetic field of unpaired electrons via

the magnetic dipole-dipole interaction. If B is the magnetic field generated by the spin

of an electron, the magnetic interaction is given by

Vm = −µnB, (4.26)
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with the magnetic moment of the neutron

µn = −γnµNσ, (4.27)

where σ denotes the spin operator, µN the nuclear magneton and γn = −1.913 the

gyromagnetic factor of the neutron. One can derive the magnetic neutron scattering

cross-section using the Born approximation. However, for ions with spin- and orbital

angular momentum it takes a complicated form [130, 135]. A simple expression for the

magnetic scattering length p can be given in the so-called dipole approximation, where

it is assumed that spin and orbital angular momentum of the atom couple to the total

angular momentum J (L−S-coupling) and that the momentum transfer is rather small

[136]:

p =
re

2
γngJfm = (2.7 · 10−5)gJfm(Q), (4.28)

with the Lande’ splitting factor g. fm denotes the magnetic form factor, which is the

Fourier transform of the density of unpaired electrons. It accounts for the fact that the

scattering occurs from a cloud of electrons, having a size comparable to the wave length

of thermal neutrons. The magnetic form factor decreases with increasing momentum

transfer, at small Q, however, it approaches 1. Another speciality of magnetic scattering

as compared to nuclear scattering is the occurrence of a directional term in the formal

description of the magnetic scattering cross section: the neutrons are only sensitive to

the component of the magnetization perpendicular to the scattering vector.

The values of the magnetic and nuclear scattering length turn out to be of the same

order of magnitude, thus the magnetic and nuclear structure of matter can be obtained

with about the same accuracy.

4.2. Scattering and Refraction

The interaction of neutrons with matter has so far been discussed on the atomic level.

However, since neutrons can be described as waves, one should also expect some kind

of refraction phenomena at interfaces between different media, each having its own

refractive index n. Such refractive phenomena are well known from visible light. When

a light beam is passed through a lens it is deflected. The refractive index depends on the

frequency ω of light and for visible wavelengths it has a value in the range between 1.2

and 2. Neutrons are reflected in a similar way, but the difference from unity of n is very
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small in this case, of the order 10−5. In general the refractive index can be expressed as

n = 1 − δ + iβ, (4.29)

where δ is of order 10−5. The imaginary part β accounts for the absorption in the

material and is usually much smaller than δ. In the case of neutrons δ can be positive or

negative. The refractive index and the scattering properties are related in a fundamental

way [137]. The results will be given here without derivation.

In terms of the atomic density and atomic scattering length the decrement δ of the

real part of the refractive index nr = 1 − δ is:

δ =
2π

k2
ρab, (4.30)

where ρa is the atomic number density. If the target contains point scatterers with

different scattering lengths bj and different density ρj, the factor ρab has to be substituted

by the average scattering length density ρav =
∑

j bjρj.

In addition to scattering, absorption processes also take place in the medium. The

beam is attenuated in the material on a characteristic length scale 1/e, which is denoted

by µ−1, where µ is the linear absorption coefficient. It is defined in terms of attenuation

of the intensity, not in terms of attenuation of the wave amplitude; after traversing a

distance z in the material the intensity is attenuated by a factor e−µz, but the amplitude

only by a factor e−µz/2. The wave propagating in the medium is

einkz = einrkz · e−βkz = ei(1−δ) · e−βkz. (4.31)

From this equation it can be inferred that

β =
µ

2k
. (4.32)

4.3. Specular Neutron Reflectivity

In this section the fundamental principles of neutron reflectivity from non-ferromagnetic

samples will be introduced, both within the framework of scattering and refraction.

Since neutrons and x-rays are refracted in a similar way, the results derived here can

directly be applied for specular x-ray scattering. One important advantage of neutron

scattering compared to x-ray scattering is the magnetic interaction of neutrons with

ferromagnetic samples. The reflectivity of polarized neutrons from thin ferromagnetic
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films will be discussed and some typical curves observed in the scattering experiments

will be presented.

Reflectivity studies represent scattering processes at grazing incidence, where the mo-

mentum transfer to the sample is small. In the small Q regime, however, multiple

scattering cannot be ignored and the Born approximation discussed above is too crude.

One has to go beyond the kinematical limit.
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Figure 4.3.: Refractive and scattering description of the neutron reflectivity. For details
see text.

It is assumed that a neutron beam impinges at a glancing angle α onto a flat and

extended surface separating vacuum (air) and medium (see Fig. 4.3). The scattering

problem becomes invariant under translation in the (x,y)-plane defined by the surface

and the scattering vector Qz = 2ki,r sin(α) points along the z-direction. The neutron

beam can be considered to interact with a constant potential simply related to the

scattering length density:

V (r) =







2πh̄2

mn
ρav : z > 0

0 : z < 0
(4.33)

where ρav =
∑

j bjρj. Thus neutron reflectivity is sensitive to the scattering length

density along the z-direction of the sample only; it contains no information about the

microscopic structure of the scatterer.

The scattering problem is expressed by the Schrödinger equation

[

− h̄2

2mn

∆ + V (r)

]

Ψ(r) = EΨ(r), (4.34)

where Ψ(r) denotes the wave function of the neutron. With the assumptions made above

only the normal component of the incoming wave vector ki is altered by the potential

48



4.3. Specular Neutron Reflectivity

step. Thus it is the normal component of the kinetic energy

Ez =
h̄2Q2

z

8mn

, (4.35)

which determines, whether the neutron is totally reflected from the barrier. Total re-

flection occurs for E ≤ V . If E = V one obtains the critical scattering vector for total

reflection:

Qz,c =
√

16πρav. (4.36)

Total reflection can only occur, if the scattering length density is positive.

In analogy to the refraction of light one can apply the basic principle of optics by in-

troducing the refractive index n as defined in Sec. 4.2. This has the advantage that the

results derived are simultaneously valid for neutron as well as for x-ray scattering. Fur-

thermore, simulations of reflectivity data from multilayer systems can easily be carried

out within the classical framework.

Snell’s law and Fresnel equations

The reflection and refraction of a plane wave at a planar interface shall be considered,

where the index of refraction changes abruptly from 1 to n (see Fig. 4.3). The incident

wavevector is ki, and the amplitude is ai. Analogously the reflected and transmitted

wavevectors are kr and kt respectively, and the amplitudes are ar and at. The amplitudes

are related by the requirement that the wave and the derivative must be continuous at

the interface z = 0

ai + ar = at. (4.37)

and

aiki + arkr = atkt. (4.38)

The wavenumber in vacuum is denoted by k = |ki| = |kr| and in the medium it is

nk = |kt|. From Eq. (4.37) together with the x-component of Eq.(4.38) one readily

derives Snell’s law:

cos α = n cos α′. (4.39)

The critical angle α = αc for total external reflection is obtained by setting α′ = 0◦ and

expanding the cosines (in the regime of small angles), yielding αc =
√

2δ. Thus Snell’s

law can be written as

α2 = α′2 + α2
c − 2iβ. (4.40)
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The projection of Eq. (4.38) perpendicular to the interface leads to the Fresnel equations,

expressing the reflected and transmitted amplitude ratios:

r ≡ ar

ai

=
α − α′

α + α′
; t ≡ at

ai

=
2α

α + α′
. (4.41)

Here r denotes the amplitude reflectivity and t the transmittivity, respectively. The

corresponding intensity reflectivity R (transmittivity T ) is the absolute square of r(t).

Since α′ is a complex number (see Eq. (4.40)) the transmitted wave falls off with

increasing depth into the material as

ate
i(kα′)z = ate

ikRe(α′)ze−kIm(α′)z. (4.42)

The 1/e penetration depth Λ of the intensity is therefore given by

Λ =
1

2kIm(α′)
. (4.43)

α′ can be derived from Eq. (4.40) for a given incident angle α as a function of β. If

the absorption is strong, even above the edge of total reflection the penetration depth

is small. In contrast, one observes a jump of the penetration depth at the edge of total

reflection for the case of small absorption.

In connection with diffraction and reflection phenomena, it is often more convenient to

use the wavevector transfers instead of the angular variables. With Q ≡ 2k sin α ≃ 2kα

and Qc ≡ 2k sin αc ≃ 2kαc one can define the dimensionless variables

q ≡ Q

Qc

≃
(

2k

Qc

)

α ; q′ ≡ Q′

Qc

≃
(

2k

Qc

)

α′. (4.44)

This allows to rewrite Eq. (4.40), yielding

q2 = q′2 + 1 − 2ibµ, (4.45)

where the parameter bµ is related to the absorption coefficient µ (see Sec.4.2) through

bµ = 2k
Q2

c
µ.

For the calculation of the reflectivity, transmittivity and penetration depth, one needs

the values for the absorption length µ−1 and the scattering length density. The complex

number q′ can then be derived from Eq. (4.45) and one finally obtains:

r(q) =
q − q′

q + q′
; t(q) =

2q

q + q′
; Λ(q) =

1

QcIm(q′)
. (4.46)
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Far away from the region of total reflection, i.e. q ≫ 1, the solution to Eq. (4.45)

yields Re(q′) ≃ q, recalling that bµ ≪ 1. Rewriting the amplitude reflectivity r(q) as

r(q) = (q2 − q′2)/(q + q′)2 one obtains r(q) ≃ (2q)−2 in the considered limit, i.e. the

intensity of the reflectivity precipitously falls off as R(q) ≃ (2q)−4.

Multilayer Systems

So far only the reflectivity from a single interface has been considered. As the scattering

from multilayer structures has attracted particular interest in recent years and plays an

important role in this thesis, the calculation of the reflectivity will be extended to the

case of a stratified medium. One important method for this purpose was developed by

Parratt [138]. This so-called Parratt formalism describes the reflectivity of a system

with N layers, sitting on the top of an infinitely thick substrate (see Fig. 4.4).
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Figure 4.4.: Sketch of reflection and refraction for stratified homogeneous media. The
amplitude of the reflected and refracted wave in the j-th layer is denoted
by ar

j and aj+1, respectively .

Each layer in the stack has a refractive index nj = 1 − δj + iβj and the thickness ∆j.

The z-component of the wavevector in the j-th layer, kz,j is determined from the total

wavevector kj = njk and the x-component, kx,j, which is conserved through all layers,

so kx,j = kx. The value of kz,j is then given by the relation

k2
z,j = (njk)2 − k2

x = (1 − δj + iβj)
2k2 − k2

x ≃ k2
z − 2δjk

2 + i2βjk
2. (4.47)

With Qj = 2kj sin αj = 2kz,j, the wavevector transfer in the j-th layer is

Qj =
√

Q2 − 8k2δj + i8k2βj. (4.48)
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4. Neutron Scattering

The reflectivity at each interface obeys Fresnel’s law. This allows to recursively calculate

the total reflectivity amplitude at the interface between the vacuum and the first layer.

The first step is to determine the reflectivity from the interface between the bottom

of the N -th layer and the substrate. Assuming that the thickness of the substrate is

infinitely thick, there are no multiple reflections to consider and Eq. (4.46) yields

r′N,∞ =
QN − Q∞

QN + Q∞

. (4.49)

The prime is used to denote a reflectivity amplitude that does not include multiple

scattering effects. For the calculation of the reflectivity from the top of the N ’th layer,

multiple scattering and refraction have to be allowed. Considering the continuity at the

interface and including a phase factor p2
N = ei∆NQN for the addition of multiple scattered

waves, the reflectivity of the N -th layer can be evaluated as

rN−1,N =
r′N−1,N + r′N,∞p2

N

1 + r′N−1,Nr′N,∞p2
N

. (4.50)

The process can be continued recursively until the total reflectivity amplitude is ob-

tained.

Roughness and Interdiffusion

Up to now, systems with sharp, flat interfaces are assumed for the calculation of the

reflectivity of multilayers. In the limit of the kinematical approach, where Q is much

larger than Qc, this leads to the Fresnel reflectivity (see above). In real systems the

interface may be rough with peaks and troughs over a large range of length scales with

a fractal-like structure (height fluctuations). Or the boundary may be graded with one

material diffused into the other (see Fig. 4.5).

rough interface diffuse interface

Figure 4.5.: Roughness and interdiffusion at the interface can result in identical specular
reflectivities.

In both the rough and the graded cases, the laterally averaged density profile of the
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4.3. Specular Neutron Reflectivity

interface can be described by an error function [137]

f(z) = erf

(

z√
2σ

)

, (4.51)

where σ is a measure of the width of the graded region or the rms (root mean square)

roughness, respectively. Therefore, specular reflectivity cannot distinguish between

rough and graded interfaces. The reflectivity is reduced by a factor very much like

the Debye-Waller factor [139]

R(Q) = RF (Q)e−Q2σ2

. (4.52)

In the case of the graded interface the lost intensity goes into the transmitted beam as

there are no potential gradients in any other direction than normal to the surface. In

the case of the rough interface the intensity is scattered in the off-specular region. This

can yield information about in-plane coherence lengths (see Sec. 4.4).

In Fig. 4.6 simulated neutron reflectivities for a series of systems are shown together

with a schematic illustration in the left column. The curves were calculated using

reasonable instrumental parameters of the reflectometer ADAM, which was used for

most of the neutron measurements within this thesis (see Sec. 4.5). Fig. 4.6(a) shows

the reflectivity curve of a semi-infinite Al2O3 crystal. The critical wavevector Qc, up

to which total reflection occurs, is clearly visible. As the crystal has a perfect smooth

interface, the scattered intensity drops as Q4 above Qc (Fresnel reflectivity). If the

boundary is rough, the drop in the reflected intensity is larger.

In the case of a thin metallic film grown on the substrate (Fig. 4.6(b)) interference

fringes superimposed on the Fresnel reflectivity will occur. These arise from the interfer-

ences of waves reflected from the interfaces vacuum-film and film-substrate, respectively.

In Fig. 4.6(c) the reflectivity curve of a metallic superlattice, consisting of layers of

the two metals A and B, with n repetitions of the double layer period Λ is drawn. The

periodic internal structure gives rise to so-called superlattice peaks at positions of integer

multiples of QSL = 2π/Λ in addition to the total thickness oscillations of the thin film

system.

4.3.1. Polarized Neutron Reflectivity

In the previous chapter the structural characterization of samples has been discussed.

Since the neutrons exhibit a spin, they can also interact with the magnetic induction B

in the sample plane as described in Sec. 4.1.2. As the wavevector transfer is small in

53



4. Neutron Scattering

 

 

in
te

n
s
it
y
 [
a

rb
. 
u

n
it
s
]

-1
Q [nm ]z 

a)

b)

c)

}

n L

0.0 0.5 1.0 1.5 2.0

 

 

A
B

Figure 4.6.: Simulated neutron reflectivity curves for an infinitely thick crystal (sub-
strate) (a), a thin non-magnetic film (b) and a superlattice (c), together
with a schematic illustration in the left column.

reflectivity, the nuclear and magnetic density profile normal to the surface will be probed,

no information on the local atomic order can be derived. If the neutron polarization,

i.e. the neutron magnetic moment with respect to the scattering plane, is fixed and

the polarization state of the scattered neutrons is analyzed before the detector, the

NR is called polarized neutron reflectivity (PNR). In the experiment four reflectivity

curves are measured, denoted as R++, R−−, R+−, R−+. Here the first index ’+’ or ’-’

refers to the incident neutron spin state, and the second index to the neutron spin state

after reflection from the sample. Typically, a neutron is called an ’up’ neutron when

its moment is parallel to an applied magnetic field, defining the neutron quantization

axis, and ’down’, if its moment is antiparallel. The reflectivities R++ and R−− are those

without a change in the spin state and are called non-spin-flip (NSF) channels, whereas

R+− and R−+ are spin-flip (SF) channels. The scattering geometry for PNR studies

used throughout this thesis is depicted in Fig. 4.7. The y-axis is the quantization axis
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4.3. Specular Neutron Reflectivity

x

z

y
B

ki

Q
kf

mn
ai af

Q

Figure 4.7.: Scattering geometry for PNR studies. The y-axis is the quantization axis for
the neutrons and the non-spin-flip axis and the x-direction is the spin-flip
axis. For specular reflectivity studies the scattering vector Q is parallel to
the z-axis.

for the neutron magnetic moment µN , which is interacting with the in-plane magnetic

induction B in the sample. For specular reflectivity αi = αf holds and the scattering

vector Qz is parallel to the z-axis and perpendicular to the surface.

In the dynamical theory the scattering of polarized neutrons can be calculated in

an exact way, starting from basic equations. By fitting the measured polarized neutron

reflectivities, the depth dependent magnetization profile can be derived beside structural

information like film thickness and interfacial roughness.

The interaction potential of the magnetic moment of a neutron with a magnetic in-

duction B in the sample is Vm = −µNB (see Sec. 4.1.2). Thus the total scattering

potential seen by the neutrons can be written as an operator V :

V =




V++ V+−

V−+ V−−



 =
2πh̄2

m
ρa




b 0

0 b



− µn




Bz Bx − iBy

Bx + iBy −Bz



 .(4.53)

In analogy to the nuclear scattering length density ρab it is useful to define the magnetic

scattering length density ρap which is related to the magnetic induction via

B =
2πh̄2

|µn|mn

ρap, (4.54)

with p = pê, where p is given by Eq. (4.28) and ê is parallel to the mean magnetic

induction in the sample. Using this relation, the interaction potential can be expressed
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as:

V =
2πh̄2

m
ρa








b 0

0 b



+




p cos Θ p sin Θ

p sin Θ −p cos Θ







 . (4.55)

With this effective potential the Schrödinger equation has to be solved, considering the

two possible eigen-states of the neutron. The particle behaviour in this case is formally

described by the two-component vector of states, i.e. Ψ(z) = (Ψ+(z), Ψ−(z)), Ψ+(z)

for neutrons polarized parallel to the y-direction, and Ψ−(z) for neutrons polarized

antiparallel to the y-direction. The scattering of polarized neutrons is then described by

a pair of coupled, second order differential equations:

∂2

∂z2
Ψ+(z) +

(

Q2

4
− 2m

h̄2 V++(z)

)

Ψ+(z) − 2m

h̄2 V+−(z)Ψ−(z) = 0, (4.56)

∂2

∂z2
Ψ−(z) +

(

Q2

4
− 2m

h̄2 V−−(z)

)

Ψ−(z) − 2m

h̄2 V−+(z)Ψ+(z) = 0. (4.57)

Some conclusions can directly be drawn without solving the Schrödinger equation. When

the off-diagonal elements of the scattering potential Vi,j with i 6= j are zero, Eqs. (4.56)

and (4.57) are decoupled and only NSF scattering occurs. In this case the vector of the

magnetic induction of the sample B has to be oriented along the y-axis. Alternatively,

if the magnetization is aligned parallel to the x-axis, Vi,j with i = j are zero and

the V+−, V−+ potentials flip the neutron spin from up to down and vice versa. Thus

quantitative analysis of all four scattering channels in an PNR experiment allows for

the determination of the magnitude and orientation of the magnetic induction in the

sample.

For the analysis of the measured reflectivities some important points should be noted

here. The diagonal elements of the scattering potential V++ and V−− contain nuclear as

well as magnetic contributions, whereas V+− and V−+ are solely of magnetic origin. As

the ’up’ and ’down’ neutrons experience different scattering potentials when interacting

with a ferromagnetic sample, the critical vector for the nuclear scattering Qc has to be

modified. For the case of NSF scattering Qc is given by [140]

Q±
c =

√

16πρa(b ± p)ẑ. (4.58)

Here ± refers to the up and down spin polarization, and ẑ is a unit vector pointing in

the direction of the scattering vector normal to the surface.
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4.3. Specular Neutron Reflectivity

For an angle Θ of the magnetization vector with respect to the y-axis, the difference

R++ − R−− = 2p cos Θ ∝ 2By (4.59)

is proportional to the y-component of the magnetization vector, whereas the spin-flip

reflectivities are degenerate, and

R+− + R−+ = 2p sin2 Θ ∝ B2
x (4.60)

is proportional to the square of the x-component of the magnetic induction.

The solution of Eqs. (4.56) and (4.57) shall not be given here, but several algorithm

to simulate PNR data have been provided in the literature [141, 142, 143], among them

the supermatrix (SM) method and the matrix-recursion (MR) formalism [144, 145, 146,

147, 148]. The latter one is based on a generalized Parratt formalism. A potential well

structure composed of slabs of constant potential is assumed. Then all transmitted and

reflected amplitudes are calculated via recursion. Interface roughness can numerically

be realized by a slicing method [149], where the interface region is divided into different

layers with sharp boundary and constant potential.

PNR scans from some artificial multilayers shall now be exemplary discussed to

show some typical features in the reflectivity curves. Fig. 4.8(a) shows a simula-

tion of a specular polarized neutron scan for NSF and SF channels of the multilayer

[Co2MnGe(5nm)/V(4nm)]10. A schematic illustration depicts the magnetic order in

the sample. The Co2MnGe layers are ferromagnetically saturated, with the magneti-

zation vectors of each layer being parallel to the applied field, providing the neutron

guiding field. The chemical periodicity Λchem gives rise to Bragg peaks at multiples of

Qz = 2π/Λchem. As the sample exhibits a net magnetization, the intensities R++ and

R−− are split, the difference being proportional to M . Since there is no component of

the magnetization perpendicular to the neutron polarization axis, no spin-flip scattering

occurs. If the magnetization vectors of the ferromagnetic layers are aligned parallel and

antiparallel to the polarization axis, forming an antiferromagnetically coupled multi-

layer (see Fig. 4.8(b)), there are additional Bragg peaks in the reflectivity at half integer

values of 2π/Λchem due to a doubling of the magnetic period over the chemical period

(Λmag = 2Λchem). If the antiferromagnetic alignment is perfect, the sample has no net

magnetization and thus the splitting of the NSF channels vanishes. Fig. 4.8(c) shows a

perfect antiferromagnetic coupled multilayer with the magnetization vectors forming an

angle Θ = 45◦ with respect to the polarization axis. The difference to the previous case

is the intensity in the SF channel due to a component of the magnetization being per-
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Figure 4.8.: Simulated neutron polarized reflectivity curves for a
[Co2MnGe(5nm)/V(4nm)]10 multilayer in ferromagnetic saturation (a),
with perfect antiferromagnetically coupled Co2MnGe layers collinear to the
neutron guiding field (b) and with the magnetization of the antiferromag-
netic coupled layers forming an angle Θ with respect to the guiding field
(c).

pendicular to the polarization axis. Since the SF intensity is of purely magnetic origin,

it only shows antiferromagnetical half-order Bragg peaks, but no chemical Bragg peaks.
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4.4. Off-specular Scattering

Specular PNR has proven to be a powerful tool for the investigation of the chemical and

magnetic depth density profiles of magnetic heterostructures, but it does not provide

any direct information about lateral length scales of the films, completely ignoring their

crystalline structure and possible large scale inhomogeneities. Thus it is for instance

not possible to distinguish between interdiffusion and roughness. Information on the

in-plane structure of the sample is only contained in scans with an in-plane component

of the scattering vector Q. Hence the morphology of a layered system can be unveiled

by studying the diffuse (off-specular) scattering . Off-specular neutron scattering can

yield information about the lateral dimensions of magnetic domains in the film and their

out-of-plane correlation length. Since the coherence length of the neutron beam is finite,

the information yielded is statistical, i.e. no microscopic pictures can be drawn.

For the theoretical calculation of diffuse scattering at grazing incidence one has to go

beyond the Born approximation (BA), since total external and multiple internal reflec-

tions have to be taken into account. In this case the distorted-wave Born approximation

(DWBA) has to be used for a quantitative description of experiments. Nevertheless, the

BA, where the scattering is assumed to be weak and multiple scattering is neglected,

shall be presented here, since this formalism has the (didactic) advantage to provide an

easy approach to the physics behind the off-specular scattering.

4.4.1. Born Approximation

Qz

Qx

kf

ki

afai

z(0) z(X,Y)

Figure 4.9.: Scattering from a rough surface.

Fig. 4.9 shows the scattering of an neutron beam from a single rough surface. A

beam of intensity I0 is incident at a angle αi, and scattered at an exit angle αf . In the
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Born approximation the reflected amplitude is calculated by summing all of the beams

scattered from volume elements d3r within the illuminated sample volume V , taking

into account the appropriate phase factors. The scattering amplitude is then given by

rV = −ρab
∫

V
d3reiQr. (4.61)

For simplicity reasons, magnetic scattering is not considered. The volume integral can

be transformed to a surface integral using Gauss’ theorem. For the evaluation of the

scattering cross-section (absolute square of the scattering amplitude) it is assumed that

the difference in heights of the sample surface, [h(x, y)−h(x′, y′)], is a Gaussian random

variable, whose distribution depends on the relative difference in position (x−x′, y− y′)

only. The ensemble average of height differences is described by the function g(x, y),

with

g(x, y) = 〈[h(0, 0) − h(x, y)]2〉. (4.62)

This yields the scattering cross-section [150]

dσ

dΩ
=

(

ρab

Qz

)2

LxLy

∫

S
dxdye−Q2

zg(x,y)ei(Qxx+Qyy), (4.63)

where A = LxLy is the illuminated area. The characteristics and thus the ensemble

average of height differences from surfaces can be very different, depending on the model

assumed. Here, the case of a correlated, isotropic rough surface with a cut-off length

shall be discusses in more detail.

Since the correlations are isotropic, g(x, y) depends only on r =
√

x2 + y2. The height

fluctuations shall remain finite as r → ∞, which is best explored by writing

g(r) = 2σ2 − 2C(r) (4.64)

= 2σ2 − 2σ2e−(r/ξ)2h

, (4.65)

where the height-height correlation function C(r) =< z(0)z(r) > has been introduced.

The average height distribution is given by the rms roughness σ, ξ is the lateral correla-

tion length and serves as an effective cut-off length for the roughness. The exponent h is

the so-called hurst parameter and determines the texture of the roughness. Small values

of h produce extremely jagged surfaces, while values approaching 1 lead to smooth hills

and valleys. The resulting cross-section can be separated into a specular and off-specular
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term, yielding

(

dσ

dΩ

)

diffuse

=
LxLy

Q2
z

ρ2e−Q2
zσ2

∫

A
dxdy

(

eQ2
zC(r) − 1

)

e−i(Qxx+Qyy), (4.66)

for the diffuse term only.

For multilayer systems, Eq. (4.66) has to be generalized by introducing height-height

correlation functions

Cij(R) =
σiσj

2

(

exp
(

−(R/ξi)
2hi

)

+ exp
(

−(R/ξj)
2hj

))

e−|zi−zj |/ξ⊥ , (4.67)

for each pair of interfaces. The cross-section is then evaluated by summing the contri-

butions of each interface over all interfaces i and j [151, 152]

(

dσ

dΩ

)

diffuse

=
LxLy

Q2
z

∑

ij

∆ρ2
i ∆ρ∗2

j e−Q2
z(σ2

i
+σ2

j
)/2eiQz(zi−zj)Sij(Q). (4.68)

Here Sij(Q) represents the integral in Eq. (4.66) with the height-height correlation length

C replaced by Cij, ∆ρi is the difference in the scattering length density ρ on the two

sides of the i-th interface. The vertical correlation of the roughness is expressed by the

perpendicular correlation length ξ⊥. For the case of perfect vertical correlation, when ξ⊥

is larger than the total thickness of the multilayer, the diffuse intensity will be peaked

at the Bragg conditions visible as Bragg-sheets as shown in Fig. 4.10(a). If the interface

roughness is completely uncorrelated (ξ⊥ = 0) the total diffuse intensity is an incoherent

sum of the intensities diffusely scattered from each layer and will be spread out uniformly

in Qz (see Fig. 4.10(b)) [153, 154].

4.4.2. Distorted-Wave Born Approximation

At glancing incidence the kinematical approach is no longer valid and the distorted-wave

Born approximation has to be applied. DWBA [155] represents a typical example of the

perturbation theory approach which generally implies to use an exact solution of the

simplified reference Hamiltonian as a starting point for the iteration over the difference

between this Hamiltonian and that to be solved. In most of the cases only the first

iteration is accounted for. In the form of DWBA suggested by Sinha et al. [150] for

x-ray off-specular scattering, the zero approximation assumes an exact solution of the

Schrödinger equation for the reflection potential, while the residual potential is treated
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Figure 4.10.: Schematic view of perfectly correlated (a) and uncorrelated (b) interfacial
roughness from layer to layer and corresponding reciprocal-space represen-
tation.

as a perturbation. The differential cross-section for scattering by a rough surface yields:

(

dσ

dΩ

)

diffuse

=
LxLy

16π2

∣
∣
∣k2

0(1 − n2)
∣
∣
∣

2 |T (αi)|2|T (αf )|2S(Qt), (4.69)

where k0 is the magnitude of the wave vector in free space, T (αi,f ) are the transmission

coefficients of the surface for angles αi,f and

S(Qt) =
1

Qt
zQ

t∗
z

eσ2(Qt2
z +Qt∗2

z )/2
∫

S
dXdY

(

eQt
zQt∗

z C(X,Y ) − 1
)

e−i(QxX+QyY ). (4.70)

Qt is the wave vector transfer inside the reflected medium and C(x, y) the height-height

correlation function introduced above. The DWBA formalism can be generalized for the

case of x-ray scattering from multilayers [151, 153].

The polarization dependence of diffusely scattered neutrons has not yet been consid-

ered. This has been realized by Toperverg using a matrix representation of the DWBA

[148]. This algorithm allows to analyze off-specular scattering from layered systems with

any complex arrangements of inter-layer magnetization, as well as exhibiting an in-plane

magnetic structure. Due to the complexity of the resulting expressions they will not be

stated here.
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4.5. Experimental Setup

The spin polarized neutron reflectivity measurements have mainly been performed with

the reflectometer ADAM [156] at the Institut Laue-Langevin (ILL) in Grenoble, France.

The ADAM machine is a fixed wavelength angle dispersive reflectometer operating at

a neutron wavelength of λ = 0.441 nm with a wavelength resolution of 0.5%. Fig. 4.11

shows a schematic picture of the machine. The ’white’ neutron beam provided by

ILL’s horizontal cold source is monochromated by a focussing graphite monochromator,

which is aligned to select the maximum of the Maxwellian distribution of the neutron

intensity. A Beryllium filter suppresses the higher order wavelengths. After passing

collimation slits the neutron beam impinges on the sample, mounted on a one-axis,

two-circle diffractometer with a horizontal scattering plane. The slits enable a very

high resolution within the scattering plane, while in the vertical direction the beam is

optimized for maximum intensity. The scattered neutrons are detected by either a pencil

detector or a position-sensitive detector (PSD). The latter one has the advantage that

it covers not only the specular reflection, but also collects off-specular intensity at the

same time.

For spin polarized neutron measurements on magnetic systems the incoming beam

can be polarized and an analysis of the spin state of the scattering process is possi-

ble. Therefore, the incident monochromatic and unpolarized beam is polarized by a

supermirror operating in transmission, with a typical efficiency of 97% (see Fig. 4.12).

Figure 4.11.: Cutaway view of the ADAM reflectometer at the Institut Laue-Langevin
in Grenoble, France.
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The polarizing capability of the magnetic supermirror stems from the fact that the two

possible neutron states exhibit different critical angles for total reflection. Hence, one

polarized beam is refracted and the other one with opposite polarization is reflected. To

change the polarization, a spin flipper is placed in front of the sample. In an analog fash-

ion a second spin flipper and a second supermirror mounted on the detector side allow

for spin analysis of the scattered beam. Thus all four cross sections can be measured.

Furthermore, various sample environments can be realized on the ADAM instrument.

For the measurements within this thesis a conventional electro-magnet, providing fields

up to 0.8 T, has been used. A closed-cycle refrigerator (DISPLEX) allows to access

temperatures between 10 K and 600 K.

S

B B

H

D

P A

SF SF

Figure 4.12.: Schematic outline of the ADAM reflectometer with polarization analysis.
The incident beam from the source S is polarized by the first supermirror
P. The polarization can be changed by spin-flippers SP before and after the
sample. The second supermirror A analyzes the polarization state before
the neutrons are counted by the detector D. The setup shows the (+,−)
configuration with the first spin-flipper on and the second off.
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Scattering

X-ray scattering is a capable tool for the determination of the depth dependent chemi-

cal (structural) profile of thin films and artificial multilayers, but does not directly yield

information on the magnetic structure. This gap is closed by x-ray resonant magnetic

scattering (XRMS). XRMS is a combination of x-ray scattering and the x-ray mag-

netic circular dichroism (XMCD), which is a magneto-optical (MO) effect and therefore

dependent on the magnetic order in the sample.

Magneto-optical effects are a well known phenomenon for wavelengths in the optical

part of the spectrum, since Faraday 1845 observed the rotation of the polarization vector

during transmission of linearly polarized light through a magnetic material [157]. About

40 years later a completely analogous phenomenon, the magneto-optical Kerr effect

(MOKE), was found by Kerr for light, which was reflected by a magnetized sample [158].

Further MO effects were found, which differ partly only with regard to the geometry

of the experimental setups. There are three general geometries used to measure the

Kerr effect, which are displayed in Fig. 5.1. In the polar (P-MOKE) geometry, the

polar MOKE

M 

longitudinal MOKE, 
XRMS

M 

transversal MOKE, 
XRMS

M 

Figure 5.1.: Geometry of the three magneto-optical Kerr effects.

magnetization is perpendicular to the reflecting surface. In the longitudinal (L-MOKE)

configuration the magnetization is parallel to the scattering plane and sample surface.

The Kerr effect generates a polarization rotation of the reflected beam with respect to

the scattering plane [159]. By contrast, in the transverse Kerr effect (T-MOKE), where
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2p3/2

Fermi level EF
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Figure 5.2.: Picture of the spin-dependent absorption process.

the magnetization is oriented perpendicular to the scattering plane and parallel to the

surface, the change of the amplitude of the reflected light is measured [160, 161].

Already in the beginning of the last century the first attempts were started proving

effects also in the x-ray range of the light. Indeed, suitable experiments became only

possible by the availability of intensive x-ray radiation of well defined polarization as

it can be produced by a synchrotron. The most popular MO effect in the x-ray range

was predicted 1975 by Erskine and Stern [162]. They showed that the absorption cross

section of circularly polarized light at the M2,3 absorption edges of ferromagnetic Ni for

the magnetization direction parallel or antiparallel to the light propagation should be

different. This so-called x-ray magnetic circular dichroism (XMCD) was later observed

experimentally by Schütz et al. [163] at the iron K edge.

The microscopic origin of the XMCD effect is based on electronic transitions from

spin-orbit split initial states to exchange-split final states. While neutrons sense the

magnetic field distribution inside a sample, XMCD probes the local atomic moments

via resonant absorption. By tuning the photon energy close to a specific absorption

edge, it is possible to study the magnetism of different elements separately.

Resonant absorption of circularly polarized light occurs for any of the dipole transi-

tions, for instance in the case of 3d transition metals from 2p core states to 3d valence

states. Due to L · S coupling, the initial p state is split in p1/2 and p3/2, as depicted in

Fig. 5.2. Considering only dipole transitions, x-ray excitation leads to two absorption

lines corresponding to transitions from 2p1/2 to 3d3/2 (L2) and from 2p3/2 to 3d5/2 (L3).

In the case of ferromagnetic transition metals, the 3d band is exchange split, giving rise

to a different electron density of states at the Fermi level for majority as compared to
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minority electrons. Due to the exchange splitting of initial states, the transitions L2 and

L3 exhibit different absorption coefficients for right and left circular polarized light. For

non-magnetic materials the absorption coefficients are identical. Beside the element-

sensitivity XMCD has at least two more attractive features. A quantitative analysis of

the absorption lines via sum rules [164, 165] provides information on the spin and or-

bital magnetization separately, while most other methods (bulk magnetization, neutron

scattering, etc.) are sensitive to the total magnetization only. Lastly, XMCD is very

sensitive which allows it to be used to determine extremely small magnetic moments,

even magnetic moments of 0.001µB per atom can be detected [166].

XRMS is the scattering counterpart of XMCD [167, 168], combining the advantages of

XMCD and conventional x-ray scattering. It has been demonstrated for the first time by

Gibbs et al. [19] and Hannon et al. [20] in 1988. Today XRMS has become a standard

tool for the study of magnetization in multilayers, magnetization reversal processes in

individual layers and magnetic roughness.

This chapter provides a short introduction into the basic theory of magneto-optical

effects in a quantum mechanical treatment. The main focus here lies on the XRMS

effect. After a brief discussion of the polarization dependence of the scattering factor,

the relation between scattering and absorption phenomena is presented. Subsequently

magnetic reflectivity and magnetic diffuse scattering are described.

5.1. Quantum Mechanical Description

In this section a short introduction is given to the subject of the quantum mechanical

description of resonant x-ray scattering. As seen for the case of neutron scattering, the

scattering process can be described by cross-sections. For their derivation the quantity

of interest is the transition rate probability W between the initial and final states of

the excited atomic electrons, when they interact with light. The Hamiltonian of an

atomic electron in a quantized electromagnetic field [169] can be split into contributions

of the undisturbed electron system, free radiation field and interaction Hamiltonian,

H = H0 + Hrad + Hint, where

Hint = − e

mc
A · p +

e2

2mc2
A2

≡ H1 + H2. (5.1)

The Hamiltonian Hint completely determines the scattering processes of light by elec-

trons. Here the spin of the electron is neglected in the description, as the spin dependent
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Figure 5.3.: Quantum mechanical description of the interaction of a photon with an
atomic electron. Photoelectric absorption (a) and Thomson scattering (b)
can be explained by applying first order perturbation theory. Resonant
scattering (c) is a second order process and occurs via an intermediate state.
Fig. taken from Ref. [166].

terms in the interaction Hamiltonian only contribute to non-resonant magnetic scatter-

ing, which is beyond the scope of this thesis. The vector potential A of the photon field

is linear in photon creation and annihilation operators. H1 again is linear in A, and it

follows that it can either create or destroy a photon, but not both. In first order, this

term gives rise to photoelectric absorption, depicted in Fig. 5.3(a). H2 is quadratic in
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5.1. Quantum Mechanical Description

A and can first destroy and then create a photon, while leaving the electron in the same

state. This term therefore describes elastic Thomson scattering (Fig. 5.3(b)). Resonant

scattering processes stem from second order perturbation theory of H1 (Fig. 5.3(c)). In

the following sections absorption and resonant scattering are discussed in more detail.

5.1.1. Absorption

The absorption cross section σa is defined as the transition rate probability divided by

the incident flux Φ0 = c/V

σa =
wi→f

Φ0

. (5.2)

Since the photoelectric absorption is described by the Hamiltonian H1, the transition

rate probability wi→f to first order perturbation theory can be derived as:

wi→f =
2π

h̄

∫

dEf |〈f |H1|i〉|2 ρ(Ef )δ(Ef − Ei − h̄ω), (5.3)

where ρ(Ef ) is the density of final states. The initial and final states are given by

|i〉 = |i〉el|ki, σ〉ph, |f〉 = |f〉el|0〉ph. (5.4)

The two different polarization states are denoted by σ = 1, 2 and k is the wavevector of

the photon.

If only dipole transitions are considered, which is sufficient for the 2p → 3d excitations

of 3d transition metals, the absorption cross section results in

σa =
4π2e2

h̄c
h̄ω |〈f |ǫ · r|i〉|2 ρ(Ef = Ei + h̄ω), (5.5)

where ǫ is the polarization vector of the electromagnetic wave.

As can be seen from Eq. 5.5 the absorption cross-section is proportional to the density

of final states ρ, which in a magnetic material is different for the two electron spin states.

An evaluation of the transition matrix elements of (ǫ · r) reveals that the probability to

excite a spin-up or spin-down electron at the L2,3 edge, respectively, is dependent on

the polarization state of the incoming light. Right circularly polarized photons excite

mainly spin-up core electrons at the L3 edge and spin-down electrons at the L2 edge.

For left circularly polarized light the situation is vice versa. The spin-orbit splitting is a

prerequisite for the spin polarization of the core electrons, since the sum of the electrons

excited at the L2 and L3 edges shows no spin polarization for a given helicity.

Thus, XMCD can be explained in a two-step model: First, the excited electrons become
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5. X-ray Resonant Magnetic Scattering

spin polarized depending on the photon helicity due to the spin-orbit splitting. Second,

the unoccupied final states serve as a spin detector (see Fig. 5.2).

5.1.2. Resonant Scattering

Phenomenologically the x-ray scattering amplitude of an atom can be written in the

form

f(Q, ω) = f 0(Q) + f ′(ω) + if ′′(ω), (5.6)

where f 0(Q) is the atomic form factor, i.e. the Fourier transform of the charge distri-

bution and f ′, f ′′ are the real and imaginary parts of the dispersion corrections. They

are energy dependent and take their extremal values at the absorption edges. Since the

dispersion corrections are usually dominated by electrons in the K or L shell, where

the electrons are spatially confined, the Q dependence can be neglected. The Thomson

term f 0, on the other hand, depends on the scattering vector. However, at the 2p edges

of 3d metals the scattering vector is small compared to the atomic radius, which leads

to the approximation f 0(Q = 0) = Z, where Z is the atomic charge number.

To obtain resonant scattering terms it is necessary to calculate the cross-section in sec-

ond order perturbation theory. The differential cross section is related to the scattering

amplitude by the definition (see Sec. 4.1)

dσ

dΩ
= |f(Q, ω)|2 . (5.7)

Applying perturbation theory yields

f(Q, ω) =
V ω

2πh̄c2

(

〈f |H2|i〉 +
∑

n

〈f |H1|n〉〈n|H1|i〉
Ei − En + h̄ω

)

, (5.8)

where the sum is over all possible states with energy En. The first term in Eq. 5.8

describes the non-resonant Thomson scattering from all electrons in the atom, whereas

the second term is responsible for the resonant scattering. The matrix element in the

numerator can be interpreted in the following way: the incident photon is first destroyed,

and the electron makes a transition to an intermediate state |n >. In an elastic scattering

event the electron then creates a photon and falls back to the ground state |a > (see

Fig. 5.3(c)). When the energy of the incident photon is equal to the difference in energy

between the intermediate and ground states, h̄ω = En − Ei, resonant behavior occurs.

If only dipole transitions are considered (for multipole transitions see [20]), the total
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5.1. Quantum Mechanical Description

elastic x-ray scattering factor can be written as:

f = (ǫ ∗
f · ǫi)(−reZ + F (0))

︸ ︷︷ ︸

f1

+ i(ǫ ∗
f × ǫi) · mF (1)

︸ ︷︷ ︸

f2

+ (ǫ ∗
f · m)(ǫi · m)F (2)

︸ ︷︷ ︸

f3

, (5.9)

with

F (0) =
3λ

8π

[

F 1
−1 + F 1

1

]

, (5.10)

F (1) =
3λ

8π

[

F 1
−1 − F 1

1

]

, (5.11)

F (2) =
3λ

8π

[

2F 1
0 − F 1

−1 − F 1
1

]

. (5.12)

The unit vector m is pointing along the direction of the local magnetic moment, which

defines the quantization axis of the system. The functions F 0,1,2 are strongly energy

dependent resonant strengths for the dipole transitions. The first term in Eq. 5.9 refers

to non-resonant and resonant charge scattering. The second term is first order in the

magnetization and yields a circular dichroic signal, whereas the third term is second

order in the magnetization causing linear dichroism.

Polarization Dependence

In this section the resonant scattering amplitude f for different polarization states of

the incoming light will be briefly discussed. First, linear polarized light is considered.

Usefully, the polarization is chosen either parallel (ǫπ) or perpendicular (ǫσ) to the

scattering plane (see Fig. 5.4). The first term in Eq. 5.9 is similar to Thomson scattering

e
p,f

ki

e
s,f

e
p,i

e
s,i

kf

scattering plane

Figure 5.4.: Definition of the polarization vectors.
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5. X-ray Resonant Magnetic Scattering

and conserves the initial photon polarization. While for σ → σ scattering f1 is constant,

π → π scattering is dependent on the scattering angles. The second term f2 is sensitive

to ferromagnetism and allows for a change of the polarization state. The intensity of

σ → π and π → σ scattering is quadratic in m, noting that the differential cross-section is

proportional to the absolute square of the scattering amplitude. Since σ → σ scattering

is forbidden, only the charge-magnetic interference term of the π → π scattering contains

a contribution linear in m. This geometry corresponds to the T-MOKE and is sensitive

to in-plane magnetization perpendicular to the scattering plane. The third term f3 is

neglected here, since its contribution to XRMS is generally supposed to be small [170].

The XRMS experiments performed within the framework of this thesis used the L-

MOKE geometry, where the magnetization lies along the sample surface within the

scattering plane. To probe this magnetization, circular polarized light is needed. The

polarization vectors can be written as a linear combination of ǫπ and ǫσ

ǫ± = ∓ 1√
2

(ǫσ ± iǫπ) , (5.13)

where the positive sign indicates right circular polarization. The polarization state of the

circular polarized light is not changed by scattering. Similar to the T-MOKE geometry,

the charge-magnetic term causes the dominant magnetic contribution to the scattering.

In general the relations between incoming polarization and magnetization direction are

not definite. For vector magnetometry measurements comparable to PNR measurements

an analysis of the outgoing light would be necessary, which is technically demanding.

5.2. Scattering and Refraction

Similar to the case of neutron scattering, the refractive index is related to the scattering

factor through [171]

1 − n(ω) =
reλ

2

2π

∑

i

ρifi(ω,Q = 0), (5.14)

where ρi is the number density of species i in the sample and fi(ω,Q = 0) is the corre-

sponding scattering amplitude in the forward direction ki = kf . It can be shown that

the classical optical approach and the quantum mechanical description are equivalent

with respect to the dipolar transitions [170]. However, for the simulation of specular

reflectivity from ferromagnetic multilayer systems an algorithm based on magneto-optics

is more convenient, since it allows for the application of a standard dynamical approach.

The required refractive index of a material can completely be inferred by an absorption
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5.3. Specular Reflectivity

experiment.

According to the optical theorem, the imaginary part β of the complex refractive

index is directly proportional to the absorption coefficient µ,

β± = µ±/(2k), (5.15)

where k is the photon wavevector and the index refers to positive (+) or negative (−)

circular polarization. The refractive index is commonly split into real and imaginary

part according to

n± = 1 − δ± + iβ± = 1 − (δ ± ∆δ/2) + i(β ± ∆β/2), (5.16)

where δ and β are the dispersive and absorptive contributions, respectively, and ∆δ and

∆β are the corresponding magnetic contributions to the refractive index. If the energy

dependence of β is known, the modified Kramers-Kronig relations

δ+(E) + δ−(E) = − 2

π
P
∫ ∞

0
E ′β+(E ′) + β−(E ′)

E ′2 − E2
dE ′, (5.17)

δ+(E) − δ−(E) = −2E

π
P
∫ ∞

0

β+(E ′) − β−(E ′)

E ′2 − E2
dE ′, (5.18)

can yield the dispersive contribution δ to the refractive index. P denotes the principal

value [166].

One important implication of the Kramers-Kronig relations should be noted: The

optical theorem rewritten as

σa =
4πre

k
f ′′(Q = 0) (5.19)

states that the absorption cross-section σa is proportional to the imaginary part of the

atomic scattering length f ′′ in the forward direction. Since the scattering length is

related to the refractive index, its real part f ′ can be derived by applying the Kramers-

Kronig relations, if f ′′ is known. Hence the resonant magnetic scattering can be viewed

as being caused by magnetization dependent absorption or the other way round [167].

5.3. Specular Reflectivity

X-ray resonant magnetic scattering (XRMS) allows for the determination of element-

specific chemical and magnetic depth profiles of layered structures [172, 173, 174]. These

profiles can be obtained by a quantitative analysis of specular reflectivity measurements,
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Figure 5.5.: Refraction by a single boundary of two media. Eπ and Eρ are the electric-
field components parallel and perpendicular to the plane of incidence. Figure
taken from Ref. [178].

usually performed by numerical simulation. The calculation of the reflectivity needs a

dynamical approach, since total and multiple reflection effects cannot be neglected. Lee

et al. have given a theoretical formulation of x-ray resonant magnetic scattering [175,

176] from rough surfaces and interfaces within the distorted-wave Born approximation.

A matrix based formalism for magneto-optics with arbitrary magnetization direction

has been developed by Zak et al. [177, 178, 179]. It offers the possibility to calculate

the specular reflectivity without any restrictions to the geometry, i.e. the magnetization

direction, angle of incidence and polarization. The basic ideas to derive the expressions

for calculating magneto-optic coefficients for a general configuration of the magnetization

in a multilayer system shall briefly be presented here, following the paper by Zak et al.

However, one restriction is made for simplicity: since the multilayers studied within

this thesis exhibit an in-plane magnetization only, the direction of the magnetization is

confined to lie parallel to the surface.

First, two media separated by a single boundary, i.e. the xy-plane (see Fig. 5.5) are

assumed. The incoming and reflected electromagnetic wave is described in a basis of

polarization states perpendicular (Eσ) and parallel (Eπ) to the plane of incidence. These

fields can be collected in a four-component vector

P =











E(i)
σ

E(i)
π

E(r)
σ

E(r)
π











, (5.20)
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where i and r denote the incident and reflected wave, respectively. According to

Maxwell’s equations, the tangential components of the electric and magnetic field are

conserved, when a electromagnetic wave travels from medium 1 into medium 2. Thus it

is useful to change the basis

F =











Ex

Ey

Hx

Hy











. (5.21)

Now a so-called medium boundary matrix can be defined by the expression

F = AP. (5.22)

Having the matrix A, it becomes simple to write down the boundary matching conditions

for a two-media problem:

A1P1 = A2P2. (5.23)

This is a set of four linear equations with the unknowns E
(r)
1σ , E

(r)
1π , E

(i)
2σ , E

(i)
2π

(E
(r)
2σ = E

(r)
2π = 0) (see Fig. 5.5). The medium boundary matrix therefore solves the

problem for a single boundary.

For the calculation of A, the connection between the vectors F and P has to be found.

The in-plane direction of the magnetization M is specified by means of the polar angle

γ:

Mx = M cos γ, (5.24)

My = M sin γ. (5.25)

With these definitions the dielectric tensor ǫ yields

ǫ(ω) = N2








1 0 −i sin γQ

0 1 i cos γQ

i sin γQ −i cos γQ 1








. (5.26)

Here the charge and magnetic contribution to the complex refractive index are given by

N = 1 − δ + iβ and Q = −∆δ + i∆β, respectively. Q is the so-called Voigt parameter.

Using Snell’s law and Maxwell’s material equation D = ǫE the relations between the

components of the electric field vector E in the magnetic medium can be derived and

finally the medium boundary matrix A can be calculated.

In a multilayer system there is more than one boundary, thus one also needs to know

75



5. X-ray Resonant Magnetic Scattering

the wave propagation inside the medium. This is given by the medium propagation

matrix D̄, which describes the phase shift and absorption during propagation in the

layer. The boundary matching conditions for the multilayer system can now be expressed

in the form

Pi = MPf , (5.27)

with

M = A−1
i

l∏

m=1

(AmD̄mA−1
m )Af . (5.28)

The light starts out in the initial medium i, goes through the multilayer system and

ends up in the substrate or final medium f . With the knowledge of the refractive index,

Voigt parameter, magnetization direction and angle of incidence, the matrix M can be

calculated and as a result the reflected and transmitted intensities are determined.

Grabis [180] has written a computer code based on this Zak formalism, which was

used for the quantitative analysis of the XRMS data within this thesis. Structural and

magnetic roughness have been taken into account in terms of graded electron density

and magnetization profiles using a slicing method.

5.4. X-ray Resonant Magnetic Diffuse Scattering

Similar to the case of non-magnetic off-specular scattering, it is possible to study the

off-specular magnetic scattering and derive information about the correlation of the

magnetic roughness [176, 181, 182, 183].

The experiments within the framework of this thesis have been performed in L-MOKE

geometry, where the intensity difference of left and right circular polarized light is mea-

sured. Since the scattered intensity in L-MOKE geometry using circularly polarized light

is proportional to the charge-magnetic interference term (as discussed in Sec. 5.1.2) this

difference contains both charge and magnetic contributions [184], which cannot be sep-

arated.

The diffuse intensity difference in the L-MOKE geometry using circular polarization

shall be discussed here within the kinematical limit, i.e. in Born approximation [181,

183]. This is sufficient, since in the soft x-ray range, the scattering angles are large

compared to the critical angle. The derivation is completely analogous to the case of

off-specular neutron scattering (Sec. 4.4). The point of departure is a single magnetic

surface. The differential cross-section is yielded by inserting the resonant scattering

amplitude f (Eq. (5.9)) into Eq. (4.66). The charge and magnetic volume are considered

separately, each having its own roughness. The cross-section can be divided into a pure
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charge term, a pure magnetic term and a charge-magnetic interference term, which is the

only term being sensitive to a reversal of the helicity. The further derivation goes along

the approach in Sec. 4.4 and finally one gets the generalized result for the difference in

diffuse intensity of left and right circularly polarized light by a magnetic multilayer:

∆

(

dσ

dΩ

)

diffuse

= Pc
LxLy

Q2
z

[kf · m + cos(α + β)ki · m] × (5.29)

N∑

i,j

[

∆ρem
ij eiQz(zi−zj)e−Q2

z(σ2

e,i
+σ2

m,j
)/2Sem

ij (Q) + ∆ρem∗
ij eiQz(zi−zj)e−Q2

z(σ2

e,j
+σ2

m,i
)/2Sem

ji (Q)
]

,

(5.30)

with

Sem
ij (Q) =

∫

S
dXdY

(

eQ2
zCem

ij
(X,Y ) − 1

)

ei(QxX+QyY ), (5.31)

where Cem
ij (X, Y ) is the height-height correlation function of the structural interface i

and the magnetic interface j. This function is identical to Eq. (4.67), but ξ and h depend

on charge-magnetic correlations. The heights of the structural and magnetic surfaces

above the xy plane are given by the functions ze(x, y) and zm(x, y). The function

∆ρem
ij = ∆

{

Ne(−Zr0) + Nr
3λ

8π

[

F 1
−1 + F 1

1

]∗
}

i

∆

{

Nr
3λ

8π

[

F 1
−1 − F 1

1

]
}

j

, (5.32)

displays the difference in the charge scattering amplitude across the i-th interface times

the difference in the magnetic scattering across the j-th interface. The factor in front of

the sum in Eq. (5.29) contains the amount of circular polarization Pc and the geometrical

dependence of the angle of incidence and reflection. Due to the product ki,f · m the

magnetic sensitivity is confined to magnetic moments in the scattering plane. Out-of-

plane magnetic moments contribute only for large scattering angles.

The magnetic contribution to the off-specular scattering can be caused by different

mechanism. One can distinguish between a magnetic interface roughness correlated to

the structural roughness and magnetic roughness caused by magnetic domains in the

ferromagnetic layer. This point is further discussed in Chap. 7.

5.5. Experimental Setup

The soft XRMS experiments were performed using the diffractometer ALICE [185] at

the undulator beamlines UE56/1-PGM and UE56/2-PGM2 at BESSY II. Due to strong

air absorption of x-rays in the energy range considered (600-900 eV), XRMS experi-
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Figure 5.6.: Schematic topview of the diffractometer.

ments have to be carried out in vacuum. Therefore, a two-circle goniometer working in

horizontal scattering geometry has been installed in a vacuum chamber (see Fig. 5.6).

At synchrotron sources a vacuum of typically < 5 × 10−9 mbar is required to ensure a

ultrahigh vacuum environment of the beamline optics and the storage ring. To fulfill this

condition, a differential pumping stage, consisting of a pinhole P1 and a turbomolecular

pump, is installed between the chamber and the beamline. After the beam of light has

passed a collimating entrance slit of 300 µm it impinges on the sample. The scattered

beam is detected by a photodiode, creating a photocurrent, which is measured with

an electrometer. The size of the slit in front of the detector is likewise set to 300 µm,

resulting in an instrument resolution of 0.14◦. For the measurements circularly polar-

ized light produced by undulators was used with an energy resolution of approximately

∆E/E = 1 · 10−4. A magnetic field can be applied in the scattering plane along the

sample surface either parallel or antiparallel to the photon helicity, which corresponds to

the longitudinal magneto-optical Kerr effect (L-MOKE) geometry. The maximum field

which can be reached is ±0.27 T. The magnetic contribution to the scattered intensity

was always measured by switching the magnetic field at fixed photon helicity, which is

equivalent to the switch of the helicity at fixed magnetic field. A He closed-cycle cryostat

allows to reach a sample temperature in the range of 30-500 K.
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6. Single Co2MnGe Thin Films

In order to find out the optimal parameters for high-quality structural growth and

to control the magnetic properties of Heusler based superlattices, extensive preliminary

studies on Co2MnGe single films are necessary. Here we present a study of the structural

and magnetic properties of single Co2MnGe layers using x-ray scattering experiments

and magnetometry measurements. XMCD is used to probe the element specific magnetic

moments. Furthermore this method allows to determine the spin and orbital moment

of Co and Mn separately.

6.1. Sample Preparation

All films of the present study were grown by rf-sputtering with a dual source HV sput-

tering equipment on single crystalline Al2O3 (11-20) surfaces (sapphire a-plane). The

base pressure of the system was 5 × 10−8 mbar after cooling of the liquid nitrogen cold

trap. We used pure Ar at a pressure of 5 × 10−3 mbar as sputter gas, the target was

prepared from a stoichiometric alloy of the Heusler phase. The sputtering rates during

the thin film preparation were 0.04 nm/s for the Co2MnGe phase, the V seed layers

were deposited at a sputtering rate of 0.03 nm/s. The sapphire substrates were cleaned

chemically and ultrasonically after cutting. Immediately before the deposition they were

additionally etched by an ion beam for 300 s in order to remove any residual surface

contaminations.

There are two conditions to achieve good structural and magnetic quality of the

Heusler layers. First, the substrate temperature must be high, in our optimized proce-

dure the substrate temperature was 500◦C. Second, seed layers of a simple metal with

a good lattice matching to the Heusler compounds are important to induce epitaxial

or textured growth with a flat surface. Growing the films directly on sapphire results

in polycrystalline films and surface roughening. We have tested different possible seed

layers such as Cr, Nb, Ag and Au. Here we concentrate on V which gave good structural

results [186, 187] and has been used as interlayer for the multilayers discussed in the next

chapter. The surfaces of the Heusler compounds oxidize rapidly and must be covered
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Figure 6.1.: Out-of-plane Bragg scan of a V(3nm)/Co2MnGe(100nm) film measured with
Cu Kα radiation.

by a protection layer before being exposed to air. If nothing else is stated, we use an

amorphous Al2O3 film of 2 nm thickness as a cap layer.

6.2. Structural Properties

phase lattice parameter [nm] sat. magnetization [emu
g

] sat. moment [µB]

bulk film bulk film film

Co2MnGe 0.5743 0.575 111 114 5.02

Table 6.1.: Lattice parameters, saturation magnetization and saturation magnetic mo-
ments (per formula unit) of the pure, thick Heusler films in comparison to
the bulk values. The bulk values have been taken from Ref. [22].

The structural quality of the films was characterized by hard x-ray scattering using a

Cu Kα rotating-anode x-ray tube. Figure 6.1 shows an out-of-plane x-ray Bragg scan

of a 100 nm thick Co2MnGe film with a 5 nm V seed layer. Only the (220)- and the

(440)-Bragg peaks of the Heusler phase are observed, proving perfect (110)-texture out-

of-plane. Rocking scans at grazing incidence revealed that the films are polycrystalline

in-plane. Table 6.1 summarizes the relevant structural data derived from the x-ray

scans. The lattice parameters virtually coincide with those of the bulk phase, the half

width of the rocking curve (width in 2Θ at half maximum) characterizing the mosaicity
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Figure 6.2.: X-ray reflectivity scan of the sample V(4nm)/Co2MnGe(60nm), measured
with a standard Cu Kα rotating-anode x-ray tube.

of the crystallite is 0.8◦ for the Co2MnGe phase. The half width of the Bragg peaks

corresponds to the experimental resolution of the spectrometer. An example of an x-ray

reflectivity scan for a Co2MnGe film is shown in Fig. 6.2. Total thickness oscillations are

observed up to 2Θ = 10◦, pointing out a very flat surface morphology. A simulation of

the curve with the Parratt formalism gives a typical rms roughness for the film surface

of about 0.3 nm. This is corroborated by atomic force microscopic (AFM) pictures of

the surface which reveal a very smooth surface morphology. We also have grown films

at lower preparation temperatures down to a substrate temperature Tsub = 100◦C. The

structure of films prepared below Ts = 500◦C is still perfect (110)-texture, however with

a rocking width slightly increasing with decreasing preparation temperature.

Since for the multilayers discussed in the next chapter the typical layer thickness of

the Heusler layers is of the order of 3 nm only and Ts is limited to 300◦C in order to avoid

strong interdiffusion at the interfaces, the structural and magnetic properties of single

very thin Heusler layers prepared under the same conditions have been studied. Fig. 6.3

shows an out-of-plane Bragg scan of a trilayer V(5nm)/Co2MnGe(4nm)/V(5nm). One

observes a very broad (220)-Bragg peak with a half width of ∆2Θ = 2◦ at 2Θ = 43◦

from the Co2MnGe phase. Using the Scherrer formula [188] for the Bragg reflection of

small particles, which correlates the coherence length Lc of the particles with the half

width of the Bragg peaks

Lc = 0.89λ/[∆(2Θ) · cos(Θ)], (6.1)
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Figure 6.3.: Out-of-plane Bragg scan of a V(5nm)/Co2MnGe(4nm)/V(5nm) trilayer.

we derive Lc = 3 nm. This is an indication that the mean size of the crystalline grains

in the film is slightly smaller than the film thickness.

6.3. Magnetic Properties

The dc magnetization of our films was studied by a commercial superconducting quan-

tum interference device (SQUID) based magnetometer (Quantum Design MPMS sys-

tem). Examples of magnetic hysteresis loops of the Co2MnGe films are presented

in Fig. 6.4. The films possess a growth induced weak, uniaxial anisotropy with an

anisotropy field HK of about 50 Oe. For the measurements in Fig. 6.4 the external field

axis was directed parallel to the magnetic easy axis, thus the hysteresis loops are rect-

angular. The coercive field for the Co2MnGe phase is Hc = 20 Oe at room temperature.

The saturation magnetization at 5 K is in good agreement with the values measured in

bulk samples within the experimental error bars (see Tab. 6.1). The saturation magnetic

moment per formula unit calculated from the saturation magnetization is 5.02 µB for

Co2MnGe. These values agree with those derived from the theoretical band structure

calculations for perfect L21 type of order [7], indicating that the films have a high de-

gree of metallurgical order. Thus to this end things look positive, thick films of the

Heusler phase Co2MnGe can be grown at high temperatures with a quality similar to

bulk samples.

However, when decreasing the substrate temperature while keeping the thickness of
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Figure 6.4.: Hysteresis loops of the Co2MnGe film from Fig. 6.1 measured at 5 K and
400 K.

the Co2MnGe layer and all other parameters constant, we observed a continuous decrease

of the saturation magnetization down to about 70% at Ts = 100◦C (see Fig. 6.5). This

decrease of the magnetization is accompanied by an increase of the lattice parameter of

about 1%. It seems plausible to attribute the decrease of the saturation magnetization

to an increasing number of antisite defects in the L21 structure. This effect is well known

in Cu2MnAl, where the disordered B2 phase, which can be prepared by quenching from

high temperatures, has a very low saturation magnetization [189]. For films with a small

thickness of the Heusler phase of the order of a few nm the situation gets even worse.

In this case a preparation at 500◦C is prohibited, since then interdiffusion at the seed

layer/Heusler interface is too strong. A practical limit for the substrate temperature

for avoiding excessive diffusion is 300◦C. As a first example of a very thin film Fig. 6.6

depicts the hysteresis loop measured at 5 K of a 4 nm thick Co2MnGe film grown directly

on sapphire a-plane at Ts = 300◦C. The x-ray structural analysis showed no resolvable

Bragg peak, thus the crystalline structure seems to be polycrystalline with very small

grains. The film has a very low saturation magnetization of only about 10% of the bulk

value, showing that the ferromagnetic properties are completely different from those of

the Co2MnGe phase in the L21 structure. Growing the same film thickness for Co2MnGe

on a V seedlayer, a (220)-Bragg peak can be observed (see Fig. 6.3) and about 50% of the

ferromagnetic saturation magnetization of the Co2MnGe phase is recovered (Fig. 6.7(a)).

The magnetization is isotropic in the film plane with a magnetic remanence of only about

30% of the saturation magnetization.
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Figure 6.5.: Saturation magnetization of a Co2MnGe(100nm) film versus the substrate
temperature during preparation.

Interestingly, for the field direction perpendicular to the film plane (Fig. 6.7(b)) the

hysteresis curves are very similar to those observed in a parallel field, thus the strong

anisotropy of the demagnetising field characterizing a homogeneous magnetic thin film

is absent. This clearly shows that the magnetization of the film in Fig. 6.7 is not

homogeneous, but breaks up into weakly coupled small magnetic particles pointing in
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Figure 6.6.: Hysteresis loop of a 4 nm thick Co2MnGe film grown directly on sapphire
a-plane at a substrate temperature of 300◦C measured at 5 K.
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Figure 6.7.: Hysteresis loops of the sample V(3nm)/Co2MnGe(4nm)/V(3nm) measured
at 5 K with the field applied parallel to the sample plane (a) and perpen-
dicular to the sample plane (b).

their own magnetically easy direction given by the geometrical shape and the crystal

magnetic anisotropy. Further measurements revealed that for a 4 nm thick Co2MnGe

film grown on Au as seed layer the small particle character of the hysteresis loops also

exists, but the magnetic anisotropy of a homogenous thin film is partly recovered. In

this case the ferromagnetic saturation magnetization is also strongly reduced compared

to the bulk value of Co2MnGe. The different magnetic behaviour of Co2MnGe grown

on V and Au is probably caused by much smaller crystalline grains in the case of a V

seed layer, where the single grains seem to be nearly decoupled magnetically.

6.4. XMCD

In order to elucidate the microscopic origin of the moment reduction in the Co2MnGe

Heusler alloy when prepared at low substrate temperatures (see Fig. 6.5) x-ray mag-

netic circular dichroism (XMCD) is a very suitable experimental method as it allows an

element specific study of the magnetism [190]. We therefore prepared a Co2MnGe film

specially designed for an XMCD study with 16 nm thickness grown on a V seed layer

and with a 2 nm Au cap layer. This is essential for the analysis below, since XMCD

measured in total electron yield (TEY) mode probes a surface layer of a few nanome-

ter total thickness only and thus is rather surface sensitive. All layers of the sample

were prepared at Ts = 300◦C. The saturation magnetization of the film, as measured by

SQUID magnetometry, is found to be slightly smaller than the value given in Fig. 6.5,

it corresponds to a magnetic moment per formula unit of 2.3 µB at room temperature

and 2.98 µB at 4 K. Hard x-ray reflectivity measurements reveal smooth surfaces and
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interfaces of the film, a fit with the Parratt formalism gives the roughness parameters

σ = 0.18 nm and 0.33 nm for the Au and Co2MnGe layer, respectively.

The XMCD measurements were performed at the bending magnet beamline PM3 at

BESSY II (Berlin Germany) using the ALICE diffractometer [185]. The measurements

were taken by the total electron yield (TEY) method, i.e. by measuring the sample

drain current. During the experiment the helicity of the photons was fixed whereas the

magnetization of the sample was switched by a magnetic field of ±0.1 T thus giving the

electron yield with the magnetization parallel (Y+) and antiparallel (Y−) to the photon

helicity. At an angle of incidence of 40◦ saturation effects are small and the TEY is

proportional to the absorption coefficient to a good approximation, Y± ∼ h̄ωµ±. The

Y+ and Y− scans measured at the L2,3 edges of Mn and Co are normalized to the flux

of the incoming photon beam. The XMCD spectrum (Y+-Y−) at the L2,3 edges of Mn

and Co measured at room temperature is plotted in Fig. 6.8.

XMCD spectra contain quantitative information on the spin and orbital magnetic

moments which can be extracted via the sum rule analysis [164, 165]. There are several

sources of systematic errors in this analysis which might affect the derivation of the

absolute values for the magnetic moment questionable. This is first the number of holes

in the d band, which is inaccessible experimentally, but can precisely be derived by

electronic band structure calculations [191]. Second, the magnetic dipolar interactions

are not considered in the model, which in our case seems justified because of the cubic
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Figure 6.8.: XMCD spectra of a 11 nm thick Co2MnGe film at the Mn L3,2 and at the
Co L3,2 edge.
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symmetry of the Co2MnGe phase. Third, for the Mn atom there might be a mixing of the

L3 and the L2 levels by the relatively strong 2p−3d Coulomb interactions. The correction

factor x taking this effect into consideration has been calculated ranging from x = 1 for

negligible jj-mixing to x = 1.5 for strong jj-mixing [192]. Keeping these reservations in

mind, the sum rule analysis yields for the case of the Co atom mspin = 0.55 µB for the

spin magnetic moment and morb = 0.028 µB for the orbital magnetic moment. For the

case of the Mn atom the analysis yields mspin = 0.98 µB (1.47 µB) and morb = 0.056 µB,

where for the first value it is assumed that x = 1.0 holds, for the value given in brackets

x = 1.5 is assumed. Summing up all values for the atomic magnetic moments and

extrapolating to 4 K we get a saturation magnetic moment of m = 0.75 µB for Co and

m = 1.36 µB (1.97 µB) for Mn [193]. The experimental moment for Co is reduced by 20%

with respect to the theoretical value from band structure calculations, mCo = 1.02 µB.

For the Mn atom the theoretical calculations give m = 2.98 µB i.e. a much higher

value than the experiment, irrespective of the exact value of the correction factor x.

The magnetization data gave a saturation magnetic moment of 3.6 µB per Co2MnGe

formula unit, the XMCD results yield 2.83 µB (3.46 µB), i.e. within the uncertainty

range of the XMCD result the agreement is satisfactory.

As mentioned in Sec. 2.4, the theoretical model calculations [10, 86] show that antisite

disorder in the L21 structure essentially leaves the value of a Co moment unaffected

when sitting on a Mn position. We attribute the smaller magnetic moment to the

existence of non-ferromagnetic interlayers close to the Au cap layer. Assuming that the

rms roughness of 0.33 nm can be identified with the interface thickness and taking into

consideration the stronger weight of the surface atoms in the total electron yield method,

the observed Co moment reduction seems plausible. The stronger loss of the Mn atomic

magnetic moments is probably caused by site disorder in the bulk of the film, i.e. Mn

moments sitting on a regular Co position. This strongly reduces the Mn moment, since

the Mn atom has its spin antiparallel to the other Co and Mn spins. Thus the plausible

hypothesis formulated above that a lower preparation temperatures causes site disorder

in the L21 structure and concomitantly a lowering of the saturation magnetization finds

strong support from the XMCD results and the theoretical model calculations. The high

degree of site disorder is qualitatively consistent with magnetotransport data revealing

small electronic mean free path of the order of 2 nm at 4 K and a strong isotropic spin

disorder magnetoresistance [74, 194].

Summarizing this chapter, we have shown that with optimized preparation conditions

high-quality thick films of the Co2MnGe phase can be grown. But if experimental con-

straints are imposed when preparing devices such as limits for the substrate temperature,
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6. Single Co2MnGe Thin Films

non applicability of seed layers or if in devices very thin Heusler layers are needed, prob-

lems arise. Site disorder in the interior of the films, mixing and disorder at interfaces

have the tendency to lower the ferromagnetic magnetization. The magnetic behaviour

of very small Co2MnGe grains as e.g. the nearly complete loss of ferromagnetism for

Co2MnGe deposited on bare sapphire or the typical small particle magnetic behaviour

in very thin Co2MnGe grown on V suggest that the grain boundaries are only weakly

ferromagnetic or even non-ferromagnetic.
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This chapter provides a detailed analysis of the structural and magnetic properties of a

series of [Co2MnGe/V]N multilayers with a thickness of the V layers tV between 1.5 nm

and 10 nm and a fixed thickness of the Heusler layer tCo2MnGe = 3 nm. Conventional

x-ray scattering is used to probe the chemical depth profile, while for the derivation of

element-sensitive magnetic moment depth profiles energy dependent XRMS measure-

ments are carried out. Neutron reflectivity studies provide a capable tool to search for

an antiferromagnetic coupling within the multilayers. The magnetic domain structure of

the sample is studied by PNR and off-specular scattering, whereas SQUID measurements

are used to determine the total magnetization.

7.1. Sample Preparation

Multilayers of the Heusler phase Co2MnGe with V as interlayer have been prepared by

the same dual source rf-sputtering equipment described in Sec. 6. For the multilayer

preparation the substrate holder is swept between the two targets of the dual source

discharge. After finishing the periods of the multilayer, starting with V as a seed layer,

the films were protected by an Al2O3 cap layer. The substrate temperature was held

fixed at TS = 300◦C for all multilayers, the deposition rates of the materials were the

same as given in Chap. 6 for the single layers. Although the structural quality of the

Heusler layers improve at higher substrate temperatures, TS = 300◦C turned out to

be the upper limit, since strong interdiffusion at the interfaces must be avoided [17].

Using the natural gradient of the sputtering rate, the simultaneous preparation of up

to 10 samples with the thickness of either the magnetic layer or the non-magnetic layer

altered is possible. The thickness can be varied by a factor of three and we exploit this

feature for the preparation of a series of multilayers for the investigation of the thickness

dependence of the magnetic interlayer coupling. We prepared a series of multilayers with

a constant nominal thickness of the Co2MnGe layers tCo2MnGe = 3.0 nm and variable V

interlayer thicknesses tV = 1.5, 2.0, 2.5, 3.0, 4.0, 5.0 and 10.0 nm. The number of bilayers

was 20 for tV = 1.5, 4.0 and 10.0 nm and 50 for the other multilayers. In Tab. 7.1 the
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growth parameters of the samples are listed. One should note that for tV = 3 nm we

have prepared two samples with slightly different preparation conditions. The samples

are referred to as #1 and #2 in the figures below.

experimental coherence length
nominal thickness

thickness
rms roughness

out-of-plane

tV tCo2MnGe N tV tCo2MnGe σV σCo2MnGe Lv

[nm] [nm] [nm] [nm] [nm] [nm] [nm] [nm]

1.5 3 20 1.45 2.9 0.4 0.4 15.3

2 3 50 2.35 3.0 0.5 0.65 14.0

2.5 3 50 3.0 3.0 0.75 0.55 13.0

3 3 (#1) 50 3.4 3.4 0.65 0.85 13.0

3 3 (#2) 50 2.8 2.9 0.85 0.9 15.3

4 3 20 3.8 3.0 0.9 0.75 14.0

5 3 50 5.0 2.9 0.95 0.7 15.5

Table 7.1.: Overview of the structural parameters for the [Co2MnGe(tCo2MnGe)/V(tV)]N
multilayers with the nominal thickness (1st row), the number of periods N
(2nd row), the experimental thickness (3rd row), the total rms roughness
parameters (4th row) and the out-of-plane coherence length derived from
the x-ray scattering data (see main text).

7.2. Structural Properties

7.2.1. Hard X-ray Scattering

The chemical structure of the multilayers was characterized by x-ray scattering at the

beamline W1 at the HASYLAB (Hamburg, Germany) using a diffractometer with a

standard two circle setup. The photon energy was chosen to be hν = 8048 eV, corre-

sponding to Cu Kα radiation (λ = 0.154 nm) or hν = 7000 eV (λ = 0.177 nm), which

yields a slightly better contrast of the scattering lengths.

We have studied specular and diffuse (off-specular) scattering in the small angle regime

combining longitudinal Qz, offset Qz and transverse Qx scan geometries (see Fig. 7.1)

[195]. The specular intensity was collected using standard Θ-2Θ scans along Qz (with

z as growth direction). A structurally well defined multilayer periodicity gives rise to

Bragg peaks at Qz = 2πn/Λ, where Λ is the bilayer thickness and n is an integer.

Interdiffusion at the interfaces leads to diffuse intensity, which is not localized along the

Qz direction, but spreads out in the reciprocal space. To map out diffuse scattering,
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Figure 7.1.: X-ray and neutron scattering geometry in reciprocal space for (a) a specular
reflectivity (Θ − 2Θ scan, Qx = 0) and (b) diffuse scattering (Qx scan, Qz

constant). Bragg peaks in the specular reflectivity and diffuse Bragg sheets
are schematically shown as dots and dotted lines, respectively.

offset Qz and Qx scans were taken. The offset Qz scan corresponds to the longitudinal

Qz scan, but with the sample rotated by ∆Θ from the specular direction, such that only

diffuse intensity is collected (see Fig. 7.1). If the interface roughness of the multilayers is

correlated along the growth direction, the features of the specular scan will be replicated.

Transverse Qx scans at the Qz position of the multilayer Bragg peak give information

on the in-plane correlation length and correlated roughness [154, 196]. If the probed Qx

regime is large enough, it is possible to distinguish between short-range disorder resulting

from roughness and long-range disorder e.g. from terracing. Experimentally these scans

are often realized by rocking scans, i.e. fixing the scattering angle 2Θ and varying αi

and αf so that αi +αf = constant. If Qx/Qz is small, these scans approximate Qx scans

in reciprocal space. With the help of appropriate software it is also possible to perform

proper Qx scans, which we preferred for our measurements.

In order to obtain information on the in- and out-of-plane crystalline structure, high

angle out-of-plane Bragg scans and grazing incidence in-plane Bragg scans using Cu Kα

radiation were carried out.

Small Angle Reflectivity

In Fig. 7.2 we show three representative small angle x-ray reflectivity scans of

the samples [Co2MnGe(3nm)/V(1.5nm)]20 (a), [Co2MnGe(3nm)/V(2nm)]50 (b) and

[Co2MnGe(3nm)/V(3nm)]50 (c) together with a simulation. The thickness of the
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Figure 7.2.: X-ray reflectivity scan of a series of [Co2MnGe(3nm)/V(tV)]N multilayers
with a V layer thickness tV as given in the figure. The open symbols denote
the measured intensity, the simulation is shown by the full line, which is
offset by a constant factor from the experimental data ((b),(c)). The filled
circles show the corresponding off-specular scan (Θ-0.3◦).

Co2MnGe layers (tCo2MnGe) and that of the V layers (tV) given in the brackets refer to

the nominal thickness, as calculated from the sputtering rate. The index of the square

brackets denotes the number of bilayers. The data were taken at hν = 8048 eV for the

multilayers with tV = 1.5, 3 nm and hν = 7000 eV for the sample with tV = 2 nm,

which gives a slightly better scattering contrast between both sublayers. Above the

critical angle for total reflection Θc, the superstructure gives rise to Bragg peaks su-
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perimposed on the Fresnel reflectivity. For the [Co2MnGe(3nm)/V(1.5nm)]20 multilayer

(Fig. 7.2(a)) we observe superlattice reflections up to 4th order, revealing good interface

quality and low fluctuations of the layer thickness. Due to the rather small difference

in the electron density of V and Co2MnGe and the low number of bilayer repetitions,

the superlattice peaks are not very intense. But total layer thickness oscillations sep-

arated by ∆Qz = 2π/D, where D is the total layer thickness, reveal smooth surfaces

and interfaces, which is confirmed by the simulations. The simulation using the Parratt

formalism [138] (see Fig. 7.2) reproduces the thickness of the layers as well as their total

rms roughness. (We refer to the roughness as total, because it contains correlated and

uncorrelated parts, as well as contributions from interdiffusion at the interfaces, which

cannot be distinguished by Qz scans). In good agreement with the nominal thickness

we get tV = 1.45 nm and tCo2MnGe = 2.9 nm. The interface roughness is σV = 0.4 nm

and σCo2MnGe = 0.4 nm. These values are generated by the Parratt formalism from the

spatial profile of the scattering length density; the interfacial roughness is included by

varying the density with an error function. For the [Co2MnGe/V] multilayers we find

that the scattering length densities in the V layers as well as in the Co2MnGe layers

deviate slightly from their bulk value.

For the samples [Co2MnGe(3nm)/V(2nm)]50 (Fig. 7.2(b)) and

[Co2MnGe(3nm)/V(3nm)]50 (Fig. 7.2(c)) sharp superlattice peaks up to fourth

order are visible, indicating smooth interfaces. Total thickness oscillations cannot be

seen, since their period is smaller than the instrumental resolution. There is one specific

characteristic for the [Co2MnGe(3nm)/V(3nm)]50 multilayer: both the Co2MnGe and

the V layer have the same thickness. This is the reason, why the second and the

4th superlattice peak are nearly suppressed in the reflectivity. Beside the reflectivity

scans corresponding off-specular Qz scans are shown. The off-specular data mainly

replicate the specular one, indicating a significant correlated roughness along the growth

direction. However, since the intensity in the off-specular scans is low, uncorrelated

roughness seems to be quite high.

The values for the layer thickness and the total rms roughness as derived from the

simulations are summarized in Tab. 7.1 for all multilayers studied. A comparison shows

that the thicker the V layer in the multilayer, the higher the corresponding rms roughness

σV of the V layer. Thus the interfaces are not smoothed by thicker V layers, on the

contrary the interface quality is getting worse with increasing V thickness.
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7. [Co2MnGe/V]N Multilayers

Diffuse Scattering

Additional information on the in-plane structure of the interfaces and their correlations

can be obtained by analyzing the diffuse scattering. One important parameter which

can be derived is the in-plane correlation length ξ [154, 196]. In Fig. 7.3 we show 2D

maps of the x-ray intensity scattered from the [Co2MnGe(3nm)/V(2nm)]50 (a) and the

[Co2MnGe(3nm)/V(3nm)]50 (b) multilayer with the logarithm of the reflectivity contours

plotted as a function of x-ray incident (αi) and exit angles (αf ).
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Figure 7.3.: Two-dimensional (2D) maps of the x-ray intensity scattered from the
[Co2MnGe(3nm)/V(2nm)]50 (a) and [Co2MnGe(3nm)/V(3nm)]50 (b) mul-
tilayer as a function of the angle of incidence αi and scattering αf , respec-
tively. The logarithmic intensity color scale is shown on the right hand side.
Bragg sheets are clearly visible.

The diagonal ridge at αi = αf is the specularly reflected intensity. Yoneda wings,

clearly visible in the figure, result from enhanced reflection at those angular positions,

where the incident (exit) beam impinges (leaves) at the critical angle of total external

reflection with the sample surface. If the interfacial roughness is perfectly correlated

in the vertical direction, the diffuse intensity along Qz would be peaked at the Bragg

conditions, visible as Bragg sheets. For random perpendicular roughness, the diffuse

intensity will be spread out uniformly in Qz [154, 196]. The multilayers studied here

have a roughness correlation somewhere between these limiting cases. The Bragg sheets

can easily be identified. The perpendicular roughness correlation exists, but the intensity

is low, indicating that random roughness is predominant.

2D maps of specular and diffuse scattered intensity provide instantaneously a quali-

tative overview over roughness and its correlations. However, for a quantitative analysis
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Figure 7.4.: Transverse Qx scans of a series of [Co2MnGe(3nm)/V(tV)]50 multilayers at
the position of the second order Bragg peak (dots) together with a fit within
the Mingh model [197] (line).

we have measured transverse Qx scans of the samples discussed in Sec. 7.2.1, depicted in

Fig. 7.4 together with a numerical simulation. The Qx scans of the multilayers have been

taken at the Qz values corresponding to the second order Bragg peak. The experimental

data are corrected for footprint effects arising from the fact that the probed volume of

the sample changes with the angle of incidence. Besides the Yoneda wings additional

peaks arising from the multilayer periodicity are visible. For the simulation we used

the Mingh model [197], which describes an intermediate case between uncorrelated and

completely correlated roughness and assumes that vertical correlations do not depend

on the lateral scale of the roughness. The parameters used for this model are the vertical

correlation length Lv, the horizontal correlation length Lh and the ”hurst” parameter h,

describing the jaggedness. The vertical correlation has been taken from the out-of-plane
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7. [Co2MnGe/V]N Multilayers

coherence length obtained from large angle diffraction (see below). The jaggedness and

the in-plane correlation length are left as the only free parameters, h being a value be-

tween 0.1 and 1. For small h values the surface is extremely jagged, if h = 1, the surface

has smooth hills and valleys [196]. Best fits could be achieved for an in-plane correlation

length ξ1 in the order of 10 nm and h1 = 1 (see Tab. 7.2). Including the instrumental

resolution did not change the fit significantly. We attribute the horizontal correlation

length to long-range disorder from grain boundaries.

For the sample [Co2MnGe(3 nm)/V(1.5 nm)]20 and [Co2MnGe(3 nm)/V(3 nm)]50 an

additional component of diffuse scattering is visible at small Qx values close to the

specular peak. A fit within the Born approximation by a Lorentzian curve (h2 = 0.5)

derives a correlation length ξ2 in the order of 1 µm, corresponding to the typical terrace

length of the Al2O3 substrate due to its miscut angle.

Table 7.2.: Parameters of the transverse scans with the in-plane coherence lengths ξ1

and ξ2 and the hurst parameter h (see main text), derived at the position of
the second Bragg peak (see main text).

ξ1 [nm] h1 ξ2 [µm] h2

[Co2MnGe(3 nm)/V(1.5 nm)]20 10.0 1.0 0.4 0.5

[Co2MnGe(3 nm)/V(2 nm)]50 14.0 1.0 - -

[Co2MnGe(3 nm)/V(3 nm)]50 20.0 1.0 1.0 0.5

High Angle Scattering

The [Co2MnGe/V]N multilayers grow with perfect Co2MnGe(220)/V(110) tex-

ture out-of-plane. In Fig. 7.5 a representative longitudinal scan of the sample

[Co2MnGe(3nm)/V(2nm)]50 at λ = 0.177 nm is depicted. Aside from the fundamental

Bragg peak, the multilayer exhibits a rich satellite structure caused by chemical modula-

tions. The spacing derived from the position of these satellite peaks corresponds exactly

to the chemical modulation as determined from reflectivity measurements. Satellite

peaks up to the order l=+2 and l=-3 can be resolved, indicative for a coherently grown

superstructure in the growth direction. From the width of the satellite peaks at half

maximum (FWHM) ∆(2Θ) we derive the out-of-plane coherence length of the multilayer

using the Scherrer equation Dcoh = 0.89λ/[∆(2Θ) · cos(Θ)] [188]. The calculation yields

Dcoh = 13 nm, thus comprising about 2 superlattice periods. (The values for the other

samples of the study are listed in Tab. 7.1). The fundamental Bragg peak in Fig. 7.5

is positioned at 2Θ = 49.75◦ i.e. at the middle position between the V (110)-Bragg
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Figure 7.5.: Out-of-plane x-ray Bragg scan of the [Co2MnGe(3nm)/V(2nm)]50 multilayer
at λ = 0.177 nm.

peak at 2Θ = 48.8◦ and the Co2MnGe (220)-peak at 2Θ = 51.6◦, as expected for a

coherently strained multilayer. As revealed by in-plane rocking scans all samples exhibit

a broad distribution of in-plane Bragg peaks. Thus the samples can be characterized as

polycrystalline multilayers rather than superlattices.
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7. [Co2MnGe/V]N Multilayers

7.2.2. Soft X-ray Scattering

XMCD measurements on single thin Co2MnGe films (see Sec. 6.4) revealed site dis-

order in the interior of the films and mixing and disorder at the interface, destroying

the perfect L21 structure in the Heusler layer. This has the tendency to lower the

ferromagnetic magnetization and concomitantly leads to a low or even vanishing spin

polarization. In this context interfaces between Co2MnGe and V layers in the studied

multilayers need special attention, especially as the interface becomes more important

with decreasing thickness of the Heusler layer. However, conventional structural x-ray

characterization cannot resolve details of the magnetization profile of thin Heusler lay-

ers interleaved between V layers. For this purpose we have carried out a systematic

investigation of x-ray resonant magnetic scattering (XRMS) on the Heusler multilayers

using synchrotron radiation at the Co and Mn L2,3 edges. XRMS combines the depth-

resolving power of conventional small angle x-ray scattering with the element-sensitivity

of XMCD. By observing the difference in the specular reflectivity for the two magneti-

zation directions parallel and antiparallel to the photon helicity of circularly polarized

x-rays in an energy scan across the L2,3 edge of a magnetic element, one can derive the

magnetization profile of a ferromagnetic thin film. This has been demonstrated convinc-

ingly for [Co2MnGe/Au]50 multilayers [182] and other systems [174, 198, 173]. Since in

the [Co2MnGe/V]20 multilayers under study here, we have two magnetic elements, the

analysis for Mn and Co can be carried out separately.

The soft XRMS experiments were performed with the diffractometer ALICE [185]

at the undulator beamlines UE56/1-PGM and UE56/2-PGM2 at BESSY II (Berlin,

Germany). The diffractometer comprises a two circle goniometer and works in horizontal

scattering geometry. The vertical entrance and detector slits were set to 300 µm each,

resulting in an instrument resolution of 0.14◦. Circularly polarized light in the energy

range of 600 eV - 900 eV was used with an energy resolution of approximately ∆E/E =

1 · 10−4. A magnetic field can be applied in the scattering plane along the sample

surface either parallel or antiparallel to the photon helicity, which corresponds to the

longitudinal magneto-optical Kerr effect (L-MOKE) geometry. The maximum field was

±0.11 T, high enough to fully saturate the ferromagnetic Co2MnGe-layers. The magnetic

contribution to the scattered intensity was measured by reversing the magnetic field

while keeping the photon helicity fixed. In the L-MOKE geometry using circularly

polarized soft x-rays the in-plane magnetization in the scattering plane is probed. The

leading magnetic contributions to scattering arises from the charge-magnetic interference

term (see Sec. 5.4).

In order to separate the structural and magnetic contribution to the scattered intensity
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it is appropriate to measure the energy-dependent intensity at a fixed scattering angle

2Θ. All soft x-ray measurements shown below have been taken at room temperature.

X-ray Resonant Magnetic Reflectivity
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Figure 7.6.: Specular reflectivity of the sample [Co2MnGe(3nm)/V(1.5nm)]20 measured
with soft x-rays at the V (E = 512 eV), Mn (E = 638 eV) and Co (E =
780 eV) L3 edges, respectively.

Fig. 7.6 shows the specular reflectivities of the [Co2MnGe(3nm)/V(1.5nm)]20 multi-

layer up to the second-order Bragg peak, measured in remanence with circularly polar-

ized soft x-rays at the V, Co and Mn L3 edges in remanence. Due to the strong variation

of the dispersion corrections at the absorption edges the Bragg peak positions in Qz do

not exactly coincide.

For the determination of the magnetization depth profile we have measured the re-

flected intensity of circularly polarized x-rays after magnetic saturation in the directions

parallel (I+) and antiparallel (I−) to the photon helicity at the angular position of the

Bragg peaks. The reflectivity spectra of the [Co2MnGe(3m)/V(1.5nm)]20 multilayer are

shown in Fig. 7.7 and 7.8 for the Co and Mn L2,3 edges, respectively. Since the mo-

mentum transfer Qz is proportional to the photon energy, a segment of the specular

reflectivity is scanned, indicated by two vertical lines for each scan in Fig. 7.6.

The sum of the intensities (I++I−)/2 (upper panel in Figs. 7.7,7.8) reflects the charge

scattering and is independent of the magnetization of the sample. Clearly visible are

the strong intensity variations due to resonant scattering, when the energy is passing
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Figure 7.7.: Charge intensity (I+ + I−)/2 (top) and asymmetry (I+ − I−)/(I+ + I−) for
the sample [Co2MnGe(3m)/V(1.5nm)]20 at the first and second order Bragg
peak (BP) at the Co L2,3 absorption edges. The dots represent measured
data, the lines are model calculations as described in the main text.

the L3 and L2 absorption edges of Co and Mn.
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Figure 7.8.: Charge intensity (top) and asymmetry for the sample
[Co2MnGe(3m)/V(1.5nm)]20 at the first and second order Bragg peak
(BP) at the Mn L2,3 absorption edges. The dots represent measured data,
the lines are model calculations as described in the main text.
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The magnetic contribution to the resonant scattering can best be visualized by taking

the asymmetry ratio (I+ − I−)/(I+ + I−) (second row in Figs. 7.7 and 7.8). In order

to evaluate a magnetization depth profile for the multilayers from the magnetic part

of the reflectivity spectra in Figs. 7.7 and 7.8, the energy-dependent intensities and

asymmetries have been modelled within a magneto-optical matrix formalism developed

by Zak et al. using the classical dielectric tensor (see Sec. 5.3). Within this formalism it

is possible to calculate the reflectivity for electromagnetic radiation of arbitrary incidence

angle and polarization on layered structures having an arbitrary magnetization depth

profile. The formalism is not limited to Bragg reflections and has been used to model

magneto-optical effects at soft x-ray energies in a number of publications before [170,

159, 199].

The analysis following Ref. [178] needs the knowledge of the energy dependence of

the refractive index n = 1 − (δc + δm) + i(βc + βm) with the charge contributions δc

and βc and the magnetic contributions δm and βm (Fig. 7.9). This has been determined

for a Co2MnGe film in a separate x-ray absorption experiment [193]. The imaginary

part of the refractive index is directly proportional to the absorption coefficient. The

real part is then calculated using the Kramers-Kronig relations [200, 201]. Furthermore,

from the previous analysis by hard x-ray small angle reflectivity we already have a set

of well defined parameters characterizing the chemical structure, i.e. the thickness and

roughness parameters, which we keep fixed in the fit of the spectra in Figs. 7.7 and 7.8.

In the upper panels of Figs. 7.7 and 7.8 we compare the measured and the calculated

charge scattering intensity (I+ + I−)/2 taking all parameters from the hard x-ray mea-

surements and the optical constants as just explained. One finds overall good agreement

of the measured and calculated spectra.

The next and in the present context most essential step is to fit the asymmetry given

in the lower panels in Figs. 7.7 and 7.8 with the same set of fixed structural and optical

parameters. The only free parameter is the profile for the depth dependence of the

ferromagnetic magnetization, in particular its shape, as described in detail below.

Assuming that the magnetic moment density profile is exactly identical to the chemical

one, even qualitative features of the asymmetry spectra cannot be reproduced. Only if

non-ferromagnetic interlayers at the interface of Co2MnGe/V are allowed, the complex

features of the experimental spectra can be modelled. Thus in the modelling we assume

a magnetic moment density profile for Co and Mn which is narrower than the chemical

density profile and may be asymmetric with respect to the chemical profile, i.e. the top

non-ferromagnetic layer thickness tt can be different from the bottom non-ferromagnetic

layer thickness tb. The best fits we obtained are shown as solid lines in the lower panels of
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Figure 7.9.: Magneto-optical constants at the L2,3 edges of Mn and Co and a comparison
to the tabulated refractive index (open symbols) taken from Ref. [202].

Figs. 7.7 and 7.8 and reproduce the experimental spectra quite well. The corresponding

magnetic moment density profiles of Co and Mn for the [Co2MnGe/V]20 multilayers

are depicted in Fig. 7.10. For a better comparison of charge and magnetic profiles in

Fig. 7.10 the refractive indices are normalized according to

ρc(z) =
|δc(z) − δc,V|

|δc,Co2MnGe − δc,V|
, ρm(z) =

δm(z)

δm,Co2MnGe

, (7.1)

so that ρ(z) = 1 (ρ(z) = 0) if the refractive index corresponds to the bulk Co2MnGe (V)

value. The corresponding imaginary part βc,m has the same z dependence as the real

part. For Mn we derived a non-ferromagnetic layer thickness of tt = 0.4 nm at the top

and tb = 0.6 nm at the bottom of the Co2MnGe layer. For Co the fit yields tt = 0.3 nm

and tb = 0.3 nm, respectively. The parameters describing the magnetic density profile
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Figure 7.10.: Structural and magnetic moment density profiles of Co and Mn for the
sample [Co2MnGe(3nm)/V(1.5nm)]20 as determined from model calcula-
tions (see main text). z denotes an axis perpendicular to the film surface.

are summarized in Tab. 7.3. The profile is clearly asymmetric with the bottom non-

ferromagnetic layer always thicker than the top non-ferromagnetic layer. One should

note that the non-magnetic layer thickness derived for Mn is definitely larger than for

Co.

The shape of the asymmetry at the Bragg peaks of different order is very sensitive

to the magnetization profile assumed. In order to demonstrate this sensitivity we show

a model calculation of the sample [Co2MnGe(3nm)/V(1.5nm)]20 for the second order

Bragg peak of Co assuming a constant total non-ferromagnetic layer thickness tnm =

tt + tb =0.7 nm and a variable tb/tt ratio in Fig. 7.11. Only the distribution with

tt = 0.3 nm and tb = 0.4 nm can reproduce the experimental spectrum. It should be

stressed that this asymmetric distribution yields the best fit in all orders of the Bragg

peaks.

Table 7.3.: Parameters defining the magnetic moment density profile with the top and
bottom non-ferromagnetic layer thickness tt and tb and the magnetic rough-
ness parameter σmag.

Co L2,3 edge Mn L2,3 edge
tt [nm] tb [nm] σmag [nm] tt [nm] tb [nm] σmag [nm]

[Co2MnGe(3nm)/V(1.5nm)]20 0.3 0.4 0.3 0.4 0.6 0.3
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Figure 7.11.: Model calculations of the second order BP compared to the experiment.
The ratio of the bottom non-ferromagnetic layer thickness tb and the top
non-ferromagnetic layer thickness tt is varied, while the sum tb+tt = 0.7 nm
is kept fixed. (1) tt = 0.3 nm, tb = 0.4 nm, (2) tt = 0.1 nm, tb = 0.6 nm,
(3) tt = 0.6 nm, tb = 0.1 nm

Microscopic Origin of the Magnetic Moment Density Profile

What remains to be explained is the microscopic origin for the magnetization profile

inside the Heusler layers, and especially the origin of the very different Co and Mn

profile. XRMS cannot resolve this question, it only proves its existence. In Fig. 7.12

we propose a qualitative model as an explanation, which is based on the intimate re-

lationship between the chemical structure and the ferromagnetism of a thin Co2MnGe

layer. Starting from the bottom of the Heusler layer growing on a V film, the first few

Heusler monolayers grow as a bcc-type random mixture of the Ge, Mn and Co atoms.

This layer has a low saturation magnetization and appears essentially non-magnetic in

the XRMS experiments at room temperature. Then the Heusler film starts developing

chemical short-range order with each of the Heusler constituents beginning to occupy

its own L21 type sublattice. However, there is still substantial site disorder between

the Co and Mn positions. Theoretical model calculations [203] have shown that in this

case there is an essential difference between the magnetic behavior of an antisite Co

and an antisite Mn atom: Mn sitting on a regular Co position has its moment oriented

antiparallel to the Co-nearest neighbours moments, whereas Co on a Mn position keeps

its parallel moment direction. Thus in XRMS, which measures the average Mn moment

density, the Mn moment is not yet visible, whereas the Co moment is detected. This
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Figure 7.12.: Schematic picture of the sequence of structural phases in a 3 nm thick
Co2MnGe film between two V-layers. The vertical scale gives the distance
from the bottom of the Co2MnGe-film.

explains why the magnetization profile for Mn is narrower than the Co profile. Then, in

the core of the Heusler layer, the chemical order approaches the ideal L21 superstructure

and the Mn moments are seen in the XRMS signal.

Moving further towards the top of the Heusler film in Fig. 7.12 one finds the same

sequence of magnetic phases in reversed order, however definitely thinner than at the

bottom of the Heusler film. This indicates that upon the deposition of the top V layer

a few monolayers of the ordered L21 type Heusler layer become disordered again. Thus

it seems that interactions at the interface destroy the chemical ordering of the Heusler

phase, or in other terms, at the interfaces in thermodynamic equilibrium the Heusler

L21 type order is unstable.

Magnetic Diffuse Scattering

Similar to the case of the non-magnetic off-specular scattering, one also can study the

off-specular magnetic scattering and derive information about the correlation of the

magnetic roughness [204, 181, 183, 176]. Fig. 7.13 shows charge (I++I−)/2 and magnetic

(I+ − I−) transverse scans at the Qz position of the first order superlattice peak for the

sample studied at the Co and Mn edge, respectively. Both charge and magnetic scans

exhibit three components: the specular peak at Qx = 0, a narrow component due to the

substrate roughness (ξ1,h1), and a broad diffuse component corresponding to a short-

range in-plane correlation (ξ2,h2). The experimental data do not show any indication

of total reflections like Yoneda wings or pseudo Bragg peaks from multiple reflectivity.

Therefore, the Born approximation is sufficient to describe the diffuse scattering [181,
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Figure 7.13.: Transverse Qx scans at the Mn (a) and Co edge (b) for the
[Co2MnGe(3nm)/V(1.5nm)]20 multilayer. The measured charge (open cir-
cles) and magnetic (grey circles) intensity is modelled within the framework
of Born approximation (lines) as described in the main text.

183]. The parameters for the best fits of the transverse scans are listed in Tab. 7.4.

For simplicity the vertical correlation of the interfaces is assumed to be perfect. This

assumption is justified by the fact that the vertical correlation length as determined

from the hard x-ray data is larger than the penetration depth of the soft x-rays at

these energies and incidence angles. The roughness parameters for the charge and the

magnetization are taken from the simulation of the reflectivity.

Since the intensity difference (I+ − I−) is dominated by the charge-magnetic inter-

ference term, the existence of magnetic diffuse scattering at the Bragg peaks already

indicates that the chemical and magnetic interfaces are correlated. Within the exper-

imental error bars the magnetic interface morphology follows exactly the chemical one

(see Tab. 7.4). This observation confirms that the presence of non-ferromagnetic layers is

intrinsically correlated to chemical disorder in the sample. Both chemical and magnetic

interfaces have a correlated roughness on the scale of the in-plane crystallite size.

Table 7.4.: Parameters of the transverse scans with the in-plane coherence lengths
ξ1 and ξ2 and the hurst parameter h (see main text) as derived from Fig. 7.13.

[Co2MnGe/V]20
ξ1 [µm] h1 ξ2 [nm] h2

Co, charge 0.65 0.5 9.0 1.0
Co, charge-magnetic 0.55 0.5 9.0 1.0

Mn, charge 0.5 0.5 9.0 1.0
Mn, charge-magnetic 0.6 0.4 9.0 1.0
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In summary of this section, XRMS has proven to be a powerful technique for the

determination of the magnetic moment density profiles in Heusler multilayers. However,

the procedure takes some efforts: First, one needs high quality multilayers and second,

a complete set of fixed input parameters from the analysis of hard x-ray scattering and

optical constants determined by x-ray absorption. Only then the magnetic moment den-

sity profile is left as the only free parameter in the fitting procedure and an unambiguous

determination of the profile becomes possible.

For the multilayer system [Co2MnGe/V]N , which we have studied here, the analysis of

the XRMS spectra revealed that at room temperature the Co2MnGe layers interleaved

between V possess non-ferromagnetic or weakly ferromagnetic layers at the interface

with a thickness of about 0.5 nm at the bottom and 0.3 nm at the top. The loss of

Mn moments caused by massive structural disorder leads to the fact that for a 3 nm

Co2MnGe layer typically only the inner core of about 1.5 nm thickness develops the full

magnetization of the chemically ordered bulk Heusler compound. XRMS does not reveal

the microscopic origin for the loss of magnetic moments as can be segregation of one

of the Heusler atomic species at the interface, interdiffusion of atoms from the V layer,

structural disorder or a combination of these effects. We think that beside chemical

disorder additionally the diffusion of V into the Heusler surface layer contributes to

disorder and loss of moments.

The non-ferromagnetic interface layers offer a plausible explanation for several peculiar

magnetic features we have observed in the [Co2MnGe/V]N multilayers. The small GMR

amplitude [74] e.g. finds a natural explanation, since the main contribution to the GMR

originates from an asymmetric spin dependent scattering at the interfaces.

More generally, it is feasible that in thin film heterostructures with Heusler com-

pounds weakly ferromagnetic interface layers might be a common phenomenon. For the

fabrication of tunnel junctions with an Al2O3 barrier e.g. one usually starts with the

preparation of a metallic Al layer on the top of the Heusler film [57]. In a second step

the Al film is oxidized thermally or by plasma oxidation. If during the deposition of the

Al layer on top of the Heusler film the ferromagnetic order of a Heusler surface layer is

weakened and concomitantly the full spin polarization is lost, one could easily explain

the difficulty to observe the predicted 100% spin polarization experimentally in TMR

junctions using the Heusler half-metals [205, 206].
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7.3. Magnetic Properties

7.3.1. Magnetization Measurements

The magnetic measurements of the samples were carried out by a commercial SQUID-

magnetometer (Quantum Design MPMS system). In Fig. 7.14 we depict magnetic
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Figure 7.14.: Hysteresis loops of the multilayers [Co2MnGe(3nm)/V(3nm)]50 (#1) (a)
and [Co2MnGe(3nm)/V(4nm)]20 (b) measured at different temperatures
indicated in the figure. The mass in the magnetization unit refers to the
magnetic layer. Shown only part of the hystereses. Saturation is higher.

hysteresis loops for [Co2MnGe/V] multilayers with a V thickness tV = 3 nm (a) and

tV = 4 nm (b), which are representative for all other multilayers studied. The ferro-

magnetic saturation magnetization at 4 K is about 50 emu/g, corresponding to 45% of

the expected saturation magnetization, if all Heusler layers would exhibit the full bulk

magnetization. The reduction should be attributed to the intermixing at the interfaces

giving rise to non-ferromagnetic or weakly ferromagnetic interlayers. With the magnetic

density profile derived from the soft x-ray scattering data, one can estimate that about

45% of the 3.0 nm thick Co2MnGe layer belong to the interfaces.

The remanent magnetization of the samples is 90% of the saturation value at 4 K.

Interestingly, there is no observable magnetic remanence at higher temperature, the

magnetization curve is completely reversible for temperatures above about 150 K, while

the saturation magnetization is only slightly reduced. We consider this as a first hint

to an antiferromagnetic (af) order. Most of our multilayers possess a growth induced

uniaxial magnetic anisotropy similar to the thick films discussed in Chap. 6, but with

a definitely smaller amplitude on the order of 20 Oe for the anisotropy fields. For

the hysteresis curve measurements in Fig. 7.14 the field is applied along the magnetic

easy axis, thus the vanishing remanent magnetization cannot simply be explained by a
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7.3. Magnetic Properties

magnetic anisotropy field perpendicular to the field direction. A study revealed that the

remanent magnetization vanishes for all thicknesses of the non-magnetic interlayer above

tV = 1.5 nm. This could indicate an af coupling, but then it would be independent of

the interlayer thickness, which does not at all fit into the scheme of an IEC mechanism

[18].
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Figure 7.15.: Ferromagnetic saturation magnetization of bulk Co2MnGe (solid circles)
and the [Co2MnGe(3nm)/V(3nm)]50 multilayer (open symbols) versus tem-
perature.

In Fig. 7.15 we have compared the ferromagnetic saturation magnetization of bulk

Co2MnGe and the sample [Co2MnGe(3nm)/V(3nm)]50. It is apparent that the satura-

tion magnetization and the Curie temperature in the multilayer are much lower than in

the bulk Co2MnGe phase. We estimate a ferromagnetic Curie temperature Tc of about

450 K.

Fig. 7.16 shows hysteresis loops of the sample [Co2MnGe(3nm)/V(4nm)]20 measured

with the magnetic field applied perpendicular to the film plane. In contrast to the case

of the single films, the magnetization is strongly anisotropic with an easy axis lying

in-plane.

The susceptibility χ of the two samples [Co2MnGe(3nm)/V(3nm)]50 and

[Co2MnGe(3nm)/V(4nm)]20 measured in a dc field of +10 Oe after cooling in zero

field (zfc) and in a field of +2000 Oe (fc) is shown in Fig. 7.17. For the sample with

tV = 4 nm the susceptibility is reversible and increases with decreasing temperature

down to T = 150 K where one observes the onset of strong magnetic irreversibility and

a maximum in χ(T ). This is the classical behaviour of a spin glass or cluster glass

transition at a freezing temperature Tf (see Chap. 3). As will be shown below, the sus-
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Figure 7.16.: Hysteresis loops of the sample [Co2MnGe(3nm)/V(4nm)]20 at 4 K (open
circles) and 200 K (solid line). The magnetic field has been applied per-
pendicular to the film plane.
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Figure 7.17.: The dc magnetic susceptibility measured in a field of +10 Oe
for the [Co2MnGe(3nm)/V(4nm)]20 (left panel) and the
[Co2MnGe(3nm)/V(3nm)]50 (#1) multilayer (right panel). The field
cooled curve (fc) after cooling in H = +2 kOe and zero-field cooled curve
(zfc) are plotted.
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7.3. Magnetic Properties

ceptibility above Tf reveals the existence of large clusters with ferromagnetic short-range

order. Therefore the classification as cluster glass transition seems to be appropriate.

The low temperature susceptibility of the sample with tV = 3 nm shows a strong

irreversibility at 100 K. In addition there is a peak in the susceptibility at 250 K,

indicating another magnetic phase transition. In the next section we will show that

this transition temperature indicates an onset of antiferromagnetic interlayer long-range

order.

7.3.2. Magnetic Neutron Scattering

Unpolarized and polarized neutron reflectivity measurements were performed to identify

and characterize the magnetic structure of the multilayers. We obtained these data at

the Institute Laue-Langevin in Grenoble (France) mainly with the ADAM reflectometer

[207], but also with the EVA instrument [208]. The reflectometer ADAM is an angle

dispersive fixed wavelength machine working at λ = 0.44 nm. Transmission supermirrors

allow the polarization and analysis of the neutron spin direction. Using 180◦ spin flippers

it is possible to measure the non-spin-flip (NSF) ((++) and (−−)) and spin-flip (SF)

((+−) and (−+)) scattered intensities, which are collected by a 2D position sensitive

detector. The efficiency of spin polarizing and analyzing devices is typically 97%. A

displex cryostat and a solenoid serve for a temperature range from 10 to 600 K and a

field range up to 1 T. We used the ADAM reflectometer for polarized and unpolarized

reflectivity studies applying the same scan geometries as in the x-ray experiments (see

Fig. 7.1).

In the polarized neutron reflectivity scans all four cross sections (++), (−−), (+−)

and (−+) are measured. Here +(−) denotes the up (down) spin polarization of the in-

cident and reflected neutrons relative to an applied field at the sample position defining

a polarization vector P, here parallel to the sample plane. The non-spin-flip intensities

contain information on the chemical structure and are sensitive to the projection of the

in-plane magnetization of the sample parallel to P. This leads to a splitting of the (++)

and (−−) intensities, if the sample is ferromagnetic. The spin-flip channels are sensi-

tive to the magnetic induction projected perpendicular to P. The spin-flip is of purely

magnetic origin and does not occur in coherent nuclear scattering. By measuring SF

and NSF reflectivities the magnitude and orientation of the in-plane magnetic induction

B = 4πM of the sample can be determined.
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7. [Co2MnGe/V]N Multilayers

Antiferromagnetic Coupling

In order to verify the hypothesis of an antiferromagnetic (af) interlayer order in the

multilayers, we performed specular neutron reflectivity measurements. Fig. 7.18 shows

the unpolarized neutron reflectivity scans of the multilayers [Co2MnGe/V(tV)]N with

tV = 1.5, 2.0, 2.5, and 3 nm measured in zero field at room temperature together with a

numerical simulation. In addition to the first order structural superlattice peak there is a
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Figure 7.18.: Specular unpolarized neutron reflectivity scans of a series of samples
[Co2MnGe/V(tV)]N with tV = 1.5, 2.0, 2.5, and 3 nm at RT in remanence
denoted by open symbols. The lines show a fit to the data points by the
Parratt formalism. Aside from the structural peaks, half-order antiferro-
magnetic peaks are clearly visible.

magnetic half-order peak due to a doubling of the multilayer periodicity. For the sample

[Co2MnGe(3nm)/V(2nm)]50 the second af peak can also be resolved. This and the

narrow width of the af peaks indicate that the af order might be coherent throughout

the whole multilayer stack. In order to simulate the unpolarized neutron reflectivity

data in Fig. 7.18, we used the structural parameters from the simulation of the x-

ray data in Sec. 7.2.1 and included non-ferromagnetic layers into the magnetization

profile, as derived from the soft x-ray measurements in Sec. 7.2.2. We assumed a perfect
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7.3. Magnetic Properties

Table 7.5.: Magnetic moments of one Co2MnGe formula unit derived for the multilayers
[Co2MnGe/V(tV)]N with tV = 1.5, 2.0, 2.5, and 3 nm by simulations to the
neutron reflectivity scans at RT.

tV [nm] mCo2MnGe [µB]
1.5 1.5
2.0 0.8
2.5 0.5
3.0 0.6

antiferromagnetic coupling through the multilayer stack and sublattices, which have

equal magnetizations. This reduces the number of free parameters in the fit drastically,

so that only the magnetic scattering length densities are left as free parameters. The

simulations were performed using the super-iterative routine generalizing a conventional

Parratt formalism for the case of reflection of spin 1/2 particles from a stack of magnetic

layers [148, 209]. At a large number of layers this routine is numerically more stable

than the super-matrix formalism proposed earlier [147, 145].

The result of the simulation is included in Fig. 7.18. The derived magnetic moments

for one Co2MnGe formula unit are summarized in Tab. 7.5. It should be noted that

the fit of unpolarized neutron reflectivity provides values for the sublattice magnetic

moments that are definitely lower than those determined with SQUID measurements.

We also studied other multilayers with intermediate V thicknesses by magnetization

measurements and found that the coupling is always antiferromagnetic. Thus for a V

layer thickness in the range between 1.5 nm≤ tV ≤ 3 nm the samples show antiferro-

magnetic long-range order. However, no indications of an oscillatory character of the af

order, as expected for the IEC mechanism, could be discerned. For the samples with a

V layer thickness tV ≥ 4 nm no af peak could be detected, although the magnetization

measurements at higher temperatures showed zero remanence.

Microscopic Picture

More detailed insight into the magnetization vector arrangement over the multi-

layers stack can be achieved by an analysis of PNR data. Figure 7.19 shows

specular PNR data collected for the multilayers [Co2MnGe(3nm)/V(2nm)]50 (a),

[Co2MnGe(3nm)/V(2.5nm)]50 (b) and [Co2MnGe(3nm)/V(3nm)]50 (c). Two NSF cross

sections and the spin-flip (−+) channel are plotted together with the result of a com-

puter simulation. The reflectivity scans were performed at 12 K after zero-field cooling
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7. [Co2MnGe/V]N Multilayers

and applying a small field of 10 Oe to provide a neutron guide field. For the multilayer
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Figure 7.19.: Specular polarized neutron reflectivity scans for non-spin-flip ((++) and
(−−)) and for spin-flip ((−+),(+−)) channels of the multilayers (a)
[Co2MnGe(3nm)/V(2nm)]50, (b) [Co2MnGe(3nm)/V(2.5nm)]50 and (c)
[Co2MnGe(3nm)/V(3nm)]50 (#1). Measurements are taken at 12 K.

with tV = 3 nm there is only a small splitting of the NSF cross sections at the structural

first order peak, well within the range of the error bars. Moreover, the total reflection

edges for the (++) and (−−) channel coincide. This indicates that there is essentially no

ferromagnetic contribution to the first order peak in the magnetic ground state. The SF
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Figure 7.20.: Neutron transverse scan of the [Co2MnGe(3nm)/V(3nm)]50 (#1) sample at
the position of the half-order Bragg peak (dots) together with a fit within
the framework of the Born approximation (line).

cross section is peaked at the af half-order peak and possesses nearly the same intensity

as the NSF cross sections. The specular PNR data can well be simulated using a model,

which assumes a coherent af coupling through the multilayer stack, the antiferromag-

netic sublattice having the magnetic moments m1 and −m2, respectively. In order to

provide both spin-flip and non-spin-flip reflections at the af peak position, the model

assumes that the sublattice magnetizations have projections parallel and perpendicular

to the applied field. This is introduced by the fitting parameter 〈cos γ〉, where γ is the

angle between the af axis and the applied field. The transverse dispersion 〈sin2 γ〉 with

the constraint 〈cos γ〉2 ≤ 〈cos2 γ〉 = 1 − 〈sin2 γ〉 accounts for a possible spread in the af

axis directions over the sample surface.

This model can perfectly describe the sets of data in Fig. 7.19 with the parameters

consistent with those obtained from the fit of the data in Fig. 7.18 (see Tab. 7.5). In

particular, for the sample with tV = 3 nm one gets: m1 = m2 ≈ 0.8 µB/formula

unit, 〈cos γ〉 = 0.7, 〈sin2 γ〉 = 0.35. Then one can speculate on the reasons for an

appreciable loss of the layer magnetization in this sample with respect to the saturation

magnetization which is m1 = m2 = 2.5 µB/formula unit, as well as with respect to the

value determined above with magnetometry.

The results of our PNR simulations are based on the hypothesis that the layers are

homogeneously magnetized over the neutron coherence area: specular reflectivity does

not provide any direct information on the lateral length scales of the film, completely
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Figure 7.21.: (a) 2D map of the neutron intensity scattered from the af coupled
[Co2MnGe(3nm)/V(3nm)]50 (#1) multilayer in zero applied field at 15 K.
The Bragg sheet at the af peak is purely of magnetic ordering. The cen-
tered intensity is the first order structural peak. (b) The simulation of the
corresponding map within a super-iterative based version of the Distorted
Wave Born Approximation.

ignoring their crystalline structure and possible large-scale inhomogeneities. Fig. 7.20

shows a transverse scan of the [Co2MnGe(3nm)/V(3nm)]50 (#1) multilayer measured

in zero field at 15 K at the position of the af peak. The presence of magnetic off-

specular scattering indicates that the magnetization in the single layers is broken up into

domains, the size of which being smaller than the longitudinal projection L‖ ∼ L/ sin α

of the neutron coherence length L ≈ 1/∆Q, where ∆Q is the uncertainty in the wave

vector value due to experimental resolution. The longitudinal projection of the lateral

coherence length is estimated to be about 60 µm, while the transverse coherence length

(perpendicular to the reflection plane), L⊥ ∼ L, is only a few nm due to the focussing

condition of the monochromator. Remarkably is the fact that in the transverse scan
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Figure 7.22.: (a) Cut along the specular line of the 2D map shown in Fig. 7.21 and (b)
a Qx cut at the position of the half-order peak. The measured data is
denoted by circles, the simulation is given by the solid line.

through the af peak no resolution limited Gaussian profile is apparent, and in contrast

to the structural Bragg peak, that the af scan can well be fitted by a Lorentzian line

shape. This gives a strong hint that the af peak on the specular reflectivity line is

mainly due to a contribution of off-specular scattering to the specular reflection within

the range of their overlap. Hence, being simulated with the model given above and

assuming only specular reflectivity leads to a false result for this sample. Therefore

quantitative evaluation of both, PNR and off-specular scattering, collected over a broad

range of incidence and scattering angles is required for a realistic description of the

present system. Fig. 7.21 depicts an unpolarized 2D αi − αf map of the scattering

intensity of the [Co2MnGe(3nm)/V(3nm)]50 (#1) multilayer in zero field measured at

15 K together with a simulation. The specular ridge with the first order nuclear Bragg

peak, as well as the Bragg sheet crossing the reflectivity ridge at the half-order Bragg

peak position can be observed.

To achieve a good fit quality we simulated the map and directly compared the cut

along the specular line and a vertical cut at the position of the af peak with the measured

data (see Fig. 7.22). Simultaneously we provided spin polarized simulations of the off-

specular data using the same fitting parameters as for the unpolarized case and compared

the reflectivity cuts through the maps with the measured polarized reflectivity scans (see

Fig. 7.23).

The maps were simulated within a super-iterative based version of the Distorted Wave

Born approximation (DWBA) [148, 209]. The underlying model has the following fit

parameters: the lateral domain size ξ, the depth correlation factor n0 giving the out-

of-plane (af)correlation length, the mean value 〈cos ϕ〉 determining mean magnetization

averaged over lateral domains in the coherence area, ∆ϕ, giving deviations of domain

magnetization vectors from the mean magnetization direction.
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Figure 7.23.: PNR scan of the sample [Co2MnGe(3nm)/V(3nm)]50 (#1) together with a
simulation. The simulated polarized reflectivity scans represent cuts along
the specular line of polarized 2D maps calculated within the Distorted
Wave Born approximation.

As the result from the numerical simulation we get the microscopic picture of small,

completely coherent columnar domains with alternating angle ∆ϕ = 45◦/225◦ and a

lateral domain size of 2.1 µm. The sample breaks up into a Landau type of pattern

[210] with four possible types of domains with perfect antiferromagnetic coupling (see

Fig. 7.24). From fits to the transverse scans at the position of the half-order af peaks

4µmCo MnGe2

M

Figure 7.24.: Sketch of the microscopic picture for the antiferromagnetic state of the
sample [Co2MnGe(3nm)/V(3nm)]50 (#1) with four different types of do-
mains.
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taken at different temperatures we extracted the temperature dependence of the domain

sizes. All Qx scans could well be fitted within the framework of the Born approximation

by a Lorentzian line shape. Fig. 7.25 clearly shows that the size of the af domains

increases with increasing temperature from 2.1 µm at 15 K to 3.2 µm at 300 K.
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Figure 7.25.: Size of the antiferromagnetically coupled domains in the
[Co2MnGe(3nm)/V(3nm)]50 (#1) multilayer versus temperature.

For the multilayer with tV = 2 nm the situation is quite different, although this sample

equally shows the transverse antiferromagnetic ordering and lateral domains. Similar

to the previous case, essentially no splitting of the NSF cross sections at the structural

first order peak is apparent, i.e. no ferromagnetic contribution to the first order peak

in the magnetic ground state exists. But in this case, there is also no intensity in the

SF channel apart from a very small peak at the position of the af peak, caused by not

100% efficiency of the polarizing elements. The multilayer seems to be nearly perfectly af

aligned with the sublattice magnetizations collinear with the guiding field. The collinear

arrangement is, in fact, not very surprising, since it turned out that a growth induced

uniaxial magnetic anisotropy for the measurements in Fig. 7.19(a) is parallel to the

direction of the external field. A relatively low guiding field for the neutron polarization

does not cause a spin-flop transition into the state with the magnetization direction

perpendicular to the field [211].

In contrast to the previous case, Qx scans through the af peak show a resolution limited

Gaussian line shape for the specularly reflected beam. The latter is superimposed onto

an almost flat background of diffuse scattering (not shown here). This indicates the

presence of antiferromagnetic ordering on a scale bigger than the neutron coherence

length simultaneously with the magnetization fluctuations on a shorter length scale.
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Unfortunately neither of those scales can immediately be determined from the data: the

specular peak width gives just a lower limit (60 µm) for the long-range af order, while af

fluctuations contributing to diffuse scattering are too small in size to be deduced from

the line shape analysis of off-specular scattering, as the range of the lateral moment

transfer is restricted.

On the other hand, the diffuse intensity contribution at the position of the specular

reflection is small with respect to the Gaussian component. This justifies the fitting

procedure of the reflectivity line in Fig. 7.19(a) described above and proves the values

of the deduced physical parameters for this sample. The reduction of the sublayer

magnetization values is due to the averaging of the layer magnetization over lateral

domains within the coherence range. A domain configuration which can explain our

observations for this sample is sketched in Fig. 7.26. Again, the data suggest that in

each of the lateral and columnar-like domains the magnetization of the sublayers alters

sign across the multilayer stack. However, now one can distinguish between two kinds of

domains. The main set of relatively large domains separated by 180◦ domain wall mostly

cause non-spin-flip specular reflection, as the domain magnetization is collinear with the

guiding field for the neutron polarization. The size of those domains allows a few of them

to be simultaneously illuminated coherently. Namely this coherent averaging reduces the

effective magnetic optical potential, while fluctuations around its mean value contribute

in non-spin-flip diffuse scattering. The other set of so called ’closure’ small domains

[210] cause a diffuse background of spin-flip scattering. In the present experiments

Co MnGe
2

H

Figure 7.26.: Sketch of the microscopic picture for the antiferromagnetic state of the
sample [Co2MnGe(3nm)/V(2nm)]50 with two kinds of domains: large do-
mains separated by 180◦ domain walls and ’closure’ domains.
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Figure 7.27.: Neutron transverse scan of the [Co2MnGe(3nm)/V(2.5nm)]50 sample at
the position of the half-order Bragg peak (dots) together with a fit (line).
The diffuse background exhibits a Lorentzian line shape.

polarization analysis of diffuse scattering was not possible. Therefore, the contribution of

the closure domains to the off-specular scattering cannot be determined unambiguously.

The specular PNR data for the multilayer [Co2MnGe(3nm/V(2.5nm)]50 is very similar

to the previous case, i.e. there is no ferromagnetic contribution to the first order peak and

no spin-flip scattering intensity after correction for efficiency of the polarizing elements.

Thus the multilayer seems to be perfectly af aligned with the sublattice magnetization

collinear with the neutron guide field. Qx scans at the position of the af peak reveal

a resolution limited Gaussian line shape for the specular reflected beam superimposed

onto a background of diffuse intensity, exhibiting a Lorentzian line shape (see Fig. 7.27).

In this sense the sample with tV = 2.5 nm represents an intermediate case between the

multilayers discussed above. Without polarization analysis of the off-specular scattering

the microscopic picture for the antiferromagnetic state is difficult to draw. A domain

formation similar to the previous case with a higher degree of random patterns can well

explain the measured data.

Remagnetization Process

To get insight into the remagnetization process in this system, a detailed study

of diffuse scattering is not required. Instead, it is sufficient to carry out corre-

sponding fits for the specular reflectivity curves. The latter were measured on the

[Co2MnGe(3nm)/V(2nm)]50 and [Co2MnGe(3nm)/V(2.5nm)]50 multilayer at different

fields at 10 K. Two representative field dependent PNR measurements with an applied
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field of H = 70 Oe and H = 350 Oe are plotted in Fig. 7.28 together with model simula-

tions. To account for the limited available beamtime, the curves were measured only in

the region of the af peak and the structural peak. The intensity around the edge of total

reflection is adjusted to the intensity of the polarized reflectivity scans in Fig. 7.19. To

ensure a well defined magnetic state, the samples have been saturated at room temper-

ature and cooled down in zero-field. The results of the fit are summarized in Fig. 7.29,
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Figure 7.28.: PNR measurements of the multilayer [Co2MnGe(3nm)/V(2nm)]50 as a
function of the applied field together with model simulations.

where the field dependence of the antiferromagnetic, (m1 −m2)/2, and ferromangnetic,

(m1 + m2)/2, order parameters is depicted. The qualitative behaviour of both samples

is very similar. With increasing field the af order parameter continuously decreases and

is nearly completely suppressed at H = 350 Oe and H = 500 Oe, respectively. On the

contrary, the ferromagnetic order parameter, almost vanishing in zero field, increases

continuously reaching the value expected for ferrromagnetic saturation at these fields.

Remembering that these samples have an antiferromagnetic configuration collinear

with the applied field, one should expect some scattering intensity in the spin-flip chan-

nel, if the system would undergo a spin-flop transition and approaches the saturation

via rotation of the sublattice magnetization. Surprisingly however, the remagnetization

process is quite different. There is no resolvable spin-flip scattering over the entire mag-

netic field range (Fig. 7.30) indicating that the remagnetization takes place solely by

domain wall movements for domains in the sublayer with the magnetization direction

opposite to the applied field. From the upper panel in Fig. 7.30 it follows that the af

order parameter continuously degrades as the intensity of the half-order af reflection

decreases. Simultaneously the increasing ferromagnetic order parameter manifests itself

in the splitting of the (++) and (−−) channel intensities (lower panel in Fig. 7.30). At

saturation the (−−) channel exhibits nearly zero intensity. This is a special features of
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Figure 7.29.: Field dependence of the antiferromagnetic, (m1 − m2)/2 (filled circles),
and ferromangnetic, (m1 + m2)/2 (open circles), order parameters for the
sample [Co2MnGe(3nm)/V(2nm)]50 (a) and [Co2MnGe(3nm)/V(2.5nm)]50
(b) measured at 10 K.

several Heusler alloys, which has been used for the construction of neutron polarizers

[212].

Fig. 7.31 shows the field dependence of the af peak intensity of the

[Co2MnGe(3nm)/V(3nm)]50 multilayer taken at 15 K and 150 K. At 15 K the af peak

intensity is not restored after switching off the field, whereas at 150 K about 30% of
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Figure 7.30.: Field dependence of the af peak intensity (upper panel) and first order
structural peak (lower panel) for the spin-flip (−+) and non-spin-flip ((++)
and (−−)) channels for the multilayer [Co2MnGe(3nm)/V(2nm)]50 at 10 K.
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7. [Co2MnGe/V]N Multilayers

the af peak intensity is recovered. The af coupling is apparently very weak at 150 K,

a field of about 50 Oe already destroys the af order. For antiferromagnetically coupled

multilayers the effective coupling energy J can be estimated by the formula [213]

J = MStHeuslerHS/4, (7.2)

where MS is the saturation magnetization, tHeusler the thickness of a single Co2MnGe

layer and HS the ferromagnetic saturation field. The values obtained by Eq. (7.2)

are J = 6.8 × 10−7 J/m2, J = 9.3 × 10−7 J/m2 and J = 1.1 × 10−6 J/m2 for the

[Co2MnGe(3nm)/V(tV)]N multilayers with tV = 2 nm, 2.5 nm and 3.0 nm, respectively.

Compared to typical values for e.g. Co/Cu superlattices of the order of 10−4 J/m2, the

coupling strength in our samples is very weak [214]. The temperature dependence of
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Figure 7.31.: Field dependence of the af peak intensity of the
[Co2MnGe(3nm)/V(3nm)]50 (#2) multilayer taken at T = 15 K
(solid dots) and T = 150 K (open dots).

the af peak intensity for the [Co2MnGe(3nm)/V(3nm)]50 multilayer as measured after

cooling in zero-field and after cooling in a field of 1000 Oe and then switching off the

field at the measuring temperature is displayed in Fig. 7.32 as a representative example.

After zero-field cooling the af peak intensity develops below 250 K in a phase transi-

tion like fashion, reaches a maximum at about 150 K and decreases slightly towards

lower temperatures. After cooling in a field of 1000 Oe there is no detectable af peak

intensity below 100 K, but approaching the phase transition at TN = 250 K, the af

order recovers after switching off the field. Close to the transition temperature the peak
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intensity coincides with that measured after zero-field cooling. Since the half-order peak

intensity is proportional to the squared sublattice magnetization in an antiferromagnet,

this behavior clearly reveals a reversible phase transition at 250 K. Remarkably this

temperature is far below the ferromagnetic ordering temperature of a single Co2MnGe

film of comparable thickness, which is about 600 K [194].
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Figure 7.32.: Temperature dependence of the af peak intensity of the multilayer
[Co2MnGe(3nm)/V(3nm)]50 (#1) measured after field cooling (solid tri-
angles) and zero field cooling (open triangles).

7.4. Magnetic Phase Diagram

The neutron scattering results of the previous section clearly prove that in the

[Co2MnGe/V] multilayers there is antiferromagnetic interlayer ordering in the thickness

range tV ≤ 3 nm. The Néel temperature derived from the peak in the susceptibility and

the vanishing intensity of the half-order peak are combined in a magnetic phase diagram

in Fig. 7.33. The Néel temperature decreases continuously with increasing thickness

of the V layers. There is no indication of an oscillatory character of the magnetic

coupling. We have confirmed for additional intermediate thicknesses by magnetization

measurements that the interlayer ordering is always antiferromagnetic. Actually the

magnetic state of the [Co2MnGe/V] multilayers above the Néel temperature is not sim-

ply paramagnetic but exhibits superparamagnetic properties. In Fig. 7.34 the reversible

magnetization of the [Co2MnGe(3nm)/V(3nm)]50 multilayer for temperatures above TN
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Figure 7.33.: Magnetic phase diagram for multilayers [Co2MnGe(3nm)/V(tV)]50 as a
function of the V thickness tV with the Néel temperature (open circles)
and cluster glass temperature (filled circles). The open square designs
TN for the sample [Co2MnGe(3nm)/V(3nm)]50 (#2), (see Tab. 7.1). The
crosses indicate the onset of a strong magnetic irreversibility.

is depicted. The magnetization curves reveal typical superparamagnetic behavior with

a linear M(H)-curve at low fields and saturation at higher fields. For non-interacting

superparamagnetic clusters the magnetization should scale as [116]

M(H, T ) = NcµcL(
µcH

kbT
), (7.3)

with the number of magnetic clusters Nc, the cluster magnetic moment µc and the

Langevin function L(x). Experimentally the magnetization isotherms fall progressively

below the commonly supposed Langevin function. Essentially we attribute this be-

haviour to cluster interactions [215] and to anisotropy of the clusters [216]. Furthermore

the clusters probably exhibit a size distribution leading to deviations from Eq. (7.3).

More sophisticated models taking these effects into account were applied, but could not

reproduce the magnetization curves either. Thus we used the low field approximation

L(x) ≈ 1/3x, which yields the magnetization

M(H, T ) =
Ncµ

2
cH

3kbT
. (7.4)
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Figure 7.34.: Magnetization curves of the multilayer [Co2MnGe(3nm)/V(3nm)]50 (#1)
measured at different temperatures T given in the figure.

Fitting Eq. (7.4) to the M(H, T ) curves in Fig. 7.34 we derive a cluster moment of

1.6×105 µB at 400 K. At 250 K just above the Néel temperature we get µc = 4×105 µB.

This magnetic moment corresponds to 7×105 or 2×106 Co2MnGe formula units combin-

ing one cluster and gives an average dimension of 120× 120 nm2 and 200× 200 nm2 for

the lateral cluster size, respectively. The superparamagnetic cluster type of behaviour is

similar for all multilayers of the present study. In Fig. 7.35 we compare the temperature

development of the superparamagnetic cluster moments for the thickness tV = 3 nm and

tV = 4 nm, where only the former compound orders antiferromagnetically. The temper-

ature dependence of the cluster moment indicates that the clusters are not independent,

but show interaction [116]. Thus the antiferromagnetic interlayer magnetic ordering in

the [Co2MnGe/V] multilayers develops from a superparamagnetic state and not from a

conventional paramagnetic state. An interesting question concerns the magnetic order of

the samples with tV ≥ 4 nm, which do not exhibit an antiferromagnetic interlayer order.

Here one finds all ingredients of a cluster glass transition at a transition temperature Tf .

Below Tf the coercive force strongly increases (Fig. 7.36), which can approximately be

described by Hc ∝ H0e
−αT . The onset of strong irreversibility in the low field suscepti-

bility occurs below the cluster glass transition temperature Tf ≈ 150 K [217, 111]. The

rectangular hysteresis loops at these temperatures suggest cooperative behavior among

a large number of clusters [112]. We have included the cluster glass transition tempera-

ture Tf in the phase diagram of Fig. 7.33. It is essentially independent of the thickness
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Figure 7.35.: Temperature dependence of the cluster magnetic moment µC for the
[Co2MnGe(3nm)/V(3nm)]50 (#1) multilayer (filled circles) and the
[Co2MnGe(3nm)/V(4nm)]50 multilayer (open circles).

tV. The cluster glass transition continues below the antiferromagnetic phase transition

line (see dashed line in Fig. 7.33), where it characterizes the onset of strong magnetic

irreversibility below TN . This line resembles the reentrance phase transition line which

is found in conventional spin glass systems close to the critical concentration of long
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Figure 7.36.: Coercive field (solid circles) and remanent magnetization (open circles)
versus temperature for the multilayer [Co2MnGe(3nm)/V(3nm)]50 (#1).
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range order [101]. This line is usually discussed in terms of the coexistence of both, the

short and the long-range order parameters at low temperatures.

7.5. Discussion

We now discuss the microscopic origin leading to the peculiar magnetic phase diagram

in Fig. 7.33. There are two essential ingredients one has to explain. The first is the

origin of the cluster type magnetism, which is most obvious in the superparamagnetic

behaviour at high temperatures, and in the cluster glass transition at low temperatures.

Second, the question concerning the magnetic interactions causing the formation of the

antiferromagnetic interlayer ordering needs to be clarified.

The magnetic cluster type behaviour is related to the crystalline microstructure of the

single Co2MnGe layers in the multilayer. We have shown in Chap. 6 that a single 3 nm

thick Co2MnGe layer embedded between two V layers exhibits typical small particle

ferromagnetism with a ferromagnetic hysteresis loop virtually identical for the magnetic

field applied perpendicular and parallel to the film plane, although the surface of the

magnetic film is atomically flat [74]. The reason for this cluster type of ferromagnetism

is that the very small crystalline grains in the Co2MnGe film are magnetically decoupled

at the grain boundaries which are chemically disordered and weakly ferromagnetic. A

superparamagnetic high temperature state is the natural consequence of small particle

magnetism, if the interactions between the clusters are weak and the magnetic anisotropy

is small. In contrast, in a single Co2MnGe thin film grown on a V seed layer we did not

observe superparamagnetism in the temperature range up to the maximum experimental

temperature of 400 K.

In the [Co2MnGe/V] multilayers with the same thickness of the magnetic layers, how-

ever, superparamagnetic behavior already exists at room temperature, probably due to

a slightly different microstructure and a larger topological roughness of the Co2MnGe

layers. Thus alloying and roughening at the interfaces and atomic disorder at the grain

boundaries cause the Co2MnGe layers in the multilayers to break up into weakly cou-

pled magnetic clusters. The mean grain size of the crystallites in the multilayers as

determined from the off-specular x-ray reflectivity is about 20 nm. The average lateral

magnetic cluster size we derived from the superparamagnetic moment just above TN is

of the order of 200 nm i.e. one magnetic cluster is combined of many crystalline grains.

In the antiferromagnetically ordered phase we determined an average lateral size for the

magnetic domains of several µm. Thus, in the antiferromagnetically ordered state many

magnetic clusters within one Co2MnGe layer belong to one magnetic domain.
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7. [Co2MnGe/V]N Multilayers

Concerning the magnetic interactions responsible for the antiferromagnetic interlayer

magnetic ordering, we can exclude interlayer exchange coupling. Non-ferromagnetic in-

terfaces and thickness fluctuations seem to weaken the IEC coupling drastically. We

are thus led to the conclusion that the dipolar interactions between the planes cause

the antiferromagnetic interlayer ordering. This would explain the absence of an os-

cillatory character of the interlayer coupling and the weak antiferromagnetic coupling

field. Actually dipolar stray fields protruding at the grain boundaries are a natural

consequence of the internal granular structure of the Co2MnGe films. The influence of

the dipolar fields from neighbouring layers also explains the anisotropy, existing in the

[Co2MnGe/V]N multilayers, although the single thin Co2MnGe films are isotropic. In

Fig. 7.37 we have drawn schematically, how interlayer dipolar interactions may arrange

the antiferromagnetic interlayer order in the [Co2MnGe/V] multilayer system. The im-

Co MnGe2

lg

lC
laf

V

Co MnGe2

Figure 7.37.: Schematic picture of the interlayer order in the [Co2MnGe(3nm)/V(tV)]N
multilayers. The size of the crystallites is about lg = 20 nm, the average
magnetic cluster size is of the order lc = 200 nm and the size for the
magnetic domains laf is of several µm. The arrows indicate the direction
of the local magnetization.

portance of interlayer dipolar interactions in multilayer systems is well established in

the literature. Theoretical model calculations show that the dipolar coupling in multi-

layers can be ferromagnetic or antiferromagnetic, depending on the interface topology

[218, 219, 220, 221]. In a system with corrugated interfaces the so called ’orange peel’

coupling [222] may give rise to a ferromagnetic interlayer coupling. For the case of uncor-

related roughness, antiferromagnetic coupling is more probable [219]. Experimentally an

antiferromagnetic interlayer ordering induced by dipolar interactions has been observed

in [Co/Cu] multilayers with 6 nm thick Cu layers [221]. In multilayer systems [Nb/Fe]

and [FeNi/Ag], af interlayer order due to dipolar interactions has also been discussed
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[223, 224]. However, at variance to the system studied here, none of these multilayers

exhibits a reversible af phase transition and a superparamagnetic state above the Néel

temperature.
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Within the framework of this thesis a detailed study of the structural and magnetic

properties of single thin Co2MnGe films and [Co2MnGe/V]N multilayers with different

thickness of the V layers has been presented. In the multilayers a new magnetic ordering

phenomenon has been found.

The investigations on single films have shown that thick films of the Heusler com-

pound Co2MnGe can be grown with a saturation magnetization and structural quality

comparable to bulk samples. However, when decreasing the thickness to the order of

3 nm, the films show a definitely lower value of the saturation magnetization and exhibit

properties reminiscent of small particle ferromagnets. This behaviour is interpreted by

a magnetic decoupling of the Heusler films at the grain boundaries of the very small

grains forming the film. Structural disorder and a high concentration of antisite defects

at the grain boundaries weaken the ferromagnetism drastically.

As it has been demonstrated by the XMCD measurements on a single Co2MnGe film

at the Mn and the Co L2,3 absorption edges, it is only the Mn atom in the Heusler

compounds which reduces the saturation magnetization. Theoretical model calculations

suggest that this originates from an antiparallel spin orientation of antisite Mn spins

rather than from a loss of the atomic magnetic moment of Mn.

Based on the study of the single Heusler films a series of [Co2MnGe/V]N multilayers

has been prepared and analyzed with special emphasis on their interface properties and

their magnetic ordering phenomenon.

X-ray scattering revealed a high structural quality of the multilayers with smooth in-

terfaces exhibiting mainly uncorrelated roughness. The ferromagnetic saturation mag-

netization of the Co2MnGe layers in the multilayer system is found to be reduced to

about 50% of the bulk value.

In order to examine the magnetization at the interfaces, depth resolved magnetic

moment density profiles for Co and Mn have been derived by simulations of XRMS

spectra measured at the Co and Mn L2,3 edges. The profiles clearly reveal the existence

of non-ferromagnetic or weakly ferromagnetic Co2MnGe layers at the interface with a
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thickness of about 0.5 nm at the bottom and 0.3 nm at the top. This phenomenon can

be attributed to a gradual transition of the metallurgical order in the Co2MnGe film

from a disordered bcc phase at the interface to the well ordered L21 phase in the core of

the layer, taking into consideration that the Mn moments are more effected by disorder

than the Co moments.

Neutron reflectivity and magnetization measurements have led to the detection of a

peculiar antiferromagnetic interlayer magnetic ordering in the [Co2MnGe/V] multilayers

with a well defined Néel temperature far below the ferromagnetic Curie temperature of

a single Heusler layer of the same thickness. The antiferromagnetic ordering exists in

the thickness range of the V interlayer between 1 nm and 3 nm, very unlike the anti-

ferromagnetic interlayer order in multilayer systems coupled by the interlayer exchange

mechanism. The antiferromagnetic order is directly related to the granular ferromag-

netic structure of very thin Heusler layers. The small ferromagnetic particles defined

by the weak magnetic coupling at the grain boundaries exhibit superparamagnetic be-

haviour above the Néel temperature. The interlayer dipolar interactions between the

superparamagnetic particles cause a reversible magnetic phase transition with antifer-

romagnetic order between the layers and ferromagnetic order within the layers at a well

defined Néel temperature.

Finally, simulations of specular and diffuse polarized neutron scattering allowed to

draw a microscopic picture of the antiferromagnetic domain distribution within the

[Co2MnGe/V]N multilayers. It turns out that the antiferromagnetic columnar domains

exhibit a Landau type of pattern. Furthermore the antiferromagnetic ordering seems to

be perfectly correlated through the whole multilayer stack.

Regarding the perspective of the Heusler compounds as full spin polarized ferromag-

netic layers in magnetoelectronic devices, the results above indicate the severe difficulties

one inevitably encounters. The constraints in the preparation of thin film heterostuc-

tures in many cases prohibit the optimum preparation conditions for the Heusler phase,

thus rendering it difficult to get the L21 structure with a high degree of atomic order.

At the interfaces additional problems arise since they tend to be strongly disordered

and weakly ferromagnetic. However, these problems could be overcome by a Heusler

phase with a more robust spin polarization at the Fermi level, which principally might

already exist among the many new Heusler half-metals which have been predicted the-

oretically. In any case, the Heusler alloys still offer new and promising perspectives for

basic research and applications.
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[147] B.P. Toperverg, A. Rühm, W. Donner, and H. Dosch. Physica B, 267-268:198,

1999.

[148] B.P. Toperverg. Polarized Neutron Reflection and Off-specular Scattering. In

Th. Brückel and W. Schweika, editors, Polarized Neutron Scattering, Matter and

Materials, Vol. 12. Schriften des Forschungszentrums Jülich, 2002.
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2003.

[217] K.H. Fischer. Phys. Stat. Sol. B, 120:13, 1985.

[218] D. Altbir, M. Kiwi, R. Ramı́rez, and I. K. Schuller. J. Magn. Magn. Mat.,

149:L246, 1995.

[219] J. P. Hill and D. F. McMorrow. Acta Cryst. A, 52:236, 1996.

[220] J. C. Slonczewski. J. Magn. Magn. Mater., 150:13, 1995.

[221] J. A. Borchers, P. M. Gehring, R. W. Erwin, J. F. Ankner, C. F. Majkrzak, T. L.

Hylton, K. R. Coffey, M.A. Parker, and J. K. Howard. Phys. Rev. B, 54:9870,

1996.
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