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Antiferromagnetic magnons as highly squeezed Fock states underlying quantum correlations
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Employing the concept of two-mode squeezed states from quantum optics, we demonstrate a revealing
physical picture for the antiferromagnetic ground state and excitations. Superimposed on a Néel ordered
configuration, a spin-flip restricted to one of the sublattices is called a sublattice magnon. We show that an
antiferromagnetic spin-up magnon is composed of a quantum superposition of states with n + 1 spin-up and
n spin-down sublattice magnons and is thus an enormous excitation despite its unit net spin. Consequently,
its large sublattice spin can amplify its coupling to other excitations. Employing von Neumann entropy as a
measure, we show that the antiferromagnetic eigenmodes manifest a high degree of entanglement between the
two sublattices, thereby establishing antiferromagnets as reservoirs for strong quantum correlations. Based on
these insights, we outline strategies for exploiting the strong quantum character of antiferromagnetic (squeezed)
magnons and give an intuitive explanation for recent experimental and theoretical findings in antiferromagnetic
magnon spintronics.
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I. INTRODUCTION

As per the Heisenberg uncertainty principle, the quan-
tum fluctuations of two noncommuting observables cannot
simultaneously be reduced to zero. However, it is possible to
generate a state with the quantum noise in one observable
reduced below its ground-state limit at the expense of en-
hanced fluctuations in the other observable [1,2]. Considering
a single mode or frequency of light, such states, generally
called squeezed vacuum [1,2], have proven instrumental in
the detection of gravitational waves [3] with a sensitivity
beyond the quantum ground-state limit [4–6]. Furthermore,
squeezed vacuum states have applications in quantum infor-
mation [7–11] since they exhibit quantum correlations and
entanglement. These are best represented and exploited via
the two-mode squeezed vacuum states, where the two partic-
ipating modes are entangled and correlated [1]. The widely
studied [1,2] single- and two-mode squeezed vacuums may
be considered a special case, corresponding to zero photon
number(s), of a wider class: squeezed Fock states [12,13].
While investigated theoretically, the latter have been largely
forgotten, probably owing to the experimental challenge of
generating them. The squeezing concept applies to bosonic
modes in general, and squeezed states of magnons [14–17]
and phonons [18] have also been achieved experimentally.

The concept of squeezed Fock states [12,13] has proven
valuable in understanding the spin excitations of ordered
magnets [19,20]. Squeezed magnons have been shown to be
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the eigenexcitations of a ferromagnet [19,21]. A squeezed
magnon is composed of a coherent superposition of the differ-
ent odd-number states of the spin-1 magnon [19,20,22]. This
bestows it a noninteger average spin larger than 1. The rela-
tively weak spin-nonconserving interactions, such as dipolar
fields and crystalline anisotropy, underlie the magnon squeez-
ing in ferromagnets. These spin-nonconserving interactions
were further found to result in two-sublattice magnets hosting
excitations with spin varying continuously between positive
and negative values [20]. In contrast, exchange interaction in
a two-sublattice magnet leads to a strong squeezing effect,
which does not affect the excitation spin and forms a main
subject of the present paper. Being eigenexcitations, squeezed
magnons are qualitatively distinct in certain ways from the
squeezed states of light discussed above, which are nonequi-
librium states generated via an external drive. At the same
time, the two kinds of states share several similar features on
account of their wave functions being mathematically related.
To emphasize this difference, we employ terminology in
which “squeezed state of a boson” refers to a nonequilibrium
state, while a “squeezed boson” is an eigenmode [23].

Instigated by recent experimental breakthroughs [24–29],
interest in antiferromagnets (AFMs) for practical applica-
tions has been invigorated [30–34]. Due to the well-known
strong quantum fluctuations in AFMs, they have also been
the primary workhorse of the quantum magnetism community
[35]. The Néel ordered configuration, which is consistent with
most of the experiments, is not the true quantum ground
state of an AFM. Furthermore, quantum fluctuations destroy
any order in a one-dimensional isotropic AFM. These and
related general ideas applied to AFMs bearing geometrically
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FIG. 1. Schematic depiction of spatially uniform antiferromag-
netic (a) vacuum and (b) spin-up eigenmodes. (a) The vacuum
mode, represented as |0〉sq =

∑

n Pn|n, n〉sub, is a superposition over
states with an equal number of spin-up and -down sublattice
magnons. (b) The spin-up squeezed magnon, represented as |↑〉sq =
∑

n Qn|n + 1, n〉sub, is composed of states with one extra spin-up
sublattice magnon. (c) Squared amplitudes corresponding to the
sublattice-magnon states constituting the uniform squeezed vacuum
and spin-up eigenmodes for squeeze parameters of 3 (main) and 1
(inset).

frustrated interactions underlie quantum spin liquids [36–38],
which are devoid of order in the ground state and host ex-
otic, topologically nontrivial excitations embodying massive
entanglement.

We here develop the squeezing picture for the ground state
and excitations of a simple, two-sublattice AFM. It continu-
ously connects and allows a unified understanding of classical
and quantum as well as ordered and disordered antiferromag-
netic states. We show that the AFM eigenmodes are obtained
by pairwise, two-mode squeezing of sublattice magnons, the
spin-1 excitations delocalized over one of the two sublattices.
Focusing on spatially uniform modes, the antiferromagnetic
ground state is a superposition of states with an equal number
of spin-up and -down sublattice magnons [Figs. 1(a) and 1(c)].
The result is a net spin on each sublattice diminished by an

FIG. 2. (a) An external excitation bath (shaded green) interacts
weakly with the AFM squeezed magnon if coupled via its unit net
spin (left) but strongly if exposed to only one of the sublattices
(right). (b) Schematic depiction of a metal (N) coupled to an AFM
via a fully uncompensated interface.

amount dictated by the degree of squeezing, parametrized by
the non-negative squeeze parameter r. Similarly, a spin-up
AFM (squeezed) magnon is composed of a superposition of
states with n + 1 spin-up and n spin-down sublattice magnons
[Figs. 1(b) and 1(c)]. Thus, despite its unit net spin, it car-
ries enormous spins on each sublattice, which allows it to
couple strongly with other excitations via a sublattice-spin-
mediated interaction (Fig. 2). Owing to a perfect correlation
between the two sublattice-magnon numbers, AFM squeezed
magnons are shown to embody entanglement quantified by
von Neumann entropy [1,39] increasing monotonically with r

(Fig. 3). The degree of squeezing and entanglement embodied
by these eigenmodes is significantly larger than that in hitherto
achieved nonequilibrium states. We also comment on existing
experiments [40,41] where this squeezing-mediated coupling
enhancement (Fig. 2) has been observed and strategies for
exploiting the entanglement contained in antiferromagnetic
magnons. While the squeezed states of light are generated
via external drives and are nonequilibrium states [1], the

FIG. 3. Entanglement between the two constituent sublattice
magnons quantified via von Neumann entropy for the squeezed
vacuum (S0) and magnon (S1) eigenmodes. The inset shows a zoom
of the small-r range.
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antiferromagnetic squeezed magnons are eigenmodes of the
system with their squeezing being equilibrium in nature and
resulting from energy minimization.

II. AFM EIGENMODES AS SQUEEZED FOCK STATES

We consider a Néel ordered ansatz with sublattice A and
B spins pointing along ẑzz and −ẑzz, respectively. The antifer-
romagnetic Hamiltonian may then be expressed in terms of
the corresponding sublattice-magnon ladder operators ãkkk, b̃kkk

as [20,42]

H̃ =
∑

kkk

Akkk (ã†
kkk
ãkkk + b̃

†
kkk
b̃kkk ) + Ckkk (ãkkk b̃−kkk + ã

†
kkk
b̃

†
−kkk

), (1)

where we assume inversion symmetry and disregard applied
magnetic fields for simplicity. Consistent with the assumed
Néel order, sublattice B (A) magnons represented by b̃kkk (ãkkk )
are spin up (down). In addition to the general considerations
captured by Eq. (1), we will obtain specific results for a
uniaxial, easy-axis AFM described by

H̃uni =
J

h̄2

∑

i,δδδ

S̃SSA(rrri ) · S̃SSB(rrri + δδδ)

−
K

h̄2

∑

i

[S̃Az(rrri )]
2 −

K

h̄2

∑

j

[S̃Bz(rrr j )]
2. (2)

Here, the positive parameters J and K account for intersub-
lattice antiferromagnetic exchange and easy-axis anisotropy,
respectively. S̃SSA,B represent the respective spin operators,
rrri (rrr j ) runs over the sublattice A (B), and δδδ are vectors to the
nearest neighbors. Executing Holstein-Primakoff transforma-
tions [43] and switching to Fourier space, Eq. (2) reduces to
Eq. (1) apart from a constant-energy offset [20,44], with Akkk =
JSz + 2KS and Ckkk = JSzγkkk . Here, S is the spin on each site, z

is the coordination number, and γkkk ≡ (1/z)
∑

δδδ exp (ikkk · δδδ).
The Hamiltonian [Eq. (1)] is diagonalized to H̃ =

∑

kkk ǫkkk (α̃†
kkk
α̃kkk + β̃

†
kkk
β̃kkk ) via a Bogoliubov transformation [43]

described by [45]:

α̃kkk = ukkk ãkkk + vkkk b̃
†
−kkk

, β̃kkk = ukkk b̃kkk + vkkk ã
†
−kkk

, (3)

ukkk =

√

Akkk + ǫkkk

2ǫkkk

, vkkk =

√

Akkk − ǫkkk

2ǫkkk

, (4)

where ǫkkk =
√

A2
kkk
− C2

kkk
. α̃kkk and β̃kkk represent the spin-down and

-up eigenmodes of the AFM, which are subsequently called
squeezed magnons. Denoting the resulting antiferromagnetic
vacuum or ground-state wave function by |G〉sq, we have
α̃kkk|G〉sq = β̃kkk|G〉sq = 0 for all kkk.

Let us first consider the spatially uniform modes, i.e.,
kkk = 000. We denote states in the corresponding reduced sub-
spaces via |Nb000 , Na000〉sub and |Nβ000 , Nα000〉sq, where Nb000 denotes
the number of spin-up sublattice magnons and so on. Within
the reduced subspaces, the Néel ordered state is thus denoted
by |0, 0〉sub, while the antiferromagnetic ground state obtained
above is represented by |0, 0〉sq. We define the relevant two-

mode squeeze operator [1]: S̃2(r000) ≡ exp (r000ã000b̃000 − r000ã
†
000b̃

†
000),

with the non-negative squeeze parameter r000 given via u000 ≡
cosh r000 and v000 ≡ sinh r000 [Eq. (4)] [46]. Employing the

identities [1,19]

α̃000 = S̃2(r000)ã000S̃−1
2 (r000), β̃000 = S̃2(r000)b̃000S̃−1

2 (r000), (5)

where α̃000 and β̃000 are given by Eq. (3), in the condition
α̃000|0, 0〉sq = β̃000|0, 0〉sq = 0, we obtain

|0, 0〉sq = S̃2(r000)|0, 0〉sub. (6)

Thus, the uniform modes’ antiferromagnetic ground state
is a two-mode squeezed vacuum of sublattice magnons.
The complementary demonstration of quadrature squeez-
ing is detailed in Appendix A. Working along the same
lines as above, it is straightforward to show that |m, n〉sq =
S̃2(r000)|m, n〉sub, thereby demonstrating the antiferromagnetic
eigenmodes are two-mode squeezed sublattice-magnon Fock
states. Therefore, the eigenmodes are henceforth called
“squeezed magnons.”

Based on the analysis above, it becomes evident that the
antiferromagnetic ground state is obtained by pairwise, two-
mode squeezing of the Néel ordered state:

|G〉sq =

[

∏

kkk

S̃2(rkkk )

]

|Néel〉sub, (7)

where S̃2(rkkk ) ≡ exp (rkkk ãkkk b̃−kkk − rkkk ã
†
kkk
b̃

†
−kkk

), with the squeeze
parameters rkkk given via ukkk = u−kkk ≡ cosh rkkk . The α̃kkk eigen-
mode is thus a two-mode (ãkkk and b̃−kkk) squeezed magnon
[Eq. (3)]. Similarly, the β̃kkk eigenmode is also a two-mode
squeezed magnon formed by b̃kkk and ã−kkk modes [Eq. (3)].
Due to this mathematical equivalence, it suffices to analyze
the spatially uniform eigenmodes, which is what we focus on
in the following.

III. SPATIALLY UNIFORM EIGENMODES

For ease of notation, we denote the wave functions for
a spatially uniform squeezed vacuum by |0〉sq and spin-up
squeezed magnon by |↑〉sq, while the corresponding squeeze
parameter is denoted by r. Considering a uniaxial AFM
[Eq. (2)], we obtain cosh r ≈ (1/2)(Jz/K )1/4 [Eq. (4)], which
translates to r ≈ 3 for a typical ratio of J/K ∼ 104. To get
a feel for numbers, the most squeezed vacuum state of light
generated so far corresponds to a squeeze parameter of about
1.7 [2,47]. Furthermore, in the limit K → 0, the squeeze
parameter is found to diverge. This feature is general and
a direct consequence [Eq. (4)] of the Goldstone theorem,
according to which ǫ000 → 0 in the limit of isotropy.

Employing the relation α̃000|0〉sq = (cosh r ã000 +
sinh r b̃

†
000)|0〉sq = 0, the squeezed vacuum is obtained in

terms of the uniform sublattice-magnons subspace [1]:

|0〉sq =
∞

∑

n=0

(− tanh r)n

cosh r
|n, n〉sub ≡

∑

n

Pn|n, n〉sub. (8)

The ensuing wave function is schematically depicted in
Fig. 1(a), and the distribution over constituent states is plotted
in Fig. 1(c). With an increasing r, the number of states that
contribute substantially to the superposition increases mono-
tonically. This presence of sublattice magnons in the ground
state constitutes quantum fluctuations.

A similar representation for the spin-up squeezed magnon
is obtained via |↑〉sq = β̃

†
000 |0〉sq = (cosh r b̃

†
000 + sinh r ã000)|0〉sq
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and Eq. (8):

|↑〉sq =
∞

∑

n=0

√
n + 1(− tanh r)n

cosh2 r
|n + 1, n〉sub

≡
∑

n

Qn|n + 1, n〉sub. (9)

A schematic depiction and the distribution over constituent
states are shown in Figs. 1(b) and 1(c). In stark contrast
to the squeezed vacuum, where the contribution from states
decreases monotonically with n, the highest contribution to
the superposition here comes from n ≈ sinh2 r. No such peak
exists for weak squeezing when sinh r < 1. The average num-
ber of spin-up magnons comprising a squeezed magnon is
evaluated as cosh2 r + sinh2 r. Thus, a typical AFM squeezed
magnon, corresponding to r ≈ 3 estimated above, is com-
posed of around 200 spin-up magnons on one sublattice and
nearly the same number of spin-down magnons on the other.
It is thus an enormous excitation, despite its unit net spin.

IV. ENHANCED INTERACTION

This enormous nature of the AFM squeezed magnon re-
veals an approach to exploit it. When it couples to excitations,
such as itinerant electrons or phonons, via its net spin, the
interaction strength is proportional to the relatively small unit
spin. On the other hand, if an interaction is mediated via
the sublattice spin, it will be greatly enhanced (by a factor
∼ cosh2 r ≈ 100 for r ≈ 3) on account of its large sublattice
spin content [Fig. 2(a)]. Such a situation arises, for example,
when an AFM is exposed to a metal via an uncompensated
interface [Fig. 2(b)] [26,48–50]. This effect provides a physi-
cal picture for the theoretically encountered enhancement in
spin pumping current from AFM into an adjacent conduc-
tor coupled asymmetrically to the two sublattices [49]. The
same mechanism has also been exploited in predicting an
enhanced magnon-mediated superconductivity in a conductor
bearing an uncompensated interface with an AFM [51]. Rig-
orous derivations of electron-magnon and magnon-magnon
couplings presented, respectively, in Appendixes B and C
demonstrate an enhancement of the interactions consistent
with the intuition above, reinforcing the generality of this
phenomenon.

V. ENTANGLEMENT

In a two-mode squeezed vacuum, the participating modes
are entangled with the degree of entanglement quantified by
the von Neumann entropy [1,39] S0:

S0 = −
∑

n

|Pn|2 ln(|Pn|2)

= 2 ln(cosh r) − 2(sinh2 r) ln(tanh r). (10)

Such two-mode squeezed vacuum states of light have been
exploited for obtaining useful entanglement [7]. This high von
Neumann entropy content of our squeezed-magnon vacuum
can be exploited, for example, in entangling two qubits [52]
coupled respectively to sublattices A and B. Furthermore, the
squeezed magnons themselves embody strong entanglement,

quantified by an even larger von Neumann entropy S1 =
−

∑

n |Qn|2 ln(|Qn|2) (Fig. 3), which may be transferred to
external excitations. This can be achieved by coupling the
systems to be entangled with the opposite sublattices [53–57]
via uncompensated interfaces [Fig. 2(b)], for example, as
has been detailed further in Appendix D. In comparison,
von Neumann entropy [58] of about 1 has been measured
in cold-atom systems [59]. This high von Neumann entropy
content and the large number of entangled spins (∼cosh2 r)
that comprise the AFM squeezed magnon make it an entan-
gled excitation complementary to the “massively entangled”
excitations hosted by some quantum spin liquids [36–38].

VI. QUANTUM FLUCTUATIONS IN

“CLASSICAL” EXPERIMENTS

The interaction enhancement effect [Fig. 2(a)] is rooted in
high magnon squeezing and the underlying quantum super-
position of a large number of states [Eq. (9)]. It is a direct
consequence of the strong quantum fluctuations in the anti-
ferromagnetic ground state, which hosts this excitation, and
is thus a quantum fluctuation effect itself. Nevertheless, this
coupling enhancement is observed as an increased magnetic
damping around the compensation temperature in a com-
pensated ferrimagnet [40], which mimics an AFM [20,60].
Recently, this enhancement was observed and exploited in a
compensated ferrimagnet for an ultrastrong magnon-magnon
coupling, resulting in hybridization between the two enor-
mous spin-up and -down squeezed magnons [41]. These clas-
sical experiments at high temperatures may thus be considered
an observation of the antiferromagnetic quantum fluctuations.
As detailed in Appendix C, this large squeezing-mediated
enhancement (∼

√
J/K for our uniaxial AFM), suggested

recently in the context of light-matter interaction [61,62], is
reproduced by the classical theory of spin dynamics [41,60],
where it is termed “exchange enhancement.” This is under-
standable since the classical dynamics is captured by the quan-
tum system being in a coherent state [49,63,64], which fully
accounts for the average effect of these quantum fluctuations.

VII. GENERALIZATIONS

The description in terms of squeezed Fock states developed
herein is a mathematical consequence of the Bogoliubov
transformation and goes beyond AFMs. It should allow a sim-
ilar physical picture and subsequent exploitation of quantum
effects in other systems such as cold atoms [65–67]. Here, we
have disregarded the relatively weak spin-nonconserving in-
teractions. Inclusion of those necessitates a four-dimensional
Bogoliubov transform [20], thereby precluding the simple
two-mode squeezed Fock state description employed here.
Similar complications also arise when considering AFMs
lacking inversion symmetry. Nevertheless, an analogous gen-
eral picture can be developed.

VIII. CONCLUSION

We have developed a description and physical picture of
an antiferromagnetic ground state and excitations based on
the concept of two-mode squeezed Fock states. Capitalizing
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on the tremendous progress in quantum optics, these fresh
insights pave the way for exploiting the quantum properties
of antiferromagnetic squeezed magnons towards potentially
room temperature quantum devices.
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APPENDIX A: DEMONSTRATION OF

QUADRATURE SQUEEZING

In this Appendix, we clarify the squeezed nature of the
antiferromagnetic ground state by evaluating the quantum
fluctuations in the appropriate quadratures. This approach is
complementary to the more general discussion in terms of
the two-mode squeeze operator [1] presented in the main
text. Once again, we focus on the uniform modes, i.e., kkk = 000,
recognizing that the corresponding results for kkk 
= 000 follow
in a similar fashion. We first demonstrate the quadrature
squeezing following the standard approach within quantum
optics [1] and physically interpret the quadratures later.

For the two-mode squeezing of ã000 and b̃000 that is operational
here, the relevant quadratures are formed via a combination of
both modes’ ladder operators [1]:

X̃1 ≡
1

√
8

(ã000 + ã
†
000 + b̃000 + b̃

†
000), (A1)

X̃2 ≡
1

i
√

8
(ã000 − ã

†
000 + b̃000 − b̃

†
000). (A2)

Employing the bosonic commutation relations of the ladder
operators, we obtain [X̃1, X̃2] = i/2, demonstrating that the
chosen quadratures of Eqs. (A1) and (A2) represent two non-
commuting observables. Denoting the reduced subspace of
the uniform modes within the Néel ordered state by |0〉sub, the
quantum fluctuations in the two quadratures are evaluated as

〈0|sub(δX̃1)2|0〉sub ≡ 〈0|sub(X̃1 − 〈X̃1〉)2|0〉sub = 1
4 , (A3)

〈0|sub(δX̃2)2|0〉sub = 1
4 . (A4)

Therefore, the two quadratures host equal quantum noise
in the Néel ordered state, that is, 〈0|sub(δX̃1)2|0〉sub =
〈0|sub(δX̃2)2|0〉sub.

We now consider fluctuations in the antiferromagnetic
ground state with the uniform modes’ reduced subspace de-
noted by |0〉sq, as in the main text. Employing the Bogoliubov

transformation relations ã000 = cosh r α̃000 − sinh r β̃
†
000 and b̃000 =

cosh r β̃000 − sinh r α̃
†
000 , the two quadratures can be expressed as

X̃1 =
cosh r − sinh r

√
8

(α̃000 + α̃
†
000 + β̃000 + β̃

†
000 ), (A5)

X̃2 =
cosh r + sinh r

i
√

8
(α̃000 − α̃

†
000 + β̃000 − β̃

†
000 ). (A6)

Employing the quadrature expressions thus obtained, quantum
fluctuations in the antiferromagnetic ground state are conve-
niently evaluated as

〈0|sq(δX̃1)2|0〉sq =
(cosh r − sinh r)2

4
=

e−2r

4
, (A7)

〈0|sq(δX̃2)2|0〉sq =
(cosh r + sinh r)2

4
=

e2r

4
, (A8)

thereby demonstrating the quadrature squeezing [1] of the
antiferromagnetic ground state, that is, 〈0|sq(δX̃1)2|0〉sq <

〈0|sq(δX̃2)2|0〉sq.
We now relate the two quadratures [Eqs. (A1) and (A2)]

with physical observables of the antiferromagnet (AFM).
Employing Fourier relations of the kind

ãkkk =
1

√
N

∑

i

ãi eikkk·rrri , (A9)

in conjunction with the linearized Holstein-Primakoff trans-
formations for the AFM [42,44],

S̃A+(rrri ) = S̃Ax(rrri ) + iS̃Ay(rrri ) = h̄
√

2S ãi, (A10)

S̃B+(rrr j ) = S̃Bx(rrr j ) + iS̃By(rrr j ) = h̄
√

2S b̃
†
j, (A11)

we obtain

X̃1 =
1

2h̄
√

NS
(S̃Ax + S̃Bx ), (A12)

X̃2 =
1

2h̄
√

NS
(S̃Ay − S̃By). (A13)

Here, N is the total number of sites on each sublattice, S is
the spin at each site as defined in the main text, and S̃Ax ≡
∑

i S̃Ax(rrri ) is the x component of the total spin on sublattice A
and so on. Thus, the two quadratures are related to the x and y

components of the total spin and the Néel order, respectively.
In the qualitatively distinct case of single-mode squeezing

manifested by the uniform mode in an anisotropic ferromag-
net [19], the two quadratures are simply the x and y compo-
nents of the total spin, providing a geometrical “ellipticity”
interpretation to the squeezing effect [68]. In contrast, the
situation is less intuitive for the case of two-mode squeezing
as the ellipticity of quantum fluctuations exists in a more
abstract space. In the present case, this space is defined by
the transverse orthogonal components of the total spin and the
Néel order associated with the AFM [Eqs. (A12) and (A13)].

APPENDIX B: ELECTRON-MAGNON COUPLING

Heterostructures in which a magnetic insulator layer inter-
faces with another material hosting conduction electrons have
emerged as basic building blocks in a wide range of spintronic
concepts and devices. The interfacial exchange-mediated cou-
pling between the magnons in the former and the electrons in
the latter have enabled magnon-based information processing
schemes, magnon-mediated condensation phenomena, and so
on. Thus, an ability to engineer and amplify the electron-
magnon coupling is expected to have a strong and broad im-
pact. In this section, we discuss the electron-magnon coupling
in an AFM/normal-metal (N) bilayer with the goal of high-
lighting this tunability and amplification of electron-magnon
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coupling by exploiting the squeezing effect, as discussed in
the main text. A thorough analysis of this system along with
spin transport effects has been provided elsewhere [49]. We
here focus on highlighting the amplification effect for an
uncompensated AFM with respect to other related systems,
providing mathematical expressions complementary to the
intuitive physical picture discussed in the main text.

The AFM and N layers are assumed to interact via inter-
facial exchange, resulting in the following contribution to the
Hamiltonian [49] within a continuum model:

H̃int = −
1

h̄2

∫

A

d2ρ
∑

G=A,B

JiG S̃G(ρρρ ) · S̃N(ρρρ), (B1)

where A is the interfacial area, ρρρ is the two-dimensional
position vector in the interfacial plane, S̃N is the conduction
electron spin density operator in N, S̃G is the spin density op-
erator in the magnet for sublattice G, and JiG parametrizes the
exchange interaction between the two spin densities, allowing
it to be sublattice asymmetric. In terms of the ladder operators
for the conduction electrons and magnons, the Hamiltonian
above takes the form

H̃int = h̄
∑

qqq1,qqq2,kkk

c̃
†
qqq1+c̃qqq2−

(

W A
qqq1qqq2kkk ãkkk + W B

qqq1qqq2kkk b̃
†
kkk

)

+ H.c., (B2)

where c̃qqq+ denotes the annihilation operator for the N conduc-
tion electron with wave vector qqq and spin +h̄/2 along the z

direction and so on, ãkkk and b̃kkk are the annihilation operators
for the sublattice magnons as discussed in the main text,
and W A

qqq1qqq2kkk
is the appropriate amplitude given by the overlap

integral between the participating excitation wave functions
[49]. With the aim of focusing on the key ingredient in en-
hancing the coupling, we henceforth consider the relevant and
simplified part of the Hamiltonian [enclosed by parentheses in
Eq. (B2)] describing electron-magnon coupling:

P̃ = W Aã000 + W Bb̃
†
000, (B3)

where we have again specialized the expression to uniform
(kkk = 000) modes for simplicity and W A,B ∝ JiA,iB capture the
sublattice-asymmetry in the interfacial coupling.

For comparison, we first consider the case of a single-
sublattice isotropic ferromagnet [19] for which the interaction
is described simply by P̃ = W ã000, with ã000 representing the
normal magnon mode. The transition rate Ŵ for the electron-
magnon scattering process is thus simply determined by W ,
i.e., Ŵ ∝ |W |2. For the case of AFMs, in contrast, Eq. (B3)
becomes

P̃ = (cosh r W A − sinh r W B)α̃000

+ (cosh r W B − sinh r W A)β̃†
000 (B4)

in terms of the normal magnon modes. Now considering
W A = W B ≡ W for a compensated interface, in which the two
sublattices couple equally to the N electrons, we obtain

P̃ = W (cosh r − sinh r)α̃000 + W (cosh r − sinh r)β̃†
000 , (B5)

where we see that the transition rate is reduced: Ŵ ∝
(cosh r − sinh r)2|W |2 ≈ |W |2/(4 cosh2 r), accounting for
the large squeezing such that cosh r ≫ 1. The electron-
magnon coupling for this case is thus suppressed compared
to that for ferromagnetic magnons considered above. Arriving

at the crux of this Appendix, as discussed in the main text,
when the coupling is mediated by the sublattice spin of the
magnon via an uncompensated interface (W A = W , W B = 0),
we obtain

P̃ = W cosh r α̃000 − W sinh r β̃
†
000 . (B6)

The transition rates for the electron-magnon scattering pro-
cesses are thus given by Ŵ ∝ cosh2 r|W |2 for the α̃000 mode
and Ŵ ∝ sinh2 r|W |2 ≈ cosh2 r|W |2 for the β̃000 mode. Thus,
we find a squeezing-mediated enhancement in the electron-
magnon coupling for the case of sublattice spin-mediated
interaction. Furthermore, this is consistent with the simple
picture discussed in the main text, and the interaction en-
hancement factor is related to the sublattice spin associated
with a single eigenexcitation: the antiferromagnetic squeezed
magnon.

APPENDIX C: MAGNON-MAGNON COUPLING

In this Appendix, we investigate coupling between the two
opposite-spin antiferromagnetic eigenmodes caused by a spin-
nonconserving interaction [20]. In particular, we demonstrate
that a sublattice spin-mediated magnon-magnon coupling is
amplified via the squeezing effect, in agreement with the
general picture discussed in the main text. This also provides
a derivation, within the quantum picture, for the recently
observed “exchange-enhanced” ultrastrong magnon-magnon
coupling in a compensated ferrimagnet [41] without account-
ing for all the experimental complexities therein.

In the main text, we considered only interactions that
conserve the z-projected spin of the AFM. The diagonalized
Hamiltonian therefore assumes the form

H̃ =
∑

kkk

ǫkkk (α̃†
kkk
α̃kkk + β̃

†
kkk
β̃kkk ), (C1)

with the two opposite-spin squeezed magnons as degenerate
excitations of the system, in the absence of an applied field.
However, breaking the spin conservation [69] in the system
allows us to couple these opposite-spin excitations, resulting
in a lifting of degeneracy and the concomitant hybridization
[20]. As discussed in the main text, accounting for such spin-
nonconserving terms necessitates a four-dimensional Bogoli-
ubov transform for an exact diagonalization of the Hamilto-
nian [20]. Here, we circumvent this mathematical complexity
by describing the mode coupling in a perturbative manner,
treating Eq. (C1) and squeezed magnons as our unperturbed
Hamiltonian and eigenexcitations, respectively. This allows
us to obtain an analytic expression for the coupling rate
while appreciating and justifying the typical approximations
employed in such descriptions [1].

For concreteness, we consider the following spin-
nonconserving and sublattice spin-mediated contribution to
the Hamiltonian that may stem from the magnetocrystalline
anisotropy [41]:

H̃coup =
Ka

h̄2

∑

i

[S̃Ax(rrri )]
2 +

Ka

h̄2

∑

j

[S̃Bx(rrr j )]
2, (C2)

where Ka parametrizes this axial-symmetry-breaking
anisotropy and the rest of the notation was already introduced
in the main text. Employing the Holstein-Primakoff
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transformation and switching to Fourier space, the coupling
Hamiltonian above is brought to the following form:

H̃coup =
KaS

2

∑

kkk

ã
†
kkk
ã

†
−kkk

+ b̃
†
kkk
b̃

†
−kkk

+ ãkkk ã−kkk + b̃kkk b̃−kkk . (C3)

In writing Eq. (C3), we have neglected terms of the type
∼ã

†
kkk
ãkkk since they can be absorbed into Eq. (C1), leading to

a small renormalization of the unperturbed squeezed-magnon
energies. We again focus on the uniform modes (kkk = 000) as
they are also the ones observed experimentally [41]:

H̃coup(kkk = 000) =
KaS

2

(

ã2
000 + b̃2

000 + H.c.
)

. (C4)

Employing the Bogoliubov transformation relations ã000 =
cosh r α̃000 − sinh r β̃

†
000 and b̃000 = cosh r β̃000 − sinh r α̃

†
000 , the cou-

pling Hamiltonian may be expressed in terms of the unper-
turbed eigenexcitations:

H̃coup(kkk = 000) = − cosh r sinh r 2KaS(α̃000β̃
†
000 + α̃

†
000 β̃000)

+
KaS(cosh2 r + sinh2 r)

2

(

α̃2
000 + β̃2

000 + H.c.
)

(C5)

≈ − cosh r sinh r 2KaS(α̃000β̃
†
000 + α̃

†
000 β̃000). (C6)

In the last simplification above, we have employed the rotating
wave approximation [1] and disregarded terms which merely
cause rapid oscillations.

Equation (C6) constitutes the main result of this Appendix,
where the coupling rate can be read off as cosh r sinh r 2KaS.
The squeezing-mediated enhancement in the coupling of
cosh r sinh r ≈ cosh2 r ∼

√
J/K is evident and consistent

with the intuitive picture presented in the main text. In com-
parison, if we consider a net spin-mediated magnon-magnon
coupling via, for example,

H̃coup =
Ka

h̄2

∑

[S̃Ax(rrri ) + S̃Bx(rrr j )]
2, (C7)

an analogous procedure yields a suppressed coupling rate
of KaS/(4 cosh2 r), in agreement with the electron-magnon
coupling considerations discussed above.

Thus, these two instances (electron-magnon and magnon-
magnon couplings) of detailed calculations reinforce the gen-
erality of the intuitive picture discussed in the main text. This
also suggests these coupling properties are intrinsic to the
antiferromagnetic squeezed magnons and therefore applicable
to a yet wider class of phenomena involving antiferromagnets.
We further note that the squeezing-mediated coupling en-
hancement that we describe here is mathematically analogous
to similar nonequilibrium enhancements suggested recently in
the context of light-matter interaction [61,62]. Our suggestion
for magnets bears advantages such as stronger enhancement,
an equilibrium nature of the effect, tunability via temperature

FIG. 4. Schematic depiction of a trilayer heterostructure that al-
lows coupling the two antiferromagnetic sublattices to two different
normal metals.

[41], and the recent experimental observation [41] along with
the concomitant proof of concept.

APPENDIX D: ACCESSING ENTANGLED SUBSYSTEMS

The von Neumann entropy is widely employed as a mea-
sure to quantify entanglement between two subsystems. Thus,
its value depends on how a larger system is partitioned into
its entangled constituents. In the case of quantum spin liquids,
it is common to draw an imaginary boundary and partition
the magnet spatially into inside and outside regions. The
entanglement entropy may then be evaluated between these
two spatial regions and allows us to determine the entangled
and/or topological nature of the ground state as well as exci-
tations. On the other hand, in the case of two-mode squeezed
states, the participating modes provide a natural partitioning
for entanglement [1]. The participating modes are entangled,
which may be exploited for useful protocols [1]. However,
to this end, it is crucial to access the two entangled modes
separately.

As discussed in the main text, antiferromagnetic squeezed
magnons are composed of the two-mode squeezing of
the sublattice magnons. Therefore, in order to utilize the
squeezing-mediated intrinsic entanglement between the sub-
lattice magnons, it is important to access the sublattice
magnons individually. This can be achieved by employing
AFMs with two uncompensated interfaces in a trilayer struc-
ture as depicted in Fig. 4. Similar heterostructures have also
been proposed to host magnon-mediated indirect exciton
condensation [56]. The experimental methods and relevant
materials for achieving uncompensated interfaces have been
discussed elsewhere [50]. Furthermore, the recently discov-
ered layered van der Waals AFMs [57] provide another
promising route towards achieving the desired coupling to the
two sublattices. While Fig. 4 depicts an example of coupling
two normal metals to the antiferromagnetic sublattices, the
general objective is to couple the two systems to be entangled,
which are not necessarily metals, to the opposite sublattices.
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