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A
ntiferromagnets (AFs) are materials in which magnetic 
moments are spontaneously long-range ordered, but with 
a net magnetic moment that is zero or small compared to 

the sum of participating magnetic moments1. AFs are considerably 
more common than ferromagnets (FMs). In particular, unlike FMs, 
they are permitted in each magnetic symmetry group. They can be 
insulators, metals, semimetals, semiconductors or superconductors, 
whereas FMs are predominantly metals. AFs also offer much greater 
structural flexibility than FMs because there are a large number of 
ways in which magnetic moments can be arranged to achieve a zero 
net moment (see Fig. 1a).

AFs exhibit a variety of unique functionalities of either intrin-
sic or engineered nature. On the intrinsic side, antiferromagnetism 
may be linked to a small secondary magnetization or polariza-
tion. In materials called ‘canted AFs’ or ‘weak FMs’, the magnetiza-
tion can result from an antisymmetric form of exchange coupling 
termed Dzyaloshinskii–Moriya interaction2,3, which results in a 
canting of two collinear antiferromagnetic spin-sublattices by about 
1°. If the antiferromagnetic order breaks inversion symmetry, spin–
spin interactions may give rise to an electric polarization of about 
1–100 nC cm−2. The simultaneous presence of antiferromagnetic 
and ferroelectric order makes the material a multiferroic4,5. On the 
engineering side, the so-called ‘synthetic AFs’ form materials with 
antiferromagnetically coupled layers of FMs (for more details, see 
the Perspective by Duine and colleagues6 in this Focus issue). AFs 
are also frequently used as a reference layer in spin valves that fixes 
the magnetization orientation in FMs due to the exchange bias7.

However, the potential of AFs is significantly larger, as envi-
sioned in the concept of antiferromagnetic spintronics8–13. In par-
ticular, antiparallel spin sublattices in AFs, which produce zero 
dipolar fields, imply the insensitivity to magnetic-field pertur-
bations14,15 and multi-level stability16,17 in magnetic memories. 
Another appealing property of AFs is the orders-of-magnitude 
faster spin dynamics than in FMs18. The frequency of uniform spin 
precession (antiferromagnetic resonance) is in the terahertz range 
due to strong exchange interaction between the spin sublattices19–21, 
whereas ferromagnetic resonance due to the weaker anisotropy field 
is in the gigahertz frequency range18,21. However, the absence of a net 
magnetic moment, the frequently observed small size of magnetic 
domains and the ultrafast magnetization dynamics make probing of 
antiferromagnetic order by common magnetometers or magnetic 
resonance techniques notoriously difficult.

Light or, more generally, electromagnetic radiation is an invalu-
able tool for magnetic order probing. Methods enabling optical 
access to ferromagnetic order have been developed for over 150 
years22. However, due to the absence of magnetization, antifer-
romagnetism is much harder to study by optical techniques. The 
respective approaches are quite young and still under development. 
The next section of this Review is devoted to a survey of the avail-
able techniques in the optical range and beyond (see Fig. 1).

Manipulation of magnetic order in AFs is the second chal-
lenge. The strength of an external magnetic field required to reori-
ent spins in AFs scales with the exchange interaction and thus can 
exceed 100 T. Remarkably, light was shown to be an efficient tool to 
control spins18,23. Some of the mechanisms, such as inertia-driven 
spin switching24, least dissipative impulsive excitation of spins25,  
excitation of terahertz nanomagnons at the edge of the Brillouin 
zone26 and reducing the spin noise below the standard quan-
tum limit27, have so far been demonstrated only in AFs or are  
even possible exclusively in these materials. Two sections of this 
Review will give an overview on antiferromagnetic order manipula-
tion by light.

Detection techniques
Several detection techniques exist for probing antiferromagnetic 
order in bulk crystals, among which neutron diffraction plays the 
major role. However, for thin epitaxial films, which form the build-
ing blocks of devices, and for ultrafast transient processes or spa-
tially resolved detection, this technique is usually not applicable. 
Below, we describe three distinct groups of detection techniques 
based on the interaction of electromagnetic radiation with AFs (see 
Fig. 1c): linear optical studies, nonlinear optical studies and tera-
hertz emission and transmission spectroscopy.

Magneto-optics is an efficient probe of magnetic order22,28 with 
high spatial29 and temporal18 resolution. Assuming that an AF has 
two equivalent magnetic sublattices represented by magnetizations 
M1 and M2, we can define two orthogonal vectors of magnetization 
M =  M1 +  M2 and antiferromagnetism L =  M1 −  M2 (see Fig. 1a). 
Linear optical properties are described by the dielectric permittivity 
tensor εij, which can be written as a sum of the antisymmetric and 
symmetric parts εij = ε(a)

ij + ε(s)
ij, where ε(a)

ij =  − ε(a)
ji and ε(s)

ij =  ε(s)
ji. 

According to the Onsager principle, ε(a)
ij can only be an odd func-

tion with respect to L, M and their combinations, while the depen-
dence of ε(s)

ij on the order parameters is even30.

Antiferromagnetic opto-spintronics

P. Němec1*, M. Fiebig2, T. Kampfrath3,4 and A. V. Kimel5,6

Control and detection of spin order in ferromagnetic materials is the main principle enabling magnetic information to be stored 
and read in current technologies. Antiferromagnetic materials, on the other hand, are far less utilized, despite having some 
appealing features. For instance, the absence of net magnetization and stray fields eliminates crosstalk between neighbouring 
devices, and the absence of a primary macroscopic magnetization makes spin manipulation in antiferromagnets inherently faster 
than in ferromagnets. However, control of spins in antiferromagnets requires exceedingly high magnetic fields, and antiferromag-
netic order cannot be detected with conventional magnetometry. Here we provide an overview and illustrative examples of how 
electromagnetic radiation can be used for probing and modification of the magnetic order in antiferromagnets. We also discuss 
possible research directions that are anticipated to be among the main topics defining the future of this rapidly developing field.
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Many magneto-optical (MO) studies have been performed in 
canted AFs24,31–37, where the probe of antiferromagnetism relies on a 
linear dependence of ε(a)

ij on the secondary magnetization M. A large 
MO Kerr effect was predicted also for the non-collinear AFs Mn3X 
where X =  Rh, Ir, Pt (ref. 38). Assume a coordinate system with x and 
y axes in the sample plane and the z axis along the sample normal, 
where M is oriented. If, in the otherwise isotropic medium with rela-
tive dielectric permittivity ε, an external stimulus induces ε(a)

xy, it will 
break the degeneracy between right- and left-handed circularly polar-
ized light propagating in the z direction. Light of opposite helicity will 
be refracted and absorbed differently, resulting in circular birefrin-
gence and dichroism, respectively39. Linearly polarized light propagat-
ing along the z axis will experience a polarization rotation by an angle

α

ω

ε

ε=

d

c2 Re( )
Im( ) (1)ij

a
F

( )

where ω is the light wave frequency, d is the sample length and c is 
the vacuum speed of light. Magnetization-induced polarization rota-
tion (and ellipticity) upon transmission or reflection is called the MO 
Faraday and Kerr effect, respectively (see Fig. 1c). Even if the equilibrium  

magnetization is zero and no magnetic field is applied, the magneti-
zation in AFs can still be induced40 by coherent dynamics of spins M 
~ L ×  dL/dt. Therefore, the dynamic magnetization can be used to 
probe pump-induced changes of the spin ordering in AFs19,20,41.

An alternative MO approach is to use ε(s)
ij, which depends qua-

dratically on L and is, therefore, present even in compensated AFs 
(where M =  0). If, in an otherwise isotropic medium, the spins 
are antiferromagnetically ordered along the x axis, the alignment 
will change ε(s)

ij, so that ε(s)
xx ≠  ε(s)

yy, inducing linear dichroism 
and birefringence18,22,28,29,42–44. The former, which is usually called  
the Voigt or Cotton–Mouton effect, can be measured as a polariza-
tion rotation45. Contrary to the Faraday effect, the polarization rota-
tion angle α V is the largest when the light propagation direction is 
perpendicular to the spin orientation. It also depends on the angle 
between the incoming light polarization (β) and the L orientation 
(φ) according to

α β φ β= −P sin( ) (2( )) (2)
V

MLD

The MO coefficient PMLD, which scales quadratically with the L 
projection onto the plane perpendicular to the light propagation 
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Fig. 1 | schematics of investigation of antiferromagnets by electromagnetic radiation. Although AFs possess no net magnetization to couple to, there 

are numerous ways to observe their spin pattern. a, An example of an antiferromagnetic spin structure consisting of two oppositely aligned ferromagnetic 

planes. (Other examples of antiferromagnetic ordering are depicted in Figs. 5d and 8f.) M1 and M2 represent magnetization orientations in two magnetic 

sublattices from which the antiferromagnetic vector L =  M1 −  M2 and the ferromagnetic vector M =  M1 −  M2 ≈  0 can be defined. b, The opposite domain 

state of the same structure. c, An intense optical pump laser pulse, typically in the red or infrared spectral regions, brings the AF out of equilibrium, which 

can be measured by detecting the polarization rotation of a weaker optical probe pulse. Alternatively, magnetization-assisted SHG or electromagnetic 

radiation emitted by precessing spins in the terahertz spectral range can be used to monitor the dynamic and/or static properties of AFs.
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direction45, is connected with magnetic linear dichroism (MLD): 
PMLD =  0.5(T||/T⊥ −  1), where T|| and T⊥ are amplitude transmis-
sion coefficients for light polarized parallel and perpendicular to L, 
respectively43,45. Experimentally, the quadratic dependence on L and 
the low sensitivity of AFs to external magnetic fields significantly 
complicate the separation of the magnetic-order-related signal  
from linear dichroism and birefringence of other origins (for example,  

strain- or crystal-structure-related)46. This problem can be circum-
vented if a two-beam pump–probe experiment is used that utilizes 
the pump-induced reduction of L. For AFs, the quadratic MO 
effects were used for pump-induced dynamics detection both in 
weakly absorbing insulators19,25,26,31,36,41 and in metals45.

The quadratic dependence of ε(s)
ij on L results also in the 

polarization-independent phenomena of magneto-refraction and  
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Fig. 2 | Visualization of antiferromagnetic domains by shG and XMLD–PeeM. a, Temperature variation of crystallographic, magnetization-induced 

and interference terms of the SHG intensity of the Bi-YIG/GGG(111) film. b, SHG spectrum of a z-oriented Cr2O3 platelet. Light polarizations are chosen 

such that the crystallographic and antiferromagnetic SHG contributions are separated and measured background-free. The inset shows that the 

antiferromagnetic contribution vanishes at the Néel temperature whereas the crystallographic contribution remains64. c, SHG image of antiferromagnetic 

180° domains on the Cr2O3 sample. By interference of the crystallographic and antiferromagnetic SHG contributions, opposite domain states exhibit a 

different degree of brightness71,72. d, Geometry of XMLD–PEEM measurements of a device made from CuMnAs. X-rays are incident at 16° to the surface, 

with the polarization vector s in the film plane. e, XMLD–PEEM image of the central section of the device. f, Difference between XMLD–PEEM images 

taken after applying trains of alternate orthogonal current pulses of 6.1 MA cm−2. g, Spatially averaged XMLD signal after each pulse train. Open and 

filled symbols represent the two orthogonal pulse directions. h,i, As for g, but for the 200 ×  200 nm2 regions marked by green and pink squares in e, 

respectively. j, Change in the transverse resistance following the same pulse sequence. Credit: reproduced from ref. 71, OSA (a); and ref. 61, APS (d–j).
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magneto-absorption. The effects were observed as an intensity 
change of diffracted X-rays in La0.5Sr1.5MnO4 (ref. 47), transmitted 
or reflected light in EuTe (ref. 48), FeRh (ref. 49) and Cr2O3 (ref. 50),  
and stimulated Raman scattering in KNiF3 (ref. 51). MO effects 
linear in L can be observed in AFs for which both time-reversal 
and space-inversion symmetries are broken. Here, spatial disper-
sion implies an additional contribution to ε(s)

ij proportional to k·L, 
where k is the light wavevector52. Alternatively, light travelling in 

opposite directions may be transmitted with different intensity and  
polarization, an effect termed non-reciprocal directional dispersion 
and demonstrated in CuB2O4 (ref. 53).

Similar MO effects are present also in X-ray42,54,55 and tera-
hertz56,57 spectral ranges. For instance, effects quadratic in L are 
rather strong in the soft X-ray range due to the resonant enhance-
ment occurring at 2p edges of 3d transition metals and 3d edges 
of rare-earth elements42. Therefore, they enable element-selective 
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Fig. 3 | Determination of the uniaxial magnetic anisotropy direction and Néel temperature from pump-induced demagnetization in cuMnAs film. 

a, Schematic illustration of the pump-induced reduction of a light polarization plane rotation due to the Voigt effect. b, Pump-induced change of MO 

signal measured for various probe polarization orientations, ε, as a function of time delay, Δ t, between pump and probe pulses. c, Probe-polarization 

dependence of MO signal measured for Δ t =  60 ps at 15 K (black points) and 300 K (red points) for a 10-nm-thick CuMnAs film. Solid lines are fits by 

equation (2) plus polarization-independent backgrounds (dashed horizontal lines). d, Schematic illustration of sample tilting around an axis perpendicular 

to the direction of the magnetic moments, which is along the [110] substrate direction, leading to a reduction of the moment projection onto the plane 

perpendicular to the probe light propagation direction. e, MO signal measured for Δ t =  60 ps (points) as a function of the sample tilt around the ̄[110] 

substrate direction at 300 K. The solid lines depict the function δcos2  describing the moment projection reduction expected for the situation shown in d.  

f, Temperature dependence of MO signal (points) and sample resistivity temperature derivative (red line). The vertical arrow indicates the Néel 

temperature TN. Credit: reproduced from ref. 45, Macmillan Publishers Ltd.
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Fig. 4 | ultrafast modification of magnetic order in Ferh and TmFeO3. a, Schematic of the ultrafast generation of ferromagnetic order by inducing an 

antiferromagnetic-to-ferromagnetic transition in FeRh when excited with femtosecond optical pulses. b, At low temperatures, FeRh is antiferromagnetic 

(yellow) with local iron moments mFe =  3μB and no appreciable moment on rhodium. At elevated temperatures, the system is ferromagnetic (green) with 

local iron and rhodium moments of mFe ≈  3μB and mFe ≈  1μB. c, The growth of local magnetization and areal growth of the ferromagnetic phase is followed 

by a growth of net magnetization by alignment of individual domains. d, The demagnetization field grows equally, leading to a canting total effective  

field. e, The homogeneous magnetization starts precessing around the new effective field. The red arrows represent the local magnetization M(r,t).  

f, Transient Kerr rotation measured at 3.5 kG as a function of time; the applied pump power varies from 1.3 mW (lowest curve) to 16.5 mW (highest curve).  

g, Height of the first and second peaks plotted against the incident pump power. h,i, Corresponding simulations94. j, Linear optical birefringence in TmFeO3 

as a function of temperature. The insets show the corresponding arrangement of spins: below 80 K the spins lie nearly along the ± z axes while above 

91 K the spins are slightly canted from the ± x axes. k, Excitation and relaxation of the antiferromagnetic moment measured via changes in the magnetic 

birefringence. When the pump laser pulse is absorbed via the excitation of the localized electronic states of the Fe3+ and Tm3+ ions, the following relaxation 

process can be observed. First, the excitation decays via phonon cascades and the phonon system thermalizes with a 0.3-ps relaxation time (process (1)). 

The phonon–phonon interaction sets a new lattice temperature so that the equilibrium anisotropy axis is changed. Consequently, the resulting motion of 

spins to the new equilibrium happens with a 5-ps response time (process (2)), which is followed by oscillations of moments around their new equilibrium 

with an approximate 10-ps period (process (3)). Credit: reproduced from ref. 92, APS (a); ref. 94, APS (b–i); and ref. 33, Macmillan Publishers Ltd (j–k).
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investigations of magnetic materials constituents and element-
selective imaging of magnetic domain structures42,55,58. Moreover, 
a combination of X-ray magnetic linear dichroism (XMLD) with 
photoemission electron microscopy (PEEM) enables direct imaging 
of antiferromagnetic domains59–61 with a spatial resolution below 
100 nm. This technique was used, for example, for visualization  

of current-induced changes in the CuMnAs memory device domain 
structure (see Fig. 2d–j).

For the MO effects described above, the polarization change is 
independent of the light electric field amplitude E, which is a sig-
nature of linear optics. However, at high light intensities, nonlinear 
optical effects appear62. In particular, second-harmonic generation 
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T0. The intermediate layer remains in the − C state (blue). (IV) Since the intermediate − C layer (blue) screens the stray field of the bulk state (yellow), 

the dth(ω2) top layer reverses to the + C state (yellow). g–k, Experimental realization of reversible optical switching. g, After electric-field cooling to an 

antiferromagnetic + C state, illumination at ω1 reverses a top layer to − C. h, Local illumination at ω2 reverses the state to + C. i, Illumination at ω1 recreates 

the state in g. j, Repeat of the step in h. k, Sequential optically induced reversal of the antiferromagnetic state between + C and − C. Columns show the 

normalized SHG intensity in the area illuminated with light at ω1 (dark) or ω2 (bright). Credit: reproduced from ref. 24, Macmillan Publishers Ltd (a–c); and 

ref. 5, Macmillan Publishers Ltd (d–k).
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(SHG), where two photons from the incident wave at frequency ω 
are annihilated and one photon at frequency 2ω is created, plays a 
very important role. This effect is described by the expression P(2ω) 
∝  E(ω)E(ω), and it is restricted to non-centrosymmetric materi-
als62, but higher-order magnetic-dipole or electric-quadrupole  

contributions such as M(2ω) ∝  E(ω)E(ω) or P(2ω) ∝  E(ω)H(ω) may  
be included in centrosymmetric materials63,64.

SHG can be used for distinguishing ferroic states on the basis of 
their different symmetry. For magnetism, this possibility started 
to be studied theoretically from the 1960s63,65,66 and experimentally 
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from the 1990s64,67–71. Nowadays, SHG is a very powerful method 
that enables one to discriminate magnetic points or even space 
groups that are indistinguishable to diffraction methods71. SHG is 
especially powerful in the case of AFs (see Fig. 2a–c) where MO 
effects are usually rather weak, as discussed above. By polariza-
tion-dependent SHG spectroscopy, the antiferromagnetic con-
tribution to the SHG intensity can be measured background-free 
as depicted in Fig. 2b. Using the interference of the signal field 
with a reference field, it can also be used for a visualization of 180° 
domains (see Fig. 1a,b) in AFs5,71,72 (see Fig. 2c). Alternatively, 

SHG can be employed to probe the pump-induced dynamics in 
AFs5,73–75. Since each form of order breaks symmetry in a different 
way, magnetic and ferroelectric contributions can be separated via 
their different polarization and spectral dependences and order-
ing temperature71. Therefore, SHG is ideal for probing the coexis-
tence and coupling of ordered states and domains in multiferroics 
in a single experiment76.

Recent advances in terahertz radiation generation motivated 
a growing interest in this spectral range77–80. In contrast to optical 
radiation, which predominantly interacts with valence electrons, 
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terahertz radiation couples to low-energy excitations such as molec-
ular rotations, lattice vibrations and spin waves. If magnetization 
precession is induced (for example, by a laser pulse18,23,74,75), the 
oscillating magnetic dipoles emit an electromagnetic wave (see Fig. 
1c). For a thin layer with uniformly oscillating magnetization M(t) 
on top of a thick substrate with refractive index ns, the resulting 

electric field E(t) in the air half-space directly behind the magnetic 
layer can be expressed as81
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Here, Z0 ≈  377 Ω  is the vacuum impedance (which is assumed 
to be much smaller than the magnetic film resistance), and e is the 
unit vector normal to the layer (whose thickness d is assumed to 
be much smaller than the terahertz wavelength within the layer). 
As the spin precession frequencies in AFs are as high as several 
terahertz18,23,74,75, the emitted radiation with a wavevector k is in the 
terahertz spectral range. Consequently, it is possible to study the 
projection of the magnetization trajectory on the plane perpendicu-
lar to k by measuring both linear polarization components of the 
emitted terahertz wave82–85. Therefore, terahertz emission spectros-
copy enables one to study ultrafast magnetization dynamics directly. 
This feature is in contrast to MO86,87 and SHG88 experiments where 
the pump-induced changes in the corresponding coefficients may 
influence the measured dynamics, especially on subpicosecond tim-
escales. Note that illumination with a resonant terahertz pulse can 
also induce the spin precession, which can, in turn, be detected by 
measuring the re-emitted terahertz radiation. This configuration is 
tantamount to a terahertz transmission experiment and has been 
routinely applied to characterize long-wavelength antiferromag-
netic magnons89.

ultrafast modification of magnetic order
Research on ultrafast dynamics of magnetic order is a challenging 
area in the physics of magnetism. The development of femtosecond 
lasers has opened the way to create external stimuli that are shorter 
than fundamental timescales such as spin-lattice relaxation or pre-
cession time, thereby allowing for an extremely fast manipulation 
of the materials magnetic state18. As detection of antiferromagnetic 
order is difficult, these phenomena were originally studied mainly 
in FMs18. Nevertheless, also in AFs there are reports about ultrafast 
changes of the antiferromagnetic order.

The first prediction of ultrafast antiferromagnetic-order quench-
ing (demagnetization) was reported for NiO90. Experimentally, the 
laser-induced antiferromagnetic-to-paramagnetic state transition 
was observed in FeBO3 (ref. 32). Unlike in metallic nickel91, where 
the photoexcitation directly heats up the electronic system, the mag-
netic order quenching in dielectric FeBO3 is caused by an increase 
in the magnon temperature due to energy transfer from the heated 
lattice32. This phenomenon can also be used for a detailed magnetic 
characterization of AFs, as demonstrated for a thin film of metal 
CuMnAs (see Fig. 3).

The dynamic change of magnetic order due to laser excitation 
was studied in detail in metallic FeRh, which undergoes a first-
order magneto-structural transition from an antiferromagnetic to 
ferromagnetic phase around 380 K (see Fig. 4a). As reported inde-
pendently in refs 92,93, the illumination of FeRh films by femtosecond 
laser pulses drives the antiferromagnetic-to-ferromagnetic transfor-
mation on a picosecond timescale (see Fig. 4f). Subsequent stud-
ies revealed94,95 that the observed behaviour is due to an interplay 
between the local magnetic moment, nonlocal domain growth and/
or alignment, and magnetization precession (see Fig. 4b–e).

The laser-induced ultrafast reorientation of spins in AF was 
reported in dielectric TmFeO3 where a temperature-dependent 
magnetic anisotropy is observed at 80–91 K (see Fig. 4j–k). Similar 
temperature-related effects were reported for DyFeO3 (ref. 75) and 
CuO (ref. 96). The ultrafast reorientation of Ni2+ spins due to the shift 
of 3d orbital wavefunctions, which accompanies the pump excita-
tion of d–d transitions, was reported in NiO (refs 73,74). The pump-
induced changes of magnetic interactions were studied in detail in 
AF/FM bilayers (NiO/NiFe (refs 97,98), FeF2/Ni (ref. 99), IrMn/Co  
(ref. 100), CoO/Fe (ref. 101) and CuMnAs/Fe (refs 58,102)).

When the external stimulus (for example, laser pulse) induces 
a transition between metastable magnetic states, the reorientation 
of spins leads to spin switching. The fastest way to reorient mag-
netization in FMs without demagnetization is through preces-
sional motion in an applied field, which can be described by the 

Landau–Lifshitz–Gilbert equation. This equation is of first order 
with respect to time, and, therefore, does not contain inertial terms 
such as acceleration24. In other words, the field has to be applied 
until the magnetization crosses the potential barrier that is separat-
ing one minimum from another. In contrast, the dynamics of AFs is 
described in terms of the motion of the antiferromagnetic unit vec-
tor whose equation of motion is of second order with respect to time 
and, thus, shows inertia-like motion24 (see Fig. 5a). Consequently, 
in AFs it is possible to achieve spin switching even if the external 
stimulus is shorter than the time needed for overcoming the barrier, 
as demonstrated in HoFeO3 (see Fig. 5b,c). This inertial character 
of coordinated dynamics of two interacting sublattices is also at the 
core of the AF switching mechanism by terahertz pulses that was 
theoretically proposed in ref. 103.

A different approach to achieve reversible optical switching 
was used in TbMnO3 in ref. 5. In this material, a helimagnetic spin 
cycloid with zero net magnetization arises from competing mag-
netic interactions in the Mn3+ sublattice. This induces a ferroelectric 
polarization, which can be used as a handle to control the antifer-
romagnetic order (see Fig. 5d–k). Finally, a distinct approach was 
used in metallic CuMnAs where a reversible switching of antifer-
romagnetic domains via a spin–orbit torque was induced using a 
picosecond-long electric field transient in the terahertz range whose 
polarization direction determined the switched domain orienta-
tion104 (for more details, see the Review by Železný and colleagues105 
in this Focus issue).

Precession of magnetic moments
Antiferromagnetic resonance35 (that is, generation and detection 
of spin precession) is an important tool for the development and 
optimization of antiferromagnetic materials. However, spin pre-
cession frequencies in AFs are so high that it is extremely difficult 
to measure them by common magnetic resonance techniques. For 
example, for spin waves at the edge of the Brillouin zone of KNiF3, 
a 20 THz frequency was reported26. In the following, we describe 
several mechanisms that can be used to optically induce magnetic 
moment precession in AFs. Finally, we show that spin precession in 
AFs can also be used as a means for information storage.

Conceptually, the most straightforward mechanism is the 
Zeeman torque between the magnetic field component of an elec-
tromagnetic wave and spins. Intense pulses of terahertz radiation 
with duration shorter than 1 ps and electric- and magnetic-field 
amplitudes exceeding 1 MVcm-1 and 0.33 T, respectively, have 
recently become available80. In Fig. 6, we show experimental data 
demonstrating this effect in NiO (Fig. 6a,b) and YFeO3 (Fig. 6c,d). 
Compared to the more common indirect coupling of the light elec-
tric field with spins via spin–orbit interaction, the magnetic com-
ponent of a terahertz pulse exclusively addresses the electron spins 
and does not deposit excess heat in other degrees of freedom20. In 
addition to Zeeman coupling, intense terahertz electric fields can 
couple to magnetic excitations nonlinearly through electric-dipole 
transitions that modify the anisotropy field (see Fig. 6e–i).

As already described, magnetic anisotropy can be modified 
by the optically induced temperature increase (see Fig. 4j,k). This 
thermal mechanism was responsible for the precession reported in 
TmFeO3 (refs 33,35) and DyFeO3 (ref. 75). Alternatively, inverse mag-
neto-optical effects can induce the precession in transparent mag-
netic materials with a strong MO response. In Fig. 7a,b, we show the 
spin precession induced by the inverse Faraday effect in canted AF 
DyFeO3 and compensated AF NiO. The fingerprint of this mecha-
nism is a change of the precession phase with the helicity of cir-
cularly polarized pump pulses. Microscopically, this effect can be 
described as optical Stark splitting of spin sublevels or Raman scat-
tering23,106. Phenomenologically, it is described in terms of an effec-
tive magnetic field pulse, which is present only during the optical 
pulse (see inset in Fig. 7a), with an amplitude as large as 0.3 T (ref. 34).  
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Later it was realized that also linearly polarized laser pulses, even 
though they do not carry any angular momentum, can gener-
ate effective magnetic fields through an inverse Cotton–Mouton 
effect (see Fig. 7c–f). Here, the fingerprint is the signal harmonic 
dependence on the linear polarization orientation (see equation 
(2) and Fig. 7e). The inverse Faraday and Cotton–Mouton effects 
induce oscillations with a distinct phase that can be used for their 
experimental separation if they coexist (see Fig. 7b,c,g). Another 
mechanism that can induce precession of spins in a broad class of 
iron oxides with canted spin configuration (for example, in FeBO3, 
TmFeO3, YFeO3 and ErFeO3) is the inverse magneto-refraction. The 
underlying principle is the exchange interaction modification by the 
electric field of light, which for laser pulses with fluence of about  
1 mJcm–2 acts as a pulsed effective magnetic field with a magnitude 
of 0.01 T (ref. 85). Similarly, optical modification of the d–f exchange 
interaction between conduction band electrons and lattice spins was 
shown to trigger spin waves in EuTe (ref. 48).

Traditionally, optical magnetization control has been limited 
to a binary process, where light in either of two polarization states 
writes or reads a magnetic bit carrying either a positive or nega-
tive magnetization105. However, it is possible to achieve full vecto-
rial control of magnetization by light that can be used for storing 
multiple pieces of information in a single storage element41,82. The 
implementation requires one to independently address the phase 
and amplitude of multiple degenerate magnetization modes. This 
was done in NiO (111), where a micro-multidomain structure 
with two selectively excited magnetic modes enabled full control of 
two-dimensional magnetic oscillations with a pair of time-delayed 
polarization-twisted femtosecond laser pulses (see Fig. 8a–e). Later, 
this approach was extended to a full three-dimensional control 
of magnetic oscillations in the three-sublattice antiferromagnet 
YMnO3 (see Fig. 8f). The idea relies on a one-to-one mapping of 
the three Stokes parameters, which parameterize the light polar-
ization on the Poincaré sphere, onto three magnetic oscillation  
modes (see Fig. 8g–k).

Outlook
As we have seen, antiferromagnetic states and interactions, which 
have for a long time eluded convenient detection and manipula-
tion, are now becoming more and more accessible. In particular, 
swift feedback loops between manipulation of an antiferromagnetic 
state and observation of the consequences of this manipulation were 
established. These powerful optical tools will speed up progress in 
the field of antiferromagnetic engineering considerably. We, there-
fore, believe that antiferro-magneto-optics is the realm where the 
biggest advances in antiferromagnetic opto-spintronics will occur 
in the near future.

Research on new MO effects for observation will most likely 
focus on systems with complex antiferromagnetic states, because 
only they provide order parameters of a complexity that makes 
new or exotic phenomena symmetry-allowed. Examples are non-
collinear spin structures, spin spirals, multiply magnetically ordered 
compounds, magnetic ferroelectrics (multiferroics) or topological 
magnetic states (such as skyrmions). Studying their MO proper-
ties is facilitated by the fact that solid-state properties of these sys-
tems are relatively well explored. On the other hand, complexity 
can be tailored with heterostructures involving antiferromagnetic 
constituents or interfaces, or by designing mesoscale systems with 
antiferromagnetic building blocks. The challenge of manufacturing 
such structurally advanced systems is met by the recent tremendous 
advances in oxide-electronics growth techniques. Examples for 
MO effects that can arise in such architectures are non-reciprocal 
directional dichroism up to the point of one-way optical transpar-
ency and nonlinear optical effects with much larger relative strength 
than their linear counterparts. New MO phenomena in AFs can 
also extend into other frequency ranges. The recent developments 

of free-electron and table-top lasers operating in the extreme ultra-
violet and X-ray spectral ranges are expected to facilitate new break-
throughs in understanding the physics of AFs. At the low-frequency 
side, terahertz radiation can excite electromagnons as dynamic 
mixed antiferromagnetic–dielectric states.

Investigation of new MO effects for manipulation should focus 
on ultrafast phenomena. Whereas 20 years of research have been 
spent on ultrafast magnetization dynamics in FMs, that in AFs has 
received far less attention. Nevertheless, their research has already 
revealed phenomena exclusively possible in AFs, which include 
the inherently higher speed and the presence of inertia. It is also 
expected that the boosting field of all-optical recording will be 
expanded from ferro- and ferrimagnets to AFs. For multiferro-
ics, which are mostly AFs, dynamical phenomena are still a highly 
underrated topic. Even though the magnetoelectric switching is one 
of the declared goals of the field, hardly any attention has been paid 
to the temporal evolution of the order parameter reversal or the 
corresponding domain pattern evolution. Recently demonstrated 
possibilities of spin control using both electric and magnetic com-
ponents of light open up intriguing opportunities for the imple-
mentation of coherent (quantum) control in AFs by interference 
between these two channels. Direct pumping of spin excitations in 
AFs with the help of a freely propagating terahertz wave suggests 
that the wave is strongly coupled to the excitations in the medium 
and, therefore, propagates as a polariton. The physics of magnon–
polaritons at terahertz frequencies has obtained hardly any atten-
tion so far and calls for interdisciplinary research at the intersection 
of magnetism and photonics. Many other concepts of spintronics 
and magnonics are yet to be demonstrated for AFs, among which 
investigation of the spatial and temporal evolution of spin pumping 
from AFs is one of the next challenges. Overall, the research in the 
field of antiferromagnetic opto-spintronics is just beginning.
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