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We study a driven-dissipative system of atoms in the presence of laser excitation to a Rydberg state and

spontaneous emission. The atoms interact via the blockade effect, whereby an atom in the Rydberg state shifts

the Rydberg level of neighboring atoms. We use mean-field theory to study how the Rydberg population varies in

space. As the laser frequency changes, there is a continuous transition between the uniform and antiferromagnetic

phases. The nonequilibrium nature also leads to a novel oscillatory phase and bistability between the uniform

and antiferromagnetic phases.

DOI: 10.1103/PhysRevA.84.031402 PACS number(s): 32.80.Rm, 42.50.Nn, 42.65.Pc

The behavior of matter far from equilibrium is a fascinating

area of study. The presence of driving and dissipation can lead

to remarkable phenomena that are not possible in equilibrium.

This has motivated much research on nonequilibrium physics

in classical systems, such as fluids, chemical reactions, and

biological media [1,2]. An interesting question is: what

novel phases appear when a quantum system is driven far

from equilibrium? Recent cold-atom experiments have studied

equilibrium quantum systems in great detail, but they are also

a natural setting to study nonequilibrium quantum systems due

to the tunability of driving and dissipation [3–8].

In this paper, we study a nonequilibrium many-body

quantum system interacting via Rydberg blockade. A Rydberg

atom is one whose electron is excited to a high energy level n.

The van der Waals interaction between two atoms in identical

Rydberg levels scales as n11, and this leads to a blockade effect

for large n: when one atom is excited to the Rydberg state, it

prevents nearby atoms from being excited. This is the basis

for quantum information processing schemes with Rydberg

atoms [9–14] and a variety of novel phenomena [15–22]. In

these schemes, spontaneous emission should be minimized,

since it destroys quantum information. On the other hand,

spontaneous emission as a source of dissipation may lead

to interesting physics, and it can actually be tuned by using

different Rydberg levels.

We study a lattice of atoms continuously excited to the

Rydberg state and spontaneously decaying back to the ground

state. Consider the Rydberg population of each atom; that is,

the fraction of time it spends in the Rydberg state. What is the

spatial distribution of the Rydberg population in steady state?

Using mean-field theory, we show that, as the laser frequency is

varied, the system undergoes a continuous transition between

a phase with spatially uniform population and a phase with

higher population on every other atom. We call the latter the

antiferromagnetic phase, since a two-level atom is formally

equivalent to a spin-1/2 particle (ground and excited states

correspond to down and up spins, respectively) [23]. The

nonequilibrium nature also leads to an oscillatory phase, in

which the Rydberg population oscillates periodically in time,

and to bistability between the uniform and antiferromagnetic

phases. Simulations of the full quantum model in one dimen-

sion (1D), where mean-field theory is least accurate, show that

there are short-range antiferromagnetic correlations but not

long-range order. Our work can be extended to more general

dipolar gases and NMR.

First, we describe the Rydberg interaction [14]. Suppose

two atoms are in the same Rydberg state nlj . There is a dipole-

dipole matrix element between |nljnlj 〉 and nearby energy

levels, and this interaction shifts the energy of |nljnlj 〉 by an

amount V . When the atoms are separated by a small distance

R, the dipolar interaction dominates (V ≈ −C3/R
3) but,

for large distances, the van der Waals interaction dominates

(V ≈ −C6/R
6). For mathematical convenience, we use the

van der Waals interaction and an |ns1/2ns1/2〉 state, so that

the interaction is short range and isotropic. However, it is

straightforward to extend the analysis to long range and

anisotropic interactions. The value of C6 depends on n,l,j

and is tabulated in Refs. [24–26].

Consider a lattice of atoms that is uniformly excited by

a laser from the ground state to a Rydberg state. The atoms

are assumed to be fixed in space. Since the van der Waals

interaction decreases rapidly with distance, we assume nearest-

neighbor interactions. Let |g〉j and |e〉j denote the ground and

Rydberg states of atom j . The Hamiltonian in the interaction

picture and rotating-wave approximation is (h̄ = 1)

H =
∑

j

Hj + V
∑

〈jk〉

|e〉〈e|j ⊗ |e〉〈e|k, (1)

Hj = −�̃ |e〉〈e|j +
�̃

2
(|e〉〈g|j + |g〉〈e|j ). (2)

The second term in Eq. (1) is the Rydberg interaction, and Hj

is the Hamiltonian for a two-level atom interacting with a laser.

�̃ = ωℓ − ωo is the detuning between the laser and transition

frequencies. �̃ is the Rabi frequency, which depends on the

laser intensity.

The lifetime of the Rydberg state is limited by several

processes: spontaneous emission, blackbody radiation, and

superradiance [14]. We account for spontaneous emission from

the Rydberg level using the linewidth γ . When a Rydberg atom

spontaneously decays, it usually goes directly into the ground

state or first to a low-lying state [27]; the low-lying states

are relatively short lived, so we ignore them. We also ignore

blackbody radiation and superradiance, both of which transfer
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atoms in a Rydberg level to nearby levels. Blackbody radiation

can be minimized by working at cryogenic temperatures [28],

and it is not clear if superradiance is important when the

interaction V is large [27,29]. Future treatments could account

for them by considering several Rydberg levels instead of just

one.

Thus, each atom has two possible states, and the system is

equivalent to a dissipative spin model. Previous works have

added dissipation to other spin models by coupling each spin

to a heat bath; in those works, there is global thermal equi-

librium, and the spins are described by an effective partition

function [30,31]. However, in quantum optics, dissipation from

spontaneous emission leads to a nonequilibrium situation,

since the coupling to the heat bath is weak and Markovian [23].

The density matrix for the atoms, ρ, is described by a master

equation that is local in time:

ρ̇ = −i[H,ρ] + L[ρ], (3)

L[ρ] = γ
∑

j

(

−
1

2
{|e〉〈e|j ,ρ} + |g〉〈e|j ρ |e〉〈g|j

)

. (4)

The nonequilibrium nature is exhibited in the interplay

between unitary and dissipative dynamics [4,5], and we are

interested in the properties of the steady-state solution of

Eq. (3).

Due to the complexity of the full quantum problem, we use

mean-field theory. For equilibrium spin models, mean-field

theory is useful for determining the existence of different

phases [32]. Its predictions are accurate in high dimensions

but not in low dimensions. For the current nonequilibrium

case, we use the approach of Refs. [4,5]: factorize the density

matrix by site, ρ =
⊗

j ρj , and work with the reduced density

matrices, ρj = Tr �=jρ. This accounts for onsite quantum

fluctuations but not intersite fluctuations: for atom j , the

interaction |e〉〈e|j ⊗
∑

k |e〉〈e|k is replaced with the mean

field |e〉〈e|j
∑

k ρk,ee. In high dimensions, this is a good

approximation since fluctuations of the neighbors average out.

Then the evolution of each ρj is given by

ẇj = −2�̃ Imqj − γ (wj + 1), (5)

q̇j = i

⎡

⎣�̃ −
V

2

∑

〈jk〉

(wk + 1)

⎤

⎦ qj −
γ

2
qj + i

�̃

2
wj , (6)

where we have defined the inversion wj ≡ ρj,ee − ρj,gg and

off-diagonal element qj ≡ ρj,eg . The Rydberg population

ρj,ee = (wj + 1)/2 is the observable measured in the experi-

ment by measuring the scattering rate of each atom. wj = −1

and 1 mean that the atom is in the ground and Rydberg

states, respectively. Equations (5) and (6) are the optical Bloch

equations, except that the Rydberg interaction introduces

nonlinearity: the detuning for an atom is renormalized by the

excitation of its neighbors [Fig. 1(a)].

Since the system is dissipative, it will end up at an attracting

solution, which can be a fixed point, limit cycle, quasiperiodic

orbit, or strange attractor [33]. (We have not observed the latter

two.) We want to know the following: for given parameter

values, how many steady-state solutions are there and are they

stable? A solution is stable or unstable if a perturbation to it

FIG. 1. (a) When one atom is excited to the Rydberg state, it shifts

the transition frequency of a neighboring atom by V . (b) The lattice

is divided into two sublattices.

decays or grows, respectively; the system will end up only in

a stable solution.

Equations (5) and (6) always have a steady-state solution,

in which the Rydberg population is uniform across the lattice

(wj = w, qj = q). For some parameter values, this uniform

solution is stable but, for others, it is unstable to perturbations

of wavelength 2. In the latter case, the lattice divides into

two alternating sublattices, and the atoms on one sublattice

have a higher Rydberg population than on the other. Hence an

antiferromagnetic pattern emerges from the uniform solution

through a dynamical instability. To simplify the discussion

here, we keep track of only the two sublattices instead of every

site [Fig. 1(b)]. We stress that the antiferromagnetic transition

is not an artifact of using a bipartite lattice, as shown explicitly

in the supplemental material [34].

To simplify the equations, we rescale time by γ and also

rescale the Rabi frequency � = �̃/γ , the detuning � = �̃/γ ,

and the interaction c = dV/γ = −dC6/γR6, where d is the

lattice dimension. Labeling the sublattices 1 and 2, we have

ẇ1 = −2� Imq1 − w1 − 1, (7)

ẇ2 = −2� Imq2 − w2 − 1, (8)

q̇1 = i [� − c(w2 + 1)] q1 −
q1

2
+ i

�

2
w1, (9)

q̇2 = i [� − c(w1 + 1)] q2 −
q2

2
+ i

�

2
w2. (10)

There are six nonlinear differential equations (since q1 and q2

are complex) and three parameters (�, �, c). The uniform

version of these equations (w1 = w2, q1 = q2) has been

studied before in the context of a medium that interacts

with its own electromagnetic field; it is known that there is

bistability [35]. We are considering the more general case by

letting the sublattices differ.

In the supplemental material [34], we determine the

solutions and stabilities for Eqs. (7)–(10). Here, we summarize

the main results. Consider first the fixed points; that is, when

ẇ1 = ẇ2 = q̇1 = q̇2 = 0. There are two types of fixed points:

the uniform fixed points (w1 = w2) correspond to spatially

homogeneous Rydberg excitation, while the nonuniform fixed

points (w1 �= w2) correspond to the antiferromagnetic phase

(i.e., when one sublattice has higher excitation than the other).

There are either one or three uniform fixed points, corre-

sponding to the real roots of a cubic polynomial,

f (w) = c2w3 − c(2� − 3c)w2

+

[

�2

2
+

1

4
+ (� − 3c)(� − c)

]

w + (� − c)2 +
1

4
.

(11)
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As the parameters change, pairs of uniform fixed points appear

and disappear via saddle-node bifurcations. The uniform fixed

points never undergo Hopf bifurcations, so we do not expect

limit cycles emerging from them [33].

There are up to two nonuniform fixed points, given by the

real roots of a quadratic polynomial,

g(w) = c2(1 + 4�2 + 2�2)w2

− 2c[(� − c)(1 + 4�2) + (2� − c)�2]w

+ c2(1 + 4�2) − 2c�(1 + 4�2 + 2�2)

+ 1
4
(1 + 4�2 + 2�2)2. (12)

The two roots correspond to w1 and w2. As the parameters

change, the two nonuniform fixed points appear and disappear

together.

Since the laser detuning � is the easiest parameter to vary

experimentally, we describe what happens as a function of it

(Fig. 2). Suppose � starts out large and negative. There is

one stable uniform fixed point and no other fixed points. As

� increases, the uniform fixed point may undergo a pitchfork

bifurcation, in which it becomes unstable and the nonuniform

fixed points appear. The bifurcation is supercritical, which

means that when the nonuniform fixed points appear, they

are stable and coincide with the uniform fixed point [33].

Thus, this is a continuous phase transition between the uniform

and antiferromagnetic phases. As � increases further, there is

another supercritical pitchfork bifurcation, in which the same

uniform fixed point becomes stable again and the nonuniform

fixed points disappear. As � increases further toward ∞, there

is again one stable uniform fixed point and no other fixed

points.

Although the nonuniform fixed points are stable when

they appear and disappear, they could become unstable in

between via a Hopf bifurcation [33]. We find numerically

that sometimes the nonuniform fixed points do have Hopf

bifurcations [Fig. 2(b)] and give rise to a stable limit cycle,

in which w1 and w2 oscillate periodically in time [Fig. 3(a)].

This oscillatory phase is due to the nonequilibrium nature of

the system.
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FIG. 2. (Color online) Bifurcation diagram showing fixed-point

solutions as function of �, with c = 5 and (a) � = 0.5 and (b) � =

1.5. The inversion w is −1 (1) when the atom is in the ground

(Rydberg) state. Solid (dashed) lines denote stable (unstable) fixed

points. Black (grey; red online) lines denote uniform (nonuniform)

fixed points. Light grey (green online) points denote bifurcations.

In (b), the nonuniform fixed points undergo Hopf bifurcations at

� = 3.48 and 1.33, and there is a stable limit cycle in that interval

[shown in Fig. 3(a)].
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FIG. 3. (a) Oscillatory steady-state solution (limit cycle) for

c = 5, � = 1.5, and � = 1.5. (b) Phase diagram for mean-field

theory in �,� space for c = 5. The system is either in the uniform,

antiferromagnetic, or oscillatory phase. It can be bistable between

uniform and antiferromagnetic phases or between uniform and

oscillatory phases.

Thus, in mean-field theory, there are three phases: uniform,

antiferromagnetic, and oscillatory. Figure 3(b) shows a phase

diagram in �,� space. For some parameters, the system is

bistable between uniform and antiferromagnetic or between

uniform and oscillatory [Fig. 2(b)]; the final state depends on

the initial conditions.

We also numerically solve the original master equation,

Eq. (3), in 1D, where mean-field theory is least accurate. We

use fourth-order Runge-Kutta integration to find the steady-

state ρ for a chain of length N = 10. Figure 4(a) shows the

correlation as a function of distance, 〈EiEi+j 〉 − 〈Ei〉〈Ei+j 〉,

where Ei = |e〉〈e|i . The rapid decay suggests that there is no

long range order in 1D, but the fact that it alternates sign

means that there is an antiferromagnetic tendency. We also

calculate the order parameter, [〈(Ee − Eo)2〉]1/2, where the

operator Ee = 2
N

∑

i even Ei measures the average Rydberg

population on the even sublattice, and Eo does likewise

for the odd sublattice. The order parameter measures the

difference between the two sublattices: it is 0 when they

are identical (uniform phase), but positive when they are

different (antiferromagnetic and oscillatory phases). The order

parameter is largest for roughly the same parameter space,

for which mean-field theory predicts the uniform phase to be

unstable [compare Fig. 4(b) with Fig. 2(b)]. Thus, mean-field

theory captures some qualitative aspects of the full quantum

model in 1D, but it remains to be seen whether there is

long-range order in higher dimensions, where mean-field
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FIG. 4. Numerical solution of master equation for 1D chain of

length N = 10 with periodic boundary conditions. Steady state ρ

is found after integrating for time γ t = 20. Parameters are � = 1.5

and V = 5γ , which is equivalent to Fig. 2(b). (a) Correlation as a

function of distance j for � = 0. (b) Order parameter as a function

of detuning.
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theory is more accurate. Also, the prediction of an oscillatory

phase suggests that the emitted light has system-wide temporal

correlations; indeed, we have found strong photon correlations,

which will be reported in detail elsewhere [36].

Since it is difficult to simulate large systems, experiments

with atoms in an optical lattice could provide much infor-

mation. For example, one can use 87Rb and a two-photon

excitation scheme to go from the ground state 5s1/2 to the

Rydberg state 23s1/2, which has van der Waals interaction

C6 = −870 kHz μm6 [25] and linewidth γ /(2π ) = 14.7 kHz

at 0 K [28]. A d-dimensional lattice with spacing R = 1.5 μm

has interaction strength V = 76 kHz and c = 5.2d. The

Rydberg population of each atom may be measured by imaging

the spontaneously emitted photons; in the antiferromagnetic

phase, every other atom fluoresces more. Alternatively, the

ground-state population may be measured using repeated

projective measurements on a 5s–5p transition. A practical

setup would be to use a microscope that both produces the

lattice and images the atoms [37].

Thus, a driven-dissipative system of Rydberg atoms has

a unique type of antiferromagnetism. The next step is to

investigate in more detail how the full quantum model behaves

in low dimensions. Our work can be extended to Rydberg

states with anisotropic and long-range interactions. Such

interactions usually give rise to very rich physics [38], so the

nonequilibrium version should be interesting. One can also see

what happens when the atoms are not fixed on a lattice but are

free to move; this is reminiscent of classical reaction-diffusion

systems [1,2]. Finally, we note that a system of interacting

Rydberg atoms is similar to a system of spins interacting with

each other’s magnetic dipolar field [39,40]. Thus, when an

NMR system is made nonequilibrium with continuous driving

and spin relaxation, the spins may form a stable pattern in

space.

We thank A. Daley and G. Refael for useful discussions.
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