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Antiferromagnetic Resonance Absorption 

Hazime MORI and Kyozi KAWASAKI*> 

Research Institute for Fundamental Physics, Kyoto University, Kyoto 

(Received June 21, 1962) 

The line widths of antiferromagnetic resonance absorption in the vicinity of the Neel 

point are investigated by the use of a method of relaxation function similar to that employ

ed by the present authors in studying the dynamical behavior of ferromagnetic spins. 

Above the Neel point, the line width of the high frequency mode is shown to increase 

rapid.ly when the temperature approaches the Neel point, being proportional to (T-T N)-B/4 in 

the vicinity of this point. This anomalous increase is due to the critical fluctuation of spins 

and is in agreement with the observation on MnF2• Below the Neel point, the situation 

is more complicated and the effects of the anomalous fluctuation upon the line widths are 

discussed. 

§ I. Introduction 

In a previous paper ,I> hereafter referred to as I, we have presented a 

theory for dealing with the dynmp.ical behavior of ferromagnetic spins and 

calculated the damping of the longitudinal spin component above and below 

the Curie point, The purpose of this paper is to extend this theory to systems 

with more than one sublattice, in order to investigate the problem of antiferro

magnetic resonance absorption in the vicinity of the Neel point.2>,B> 

The interesting aspect of this problem is that in the vicinity of the Neel 

point, a certain type of motion of spins slows down due to the enormous ther

modynamic fluctuations associated with this point, which reveals itself through 

a rapid increase of the line width of the high frequency resonance mode at the 

Neel point. The same types of phenomena are the vanishing of the spin dif

fusion constant in ferromagnetics at the Curie point/> and the anomalous increase. 

of the NMR line width4> near the transition points of ferro-, antiferro-, and 

ferrimagnetics. 

In §§ 2 and 3, we shall discuss the collective motion of antiferromagnetic 

spins and its damping according to a theory of collective motion at finite tem

peratures described elsewhere,15> introducing the normalized relaxation matrix. 

The frequency matrix, which determines the frequency spectrum of the collec

tive motion, is defined in terms of the first moment of this matrix. In § 3, the 

frequency matrix is diagonalized by introducing a transformation matrix, in 

*l Present address: Department of Applied Physics, Faculty of Engineering, Nagoya Uni

versity, Nagoya, Japan. 
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972 H. Mori and K. Kawasaki 

order to define the normal modes of the collective motion as linear combinations 

of the sublattice magnetization operators. The transformed normalized relaxa

tion matrix describes the temporal development of the normal modes. The 

expressions for the damping constants in terms of the correlation of torques 

are also obtained here. 

Section 4 deals with the AFMR. The present approach is a refinement of 

the previous formulation of the same problem reported elsewhere.6l As was 

shown there, in the Weiss approximation, the resonance frequencies thus obtained 

agree with Nagamiya and Kittel's formula.7l Assuming the Gaussian decay for 

the time dependence of the correlation function of torques, the damping con

stants are expressed in terms of the 1st, 2nd, 3rd, and 4th moments of the 

normal modes. Section 5 is concerned with the line width in the vicinity of 

and above the Neel point. Due to an anomalous increase of the second moment 

near the Neel point, the width of the high frequency mode is shown to increase 

rapidly as this point is approached, in agreement with the line width observed by 

Hutchison and Stout.2l In § 6, we discuss the line width below the Neel tem

perature, and it is pointed out that the anomalous thermodynamic fluctuation does 

not appear in the low frequency mode. In § 7, we attempt to give a simple 

reason for the effects of the anomalous thermodynamic fluctuation upon the 

resonance line widths. 

§ 2. Collective motion of antiferro- and ferrimagnetic spins 

The treatment of the collective motion of ferromagnetic spins, described in 

I, can be extended to the cases in which the system is divided into more than 

one sub lattices. Consider the system of unit volume containing N magnetic ions, 

and introduce the Fourier transform of the magnetization belonging to each 

sublattice as 

[M~] 1 ='E exp (iq·r1) [Mj] 1, (a= +,-,0), 
f 

(2·1) 

where j denotes the j-th sublattice and the summation runs over the lattice 

points pertaining to the j-th sublattice. It is more convenient to introduce the 

vector M/ whose j-th component is [Mqa] 1. We assume that the macroscopic 

state of the system is specified by giving the average value of sublattice magne

tizations M,/ with values of q very much smaller than the reciprocal of the 

lattice constant. In the ferromagnetic case, this assumption was based on the 

fact that M r/ with a small value of q is an approximate constant of motion since 

the total magnetization commutes with the exchange interaction Hamiltonian. 

On the contrary, in the present case, each sublattice magnetization does not 

commute with the total exchange interaction Hamiltonian, and our assumption 

needs further justification. It should be remembered, however, that, according 

to P.W. Anderson's estimate,8l the time necessary for the switching over of the 
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Anti/erromagnetic Resonance Absorption 973 

sublattices is extremely long-of the order of a year. A rec.ent attempt9> to 

detect this switching over has not been successful. Thus, by a generalization 

of the previous prescription, the temporal development of the average sublattice 

magnetization density (M q a> (t) is described by the normalized relaxation matrix 

E/ (t) in the following manner1>· 5>: 

( M~> (t) = E~ (t) · (M~> (0) , 

where 

E~ (t) = CM; (t) , M~*) · (M~, M;*) -\ 

where we have introduced the notation 

II 

(2·2) 

(2·3) 

(A, B) =\dl(exp (lH) A exp ( -AH)B>, (2·4) 

" 0 

the angular brackets denoting the ensemble average. As m I, the frequency 

matrix is obtained as 

(2·5) 

For later convenience, we derive here a simple relation between conjugate fre-. 

quency matrices. Indicating the transposed matrix by a superscript T, we have 

( ~-"') T_ (1/") (M-"'* M-"') - 1 (M-"'* M. -«) 
w -q - z -q ' -q • -q ' -q ' 

= - (M~, M;*) - 1 • @~ · (M~, M~*) . (2·6) 

In a similar manner, it follows that (w,/) * = - Cw=~) T. 

the simplest approximation, the normalized relaxation 

form 

We note also that, in 

matrix (2 · 3) takes the 

E~ (t) ""'exp [itw~]. (2·7) 

This equation describes the collective precession of antiferromagnetic spins 

without damping. 

§ 3. Normal modes and their damping 

In order to obtain the frequency spectrum of the. collective motion, 1t IS 

necessary to diagonalize the frequency matrix (2 · 5). Since the collective motions 

with different a's and q's are disconnected from each other for the systems 

having the translation invariance and strong exchange interactions, the diagonaliza

tion can be performed separately for each value of a and q. Denoting the 

transformation matrix for the diagonalization by U~, and the diagonalized 

frequency matrix by ft/, we have 

net_ U"'·~"'. (U"') -1 
~~q- q wq q • (3·1) 
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974 H. Afori and K. Kawasaki 

The corresponding normal modes of the collective motion, which we denote by 

.3rlq a' then become 

(3·2) 

m terms of which (3 ·1) is written as 

iii~= c5h~ • .:Jrt~*) • C.:Jrt~ • .:Jrt~*) -t, (3·3) 

which can be obtained by inserting the factor (U/) * · [ (U q a)*] -l = 1 between 

the two matrices m (2 · 5). Since fi:; = - !iq a due to the time reversal property, 

we obtain 

fi; = (.3rt~, .3rt~*) -1. §;. (.3rt~ • .3rt~*)' 

by using the relation obtained by replacing M r/ in (2 · 6) by .3rl2 a. In other 

words, 

(.3rt;, .3rt~*) . §~ = §~. (.3rt~, .3rt~*). (3. 4) 

This equation means that if the frequency spectrum given by fi/ is non

degenerate, the matrix (.3rl2 a, 3rlqa*) and, by (3 · 3), the matrix (5i£2 a, .3riq "*) 

should be both diagonal. The elements of §'1" give the temperature-dependent 

frequency spectrum of the collective motion. In the low temperature limit, 

this frequency spectrum coincides with the spin wave spectrum, and, for q= 0 

and a= + , -, the elements of flo" give the antiferro- and ferrimagnetic resonance 

frequencies. If we adopt the Weiss approximation, these frequencies agree with 

those given by Nagamiya and Kittel. 6J 

The temporal development of the normal modes (.3rt2a)(t) is described by 

the following relaxation matrix : 

(3·5) 

In order to obtain the shift and damping of the collective motion arising from 

the interaction between different normal modes, it is convenient to make use 

of the following identity5l : 

t 

E~ (t) = exp (itfi~) · [1-f ds exp (- isfi~) · f'.~ · exp (isfi;)], (3·6) 

0 

where 

8 

r.~=Jdr(JC~(r), JC~*). (.3rt~ • .3rt~*)- 1 ·exp(--,-irfi;), (3·7) 

0 

JC~=[_!-_exp (- itfi~) · .3rt~ (t) J = 5if;- i~ ·.3rt;. 
~ t~ 

(3·8) 

This identity can be verified using the. formula 
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Antiferromagnetic Resonance Absorption 975 

(J(~, .5}1~*) = 0, 

which follows from (3 · 3); JCq a represents a kind of random force acting on 

the normal mode .5}1'1 a due to the interactions between the normal modes. 

Therefore, f'. expresses the effects of these interactions on the motion of the 

normal modes. The fundamental assumption of the statistical mechanics of 

irreversible processes is that the relaxation function of this random force, 

(J(~ (s)' J(~*)' 

vanishes for time intervals s larger than a microscopic correlation time r c which 

characterises a microscopic process occurring in the system. If the normal 

modes .5Mq a turn out to provide a good description of the motion of the 

system, the effect of the second term in the square brackets of (3 · 6) should be 

small. In this case, Eq a takes the following approximate form5> : 

t 

E~(t) "'='eXPt+J {\ds[iQ~-f'.~]}, (3·9) 

" 0 

where exp<+l denotes the ordered exponential (time ordering from the right). 

Let us consider the two extreme cases of this expression. 

(i) Lorentzian limit: rc is very small compared with the times which we are 

int~rested in. This applies to the central part of the resonance line shape, and 

to the case of extreme narrowing. Then, in the most part of the dcmain of 

integration, f'./ is equal to the following asymptotic limit : 

"' 
f~=limf' .~ = r dr (J(~ (r)' J(~*) . (.5}1~, .5}1~*) -l, exp (- ir ~). (3 ·10) 

3~00 J 
0 

And (3 · 9) becomes 

E~(t) =exp[(i~-f~)t]. (3 ·11) 

The macroscopic equation of motion of the normal modes IS then expressed as 

~<.5M~) (t) = [iQ~- f'~]. (.5}1~) (t). 
dt 

(3·12) 

Here we should note that the frequency given by 14 a need not be small com

pared to r c -I for the discussion of this paragraph to be valid. 

(ii) Gaussf.an limit : Here we are interested in the times very small compared 

with r. and with the periods of the collective oscillations. This applies to the 

part at the far wings of the resonance line shape, and to the case of very little 

narrowing. In this case, in (3 · 7) it is possible to neglect r 14 a and to replace 

(JC,/ (r)' JC/*) by (,x~a' JCq a*)' thus yielding 

r ~ lit"'-" ( -fl'« -fl'«*) ( CUrt ClJ«*) -1 
sq"""S J\.q, J\.q • JYLq, JYLq • (3 ·13) 
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976 H. Mori and K. Kawasaki 

Thus we obtain*l 

E~(t) ~exp (it!J~) · exp[- ; (JC~, J(~*) · (~~' ~~*) -r J . (3 ·14) 

In the following sections, we shall be mainly interested in the Lorentzian limit 

(3 ·11) which applies to AFMR except at the immediate vicinity of the Neel 
point. 

§ 4. Antiferromagnetic resonance absorption 

As an application of the foregoing theory, we shall consider, in this and 

the following sections, the line width of the antiferromagnetic resonance absorp

tion. The frequency was investigated elsewhere/l 

First we shall determine the normal modes. Denoting the two sublattices 

by A and B, the frequency matrices of the uniform mode q= 0 is, from (2 · 5), 
given by 

[ 
-a 

@+= 
-b 

-c ], 

-d 

w-~[ :. :· l 
where we have introduced the notation, 

a= -2gi1B(MA0) (MB+, MB-)/ID, 

b=2g!1B(MB0) (MB+, MA -) /ID, 

c=2g!1B(M}) (MA +, MB-) /ID, 

d= -2gi1B(MB0)(MA+, MA-)/ID, 

ID=(MA+, MA-) (MB+, MB-)- (MB+, MA-) (MA+, MB-), 

and we have used that 

CMx+, My-) =iJxy2igf1B(Mx0), X, Y A orB, 

(4·1) 

(4·2) 

(4·3) 

which IS derived by using Kubo's formula valid for any operators ~ and ~' 

(i~, ~) =<[~, ~]). (4·4) 
-------------

*l Note the following formula for the ordered exponential : 

t t 

exp<+J [) ds{A(s) +B(s)}]=eXP<+J[)dsA(s)] 

0 0 

t 0 

·exp(+J{-) ds exp(+) [) ds' A(s') ]B(s)exp(+J[) ds1 A(s1) ]}. 

0 0 
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Antiferromagnetic Resonance Absm·ption 977 

The two eigenvalues of @+, or the resonance frequencies of the two modes, 

denoted by .!21 and .!22 are easily obtained as 

.!21=- a;d +! V(a-d) 2 +4bc, ~-

.!22=- a+d _l__v(a-d) 2 +4bc. J 
2 2 

(4·5) 

Those of @- are the same as ( 4 · 5) except for the sign. The corresponding 

transformation matrices U+ and u-, which diagonalize riJ+ and @-, respectively, 

are obtained as 

u+~[ 
-bx+ (a+ .!2r) x+ 

]. -by+ (a+ .!22)y+ 

u-=[ 

(a+ .!22) x-
- ]. 

(4·6) 
ex 

(a+ .!2r) y- cy 

where x+, x-, y+ and y- are the numbers which are chosen to satisfy the 

relations 

x+x-= - (a+.!Ja) (MB+, MA-) +b(MA+, MA-) 

(.Qr- .!22) 9Jbc* ' 
(4·7) 

+ -- (a+.!Jr) (MB+, MA-) -b(MA+, MA-) 
y y - (.Qr- .!22) 9Jbc* · 

It was shown6l that, in the Weiss aJ?proximation, the resonance frequencies 

given by ( 4 · 5) lead to those given by Nagamiya and Kittel,7l 

(4 ·8) 

where A is the exchange field constant, a the anisotropy field constant, *l M 

the spontaneous magnetization of each sublattice in the absence of an external 

field, x11 the parallel susceptibility and H the external magnetic field. Thus we 

see that the mode 1 and mode 2 correspond to the high frequency and the low 

frequency mode, respectively. 

The damping constants of the two normal modes denoted by r 1 and r 2 are 

derived from (3·10): noting that the matrix (5W, 5W*) is diagonal, 

*l a is related to the constant K of the usual definition by a=K/M2. 
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978 H. Mori and K. Kawasaki 

"' 
r1 =Rejds (JC1+(s), JC,-) exp(-ist21)/(5Yf'J+, JYt,-), 

0 (4·9) 
(j= 1, 2). 

In the low temperature region, ( 4 · 9) should be able to be evaluated by em

ploying the perturbation theory, as we have shown in I, and yield the damping 

constants of the spin waves with zero wave vector. These damping constants 

have been recently calculated by Russian authors.10> Here we shall study the 

damping constants at higher temperatures, puttlng emphasis on their behavior 

near the Neel temperature. As in I, we assume the time dependence of the 

correlation function (JC1 + (s), JC,-) of the following form: 

(4·10) 

where v 1 and g 1 are determined by the first and the second moments of this 

correlation function as follows .: 

v,=-1- (c1{1+, JC,-) 
i (JC, +' JC, -) 

Then, ( 4 · 9) gives 

where 

(4·11) 

(4·12) 

(4·13) 

The approximation (4·10) and (4·11) is certainly a very crude one. However, 

this type of approximation is the only feasible one we have. Nevertheless, we 

might hope that main qualitative features of the damping constant are still given 

by ( 4 ·12). Thus our . problem is reduced to the calculation of the various 

moments of the relaxation function (JYl/ (s), 5Yl1 -). 

Using the relation, 

(4·14) 

with U± given by ( 4 · 6), these moments are expressed in the following form: 

writing m:(u)=[(du/dtu)m:(t)]t=O, 

(5Yf,tu), JYl,(,,l) =A,{p,(T(ul, T(vl) +q,(T'tu), T'(vl) 

+r1 (T'(ul> T(vl) +s1 (T(ul, T'(vl)}, 

(j=l, 2), (4·15) 

where A 1 are unimportant numerical constants, and T" and T'a (a=+, -) 
are the sums and the differences of the sublattice magnetizations given by 

} (4·16) 
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Antiferromagnetic Resonance Absorption 979 

The constants Ph q" r1. and s1 are defined in terms of the quantities given by 

(4·2) and (4·5) as 

c* 
ql=-a-!22+-(a+!Jl) +c+c*, 

b 

c* 
rl=--a-!22-- (a+!Jl) +c-c*, 

b 

c* 
s1= -a-!22-- (a+!J1) -c+c*, 

b 

In the Weiss approximation, ( 4 · 17) reduces to the following : 

2 

ql/gfJ.B=2j (2A+a)aM 2 + ( Ax;;H) -A(M+x11H), 

rl/gfJ.B=srfgfJ.B= (A+a)M, 

In particular, above the Ne€J point, we obtain 

prfgfJ.B= -q2fgfJ.B=2Ax11H, } 

P2=q1 =r1=s1 =0. 

§ 5. Line width in the vicinity of the· Neel Point 

-above the Neel point-

(4·17) 

(4·18) 

(4·19) 

First we shall consider the line width above the Neel point. The normal 

modes· then reduce to the following : aside from numerical factors, 
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980 H. Mori and K. Kawasaki 

(5·1) 

Since the two sublattices A and B are indistinguishable above the Neel point, 

the mode 2 is not excited by a microwave, and shall be omitted here. We are 

concerned with the mode 1, which is the paramagnetic resonance. The reso

nance frequency of the mode 1 is, according to ( 4 · 8), equal to g !J.BH with the 

neglect of a small term involving the anisotropy field constant. As we shall 

show later at almost all temperatures except the immediate neighborhood of 

the Neel point, the following conditions are satisfied : 

Ji.~_j_g12· 
7C 

Then, the damping constant ( 4 ·12) becomes 

The latter condition of (5 · 2) is then equivalent to the condition 

r1~g1, 

(5 ·2a & b) 

(5·3) 

(5·4) 

which is also the condition that the line shape be Lorentzian with the width 

given by 

(5·5) 

In order to see the temperature dependence of the line width in the vicinity of 

the Neel point, it is a good approximation to replace the relaxation function 

appearing in the expressions for j;_ and g1 by {3 times the corresponding correla

tion functions- properly symmetrized. Thus we obtain 

g12 - < {JCl+, J(l-} > 
g/, - < {JC/, J(:l-} ), 

< {JCl +' J(l-} ), 

< {JC;+' J(l-} > 
where x.l is the perpendicular susceptibility given by 

x.1 =_l_(MA + +MB+, MA- +MB -), .., 
"-' 

(5·6) 

(5·7) 

(5·8) 

(5·9) 

and g1.., denotes the value of g1 in the high temperature limit and ( .. ),indicates 

the correlation function evaluated in this limit. For our purpose, it is also 
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Antiferromagnetic Resonance Absorption 981 

permissible to neglect the temperature dependence of ( {JC1 +, JC1-} ). That this 

approximation does not affect the temperature dependence of the width near the 

Neel point is seen as follows. Replacing ( {JC1 +, JC1-}) by {3-1 (JC1 +, JC1-) and 

using ( 4 · 4), we have 

< {JC1+, J(-1-} >= i~ ([JC1+, J(-1-J>. 

Each of the operators JC1 + and JC1- is the sum of the products of the spin 

oper.ators which are spatially very close to each other. Their commutator has, 

therefore, the same property. The static correlation function of spins situated 

very close to each other varies slowly with the temperature near the Neel point 

and, hence, its temperature dependence can be ignored in the first approximation. 

Thus, g1
2 becomes 

g 2"""'g2 ({JC1+, JCn>"' 
1""" 1ro ( {JC1+, JC1_}) • (5 ·10) 

Substituting (5 · 6) and (5 ·10) into (5 · 3), we thus obtain 

_ vnf3 c< {JC + JC _} >J 3/2 

r1- 4x.Lg1co[( {JC1+, JC1-} )ro] 112 1 ' 1 . 
(5 ·11) 

Now we adopt the Heisenberg model for describing the antiferromagnetics 

with a uniaxial anisotropy and an external magnetic field, both of which are 

in the z-direction. The system Hamiltonian is then written as 

&=- "L,Jmt Sm·S,-D"L,Sm02 + g!J.BH"L,Sm0, 
rn,f m m 

(5 ·12) 

where the summations run over all the lattice sites. The equations of motion 

for 5111±, then, become 

.5}t1±= ±2ig!J.BD"L,{Sm±, Sm0} ~i(g!J.B) 2 H"L,Sm±· (5 ·13) 
m m 

The calculation of ( {JC1 +, JC1-}) can be performed most easily by replacing 

this again by the relaxation function divided by {3 : 

< {JC1 +, JC1-} > ""'-1- c.5tt1 +- itJ15111 +, .5tt1- + i!J15111-) 
{3 

=_l-{~<[5111+, ,_5it1-])+2!J1([5111+, 5111-])+!J/(.5l'f1+, 5111-)}' 
{3 I . 

= (g!J.B) 2 [2x 11H 2 + 2D"L,(3Sm02 - S(S + 1)) -4x11H 2 + 2x.LH2] 

{3 

(5·14) 

Here, we have used that x11 ""'x.L near the Neel point. The quantity (3S~;- S(S + 1)) 
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982 H. Mori and K. Kawasaki 

appearing in (5 ·14) vanishes in the absence of an anisotropy or an external 

field above the Neel point. Therefore, in the presence of a small amount of 

anisotropy or external field, it is necessary to expand the density matrix with 

respect to these small quantities to obtain the first nonvanishing contributions. 

The contribution from the external field vanishes because this involves odd 

powers of spin operators. Thus we are left with 

<3Sm02 -S(S+ 1))""' D L; (3Sm02 -S(S+ 1), 3Sr-SCS+1)). 
3 f 

Therefore, (5 ·14) becomes 

< {JC1 +, JC1-})""' 
2 (g~~D) 2 ~~ (3Sm02 - S(S+ 1), 3S/ 2 - S(S+ 1)), (5·15) 

= 6 (g;B)
2 

($£an>s-<${•n10), $£an>s-<${,•ms)), (5·16) 

where $£.nis IS the anisotropy energy operator given by 

$£anis = - DL;Sm0 2 • 
m 

(5 ·17) 

Thus, we see that the second moment of the resonance line is essentially given 

by the fluctuation of the anisotropy energy, which is in agreement with the 

physical interpretation of Ohlmann.3l 

Now we evaluate the double sum in (5 ·15), which can be written, again 

replacing it by {3 times the correlation function, as 

(5 ·18) 

where N is the number of magnetic lattice sites per unit volume. This involves 

the correlation of four spin operators. We approximate it by replacing it with 

the product of pair correlation functions of four spin operators. The terms 

involving <Sc;;) or <S}2) cancel with those of S(S+1). Then (5·18) reduces to 

(5·19) 

The spin pair correlation function <S';,. S}) of the antiferromagnet at a large 

distance Rm.t is evaluated to be given by11J 

<s 0 so)=E E S(S+1) 1 ( R ) 
m f m f - exp - /C1 mt • 

127rr1
2N RmJ ' 

(5·20) 

where 

Em --~+ 1 for m on the sublattice A, 
(5·21) 

- 1 for m on the sublattice B, 

and r 1 and tc1 are Van Hove's parameters of the neutron scattering. In the 
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Antiferromagnetic Resonance Absorption 983 

VlClmty of the Neel temperature, r 1 is a constant, whereas tC1 vanishes in the 

Weiss approximation according to the formula 

(,. )2- T-TN 
'"1r1 - --T-----':.:_ 0. (5·22) 

Thus, we obtain from (5 ·15), (5 ·18), (5 ·19), (5 · 20) and (5 · 22), 

<{J{ + JC _})= [g,aBDS(S+ 1) J2 
1 ' 1 6 3 ~1/2 

rcr1 u 
(5. 23) 

Therefore, from (5 ·10) we see that in the vicinity of the Neel point, g1
2 

vanishes as o112. This means that ~s we approach the Neel point, the correla

tion of torque decays more and more slowly. Although this conclusion was 

drawn with the assumption of Gaussian decay, it is natural to expect that this 

feature qualitatively holds in general. 

It is appropriate here to remark that the singular behavior of (5 · 23) at 

the Neel point is the genuine singularity, not masked by the presence of the 

anisotropy or the external field. This is inferred from the fact that this comes 

from the fluctuations of the z component of spins and < (MA"- MB") 2) shows 

the true singularity at the Neel point. This is the characteristic feature of 

antiferromagnets in contrast with ferromagnets. On the other hand, the fluctua

tions of the transverse components of spins do not show such a singularity in 

the presence of the anisotropy energy or the external field. g1"' as well as 

< {Jf1+, Jf1-} )"' are evaluated by a straight-forward calculation, and we quote 

the results for b.c.c. lattice : 

< {Jf1 +, Jf1-} )"' = ~ N(Dg ttil) 2S (S+ 1)[ 4S(S + 1) - 3], (5·24) 

g 2 = 74 S(S+ 1)[S(S+ 1)- (47 /111)] [z J2+z J2] 
1ro 9 4S (S+ 1) - 3 1 1 2 2 ' 

(5·25) 

where J 1 and J 2 are the magnitudes of the exchange interactions between the 

first and the second neighbors, and z1 and z 2 are the numbers of the first and 

the second neighbor atoms. 

Substituting (5 · 23) to (5 · 25) into (5 ·11), we finally deduce the following 

expression for the damping constant near the Neel point: 

={1[Dg,aBS(S+ 1) ] 2 ·[ 5 ] 1 !~-3/4 
r1 2N 1 ' 2 X~1- 1 912 222X(4rc) 3 X[S(S+1)-(47/111)][z1J12 +z2J22] • 

(5·26) 

For numerical calculation, it is more convenient to express (5 · 26) in terms of 

the exchange fields and the anisotropy field at the zero temperature which are 

related to the constants Jh J2 and D by 
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984 H. Mori and K. Kawasaki 

HE= z1J1S, HE'= z2J2S , HA = 2DS . 
gpB gpB gpB 

The line width JH then becomes 

tlH= 3S(S+1) 
4 

[ 5 ] 1 ~ 
222X·(4n) 3 X [S(S+1)- (47/111)] 

x Hl/HE a-8/4 

(1- (;l) (Nrn 312 [1/ Z! + 82/ z2] 112 ' 

(5·27) 

(5. 28) 

where O=HE'/HE= (8-TN)/(@+TN), e being the paramagnetic Curie tem

perature. 

In the Weiss approximation, de Gennes has shown that11> 

rf =-1 [ (1 + __!_)b1
2 + (1-L)b2

2J, 
12 TN TN 

(5. 29) 

where b1 and b2 are the distances between the first and the second neighbors, 

respectively. As a numerical example, we consider MnF2 , for which the values 

of the various quantities are taken as follows :2>· 7> 

HA = 8,800 oe, HE= 556,000 oe, b1 = 3.82 A, 

b2=4.35 A, TN=67°K, @=ll3°K, (5·30) 

where b2 is the average value of the second neighbor distances. Substituting 

these values into (5 · 29) and (5 · 28), the width becomes 

JH = 62 X &-314 oe. (5 · 31) 

The line width above the Neel point has been measured by Hutchison and 

Stout,2> and shows the rapid increase near the Neel point in qualitative agree

ment with (5·31). The theoretical value (5·31) is, however, a few times smaller 

than the observed one, but it is no wonder considering the crude approxima

tions we had to make. Before concluding this section, we examine the con

dition (5 · 2) which limits the validity of our result. By a similar analysis to 

that which has been done in the earlier part of this section, we find that V1 

is of the order of gpBH·tJ112, and is negligible compared with t2 1 ~gfJ.BH. On 

the other hand, by (5·10), (5·23), (5·24), (5·25) and (5·27), we have g1-

g PBHEtJ114. Thus, the condition (5 · 2a) is satisfied as long as &114> H/ HE. . That 

is, in the example of MnF2, for H,.., 5,000 oe, the exponential factor in ( 4 ·12) 

can be omitted except within 10-6° K of the Neel point. Therefore, this con

dition can be ignored completely. Turning to the condition (5· 2b), r1 can be 

estimated from (5·28) as r1-gpB· (Hl/HE) ·&-814. Thus this condition becomes 

Hl/ HE. (J-8/4<HE. (Jl/4. 

This may be written as 
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Antiferromagnetic Resonance Absorption 985 

In other words, the line shape is well approximated by the Lorentzian curve 

except within 4 x 10-2 o K of the Neel point. Within this temperature region, 

the discussion of § 4 shows that the narrowing becomes ineffective and the line 

shape changes to be Gaussian. 

§ 6. Line width below the Neel point 

Below the Neel point, the full complexity of the two normal modes of § 4 

must be taken into account because the sharp rise of the spontaneous magnetiza

tions below the Neel point affects both the nature of the normal modes and the 

various static correlations even just below the Neel point. And so far we have 

not been able to obtain a clear analxsis of the line width in this region. 

However, a qualitative study similar to the one discussed earlier has shown that 

a genuine thermodynamical singularity does not appear in the mode 2, although 

for the mode 1 we expect a similar singularity to that obtained above the Neel 

point. Johnson and NethercoeJ observed that the line width of the mode 2 

below the Neel point increases enormously as. we approach the Neel point. If 
our analysis is not wrong, the observed increase must be attributed to other 

causes. One of such causes may be a field dependence of the. resonance fre

quency. The line width are related to the damping constants by the formula 

JH,=rj/1 :~ 1, (j=1, 2). (6·1) 

Using ( 4 · 8), we obtain 

I _1__. fUJ1 I= 1 _ A-ax + (Ax 11/2) 2H 
g/}.B 8H 2 II V(2A+a)aM 2+ (Ax//H/2) 2 ' 

1_1_. 8!22 1=1- A-ax _ (Ax 11/2) 2H 
g/}.B 8H 2 II V(2A+a)aM 2 +(AxiiH/2) 2 ' l (6·2) 

In the low temperatures, where M is large and Ax11 is small, both quan

tities in the above expr.essions are of the order of unity. At the Neel point 
where M=O and Ax11 =1, (6·2) reduces to 

I _1__ 8!21 1=1+~' 
gJJ.B 8H 2A l (6·3) 

Thus for the small anisotropy. constant a such that aj2A~1, the line width of 

the· mode 2 is expected to increase enormously near the Neel point, even if 

other factors remain constant. However, the numerical computation has shown 

that such an increase appears only within an extremely small region (within a 

few thousandths of a degree) around the Neel point due to the smallness of 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/p
tp

/a
rtic

le
/2

8
/6

/9
7
1
/1

8
3
7
9
4
5
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2



986 H. Mori and K. Kawasaki 

the external fields compared with the exchange field and completely fails to 

explain the observed increase. It seems that a more elaborate analysis along 

the line of § 4 is needed to clarify the widths below the Neel point. 

§ 7. Discussion 

In the foregoing two sections we have studied the behaviors of line widths 

of the two normal modes in the vicinity of the Neel point, and have seen that 

the singular thermodynamic fluctuation connected with the antiferromagnetic 

transition reveals itself only in the high frequency mode 1. Let us consider 

why this is so. For this purpose, the sublattice magnetizations for the two 

MA~::::::::r:::::>< 
MB,,_ ___ ~ 

Mode 2 Mod~ 1 Mode 2 
! 

Mode 1 

Fig. 1. Normal modes for T well below TN· Fig. 2. Normal modes near TN· 

normal modes in a rotating coordinate system are shown in Fig. 1 and Fig. 

2. Figure 1 . shows the magnetizations well below the Neel point whereas Fig. 2 

gives them just below the Neel point. As we have discussed in § 2, if we 

neglect the damping and the shift, the state of the system is described by the 

local equilibrium density matrix. The local equilibrium is a kind of equilibrium 

with certain constraints. In this sense, the states of the system depicted in 

Fig. 1 and Fig. 2 may be looked upon as a kind of equilibrium state. As we 

approach the Nee! temperature, the two sublattice magnetizations of the mode 

1 get closer and closer to each other, and finally they coincide at the Neel 

point, whereas in the mode 2, they always remain separated from each other 

as we go through the Nee! point. Thus we expect that in the mode 1, as we 

approach the Neel point, an enormous amount of fluctuations of the sublattice 

magnetizations should appear, just as in the ordinary antiferromagnetic transition. 

In the mode 2, on the other hand, this cannot happen because the two sublat

tice magnetizations are always separated by a macroscopic amount. According 

to the fluctuation-dissipation theorem, the dissipation such as the resonance line 

width is always associated with the fluctuation. Thus the above consideration 
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Antiferromagnetic Resonance Absorption 987 

explains why the genuine thermodynamic singularity appears only m the width 

of the mode 1. 
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