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Antiferromagnetic second-order topological insulator with
fractional mass-kink
Haimen Mu1, Gan Zhao1, Huimin Zhang2 and Zhengfei Wang 1✉

Generally, the topological corner state in two-dimensional (2D) second-order topological insulator (SOTI) is equivalent to the well-
known domain wall state, which is originated from the mass-inversion between two adjacent edges with phase shift of π. In this
work, go beyond this conventional physical picture, we report a fractional mass-kink induced 2D SOTI in monolayer FeSe with
canted checkerboard antiferromagnetic (AFM) order by analytic model and first-principles calculations. The canted spin associated
in-plane Zeeman field can gap out the quantum spin Hall edge state of FeSe, forming a fractional mass-kink with phase shift of π/2
at the rectangular corner, and generating an in-gap topological corner state with fractional charge of e/4. Moreover, the topological
corner state is robust to a finite perturbation, existing in both naturally and non-naturally cleaved corners, regardless of the edge
orientation. Our results not only demonstrate a material system to realize the unique 2D AFM SOTI, but also pave a way to design
the higher-order topological states from fractional mass-kink with arbitrary phase shift.
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INTRODUCTION
With the rapid progress in classification of topological electronic
states1–5, different kinds of topological materials are predicted
theoretically and confirmed experimentally6–8. However, the prior
studies are mainly focused on the first-order topological
materials9–11, where the topological boundary state only appears
at dimension one lower than that of the bulk state. When this
conventional bulk boundary correspondence is extended to the
higher-order form12, a new class of topological materials called
higher-order topological insulator emerges13–16. The m-dimen-
sional nth-order topological insulator holds gapless state at (m-n)-
dimensional boundary but gapped state otherwise. Therefore, the
two-dimensional (2D) second-order topological insulator (SOTI) is
characterized by the gapped topological edge state and in-gap
topological corner state. Different to the symmetry-protected bulk
topological index, physically, the emergence of in-gap topological
corner state can also be understood by the well-known mass-
inversion mechanism in Jackiw-Rebbi model17, which can support
a localized domain wall state, as shown schematically in Fig. 1a.
Currently, although a variety of theoretical models are proposed

for the 2D SOTI18–32, its experimental measurement is very
difficult. Besides some artificial structures33–39, few realistic
electronic materials have been reported. What’s more, the limited
SOTI materials, such as graphdiyne40,41, γ-graphyne42 and twisted-
bilayer graphene43–45, are all captured by the mass-inversion
mechanism. Recently, this physical mechanism is further extended
to a more universal form for generating the domain wall state46. In
the helical Dirac edge state space, the edge state Hamiltonian is
written as H ¼ kτz , where τz is Pauli matrix. In order to gap out this
edge state, a general mass Hamiltonian can be written as
MðθÞ ¼ mðτx cos θþ τy sin θÞ, where m is mass-intensity and θ is
mass-angle that controls the mass projection on Pauli matrix τx
and τy . As shown schematically in Fig. 1b, the mass distribution
along the edge is characterized by mass-angle, which is θ and
θþ Δθ for left- and right-part, respectively. Based on model

calculations, the localized domain wall state is achieved in this
fractional mass-kink47 with any non-zero phase shift (Δθ≠0).
Obviously, the mass-inversion in Fig. 1a just corresponds to one
special case of Δθ= π in Fig. 1b. The fractional mass-kink further
lowers the physical requirement to realize the domain wall state,
providing more freedoms to design SOTI. However, the material
realization of this peculiar non-π phase shift associated topological
corner state is still a challenging task.
Due to the tunable topological phase transition between first-

order and higher-order topological states48,49, the quantum spin
Hall (QSH) materials provide a good platform to explore the 2D
SOTI. As the parent compound of Fe-based superconductor, the
monolayer FeSe has been intensively studied50. Recently, the QSH
state with checkerboard antiferromagnetic (AFM) order (Fig. 1c) is
reported experimentally in monolayer FeSe51, demonstrating a
new topological phase in this high-temperature superconduc-
tor52–56. Moreover, the AFM order is reported experimentally in
non-superconducting monolayer FeSe through the magnetic
exchange bias effect measurement57. After electron doping, the
monolayer FeSe will change from non-superconducting to super-
conducting phase. The AFM order can be suppressed in this
process, but it is still a very possible spin configuration in the
superconducting phase. In this work, starting from the AFM QSH
state, we further report a 2D SOTI in monolayer FeSe with canted
checkerboard AFM order (Fig. 1e). An intriguing fractional mass-
kink induced topological corner state is identified by both analytic
model and first-principles calculations, which is robust to
perturbation and edge orientation. The main discoveries of our
work are summarized in Fig. 1. Since the AFM QSH state has a pair
of helical Dirac edge states (Fig. 1c, d), the coupling between them
will break the band degeneracy at the Dirac point. Physically, this
can be achieved by the canted spin induced in-plane Zeeman
field. Meanwhile, the fractional mass-kink with phase shift of π/2 is
formed at the rectangular corner (Fig. 1e), resulting in an in-gap
topological corner state with fractional charge of e/4 (Fig. 1f).
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RESULTS
Quadratic Bulk Hamiltonian
The nontrivial band topology of monolayer FeSe with checker-
board AFM order is captured by band structures around M point in
the first Brillouin zone51. In the basis of dxz and dyz orbitals, its low-
energy effective Hamiltonian is written as58

H ¼ a0ðk2x þ k2yÞs0σ0 þ a1kxkys0σx þ λszσy þ a2ðk2x � k2yÞs0σz (1)

where σ0 and s0 are identity matrixes, σx;y;z is orbital Pauli matrix, sz is
spin Pauli matrix, a0;1;2 is fitting constant, and λ is intrinsic spin-orbital
coupling (SOC). Since the spin-up and -down bands are approxi-
mately decoupled in first-principles calculations51,58, we do not need
to use the three-orbital model59 to describe it. The characterized
band structures of Eq. (1) are shown in Fig. 2, exhibiting the fourfold
rotational symmetry (C4 ¼ iσyeiπsz=4). Without SOC, there is a
quadratic band degeneracy at M point (Fig. 2a). With SOC, the
degeneracy is lifted and an AFM QSH state is realized (Fig. 2b). One
can see that this effective Hamiltonian is dramatically different to
Kane-Mele60 and Bernevig–Hughes–Zhang61 model described QSH
state that only includes the linear-term of momentum. The helical
Dirac edge state for such a quadratic QSH Hamiltonian62–64 has not
been analytically derived yet.

Helical Dirac Edge State
The first term in Eq. (1) is an identity matrix that can modify the
group velocity of the Dirac edge state, but does not affect our
final conclusion. To simplify the derivation, we will omit it in the

Fig. 1 Fractional mass-kink induced topological corner state with a fractional charge of e/4. Schematic mass distribution along the edge
(red line) and localized domain wall state (blue line) for a mass-inversion, b fractional mass-kink. The mass M is defined in edge state space, m
is mass-intensity, θ is mass-angle, Δθ is phase shift across the domain wall, τx and τy are Pauli matrix of the edge state. c Schematic
checkerboard AFM order in monolayer FeSe cluster and the gapless topological edge states. d Schematic real-space distribution of gapless
topological edge state (QSH edge state), showing the propagating direction (arrow) and spin (red and blue color). e Schematic canted
checkerboard AFM order in monolayer FeSe cluster and the gapped topological edge states. Each corner is connected by two ferromagnetic
edges with the same spin. The adjacent edges have a different mass-angle of θ and θ+ π/2. f Schematic real-space distribution of in-gap
topological corner state, holding a fractional charge of e/4.
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Fig. 2 Quadratic bulk Hamiltonian and edge orientation. a and
b Characterized band structures of the low-energy effective
Hamiltonian without and with SOC, showing the quadratic touching
point and quadratic QSH. c Reciprocal space rotated coordinate
system for describing the edge along k2 direction that has an angle
φ with kx axis. d Real space rectangular cluster with four edges,
corresponding to φ= 0, π/2, π and 3π/2 in (c). The arrow denotes the
positive direction of the edge.
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following part. In order to derive the helical Dirac edge state along
different edges, we define a rotated coordinate system k1 � k2,
where the edge along k2 direction has an angle φ with kx axis, as
shown in Fig. 2c. For the rectangular cluster with 90° corners, the
four regular edges are along the direction of φ= 0, π/2, π and 3π/2,
as shown in Fig. 2d. In the k1 � k2 plane, Eq. (1) can be rewritten as

H ± ¼ ∓ a1k1k2s0σx þ λszσy ± a2ðk22 � k21Þs0σz (2)

where Hþ for φ= 0, π and H� for φ= π/2, 3π/2. Assuming Eq. (2) is
defined in half-space (x1 > 0) of the x1 � x2 plane, we replace
k1 ! �i∂x1 , k2 ! 0 and substitute a trial edge state solution
ψ ¼ eηx1ϕ into it, where η is a decay constant. Then, Eq. (2) is
reduced to the form

~H ± ¼ λszσy ± a2η
2s0σz (3)

The spin is decoupled in this bulk Hamiltonian, so the edge
state solution will also be spin-decoupled, which has a form of
ψ"±
�
�

� ¼ ϕ"±
�
�

�

; 0
� �T

and ψ#±
�
�

� ¼ 0; ϕ#±
�
�

�� �T
. Substituting ψ"þ

�
�

�

and ψ#þ
�
�

�

into ~Hþ, considering the solution divergence
(x1 ! þ1) and time-reversal symmetry (T ¼ isyK , K is complex
conjugate), we obtain the edge state solution of ~Hþ as

ϕ"þ
�
�

� ¼ αeηx1 ξþj i þ βeη
�x1 ξ�j i

ϕ#þ
�
�

� ¼ � ϕ�
"þ

�
�
�

E (4)

where η2 ¼ iλ=a2, α and β are coefficients, and ξ ±j i ¼ffiffiffi

2
p

=2 1; ± 1ð ÞT are eigenstates of σx . Since ~H ± are connected by
C4 symmetry, that is ~H� ¼ C�1

4
~HþC4, the edge state solution

of ~H� can be obtained from the relation

ψ"�
�
�

� ¼ C�1
4 ψ"þ
�
�

�

ψ#�
�
�

� ¼ C�1
4 ψ#þ
�
�

� (5)

In the edge state space ψ"±
�
�

�

; ψ#±
�
�

�� �

, to the leading order of
k2, Eq. (2) can be transformed into the standard Dirac equation as

h± ¼ �a1k2 Im ðηÞτz (6)

where τz is Pauli matrix of the edge state, showing a general form
of the helical Dirac edge state for the quadratic QSH Hamiltonian.

Fractional mass-kink
In order to gap out the helical Dirac edge state in Eq. (6), we
consider an in-plane Zeeman field as48

H0 ¼ usxσ0 þ vsyσ0 (7)

where sx, y is spin Pauli matrix, u and v are coefficients that control
the intensity and direction of in-plane Zeeman field. This new
term breaks the spin-degeneracy and mixes the spin-up and
-down in Eq. (1). Similar to the above derivation, Eq. (7) can be
written in the edge state space as46

h0þ ¼ m τx cos θþ τy sin θ
� �

h0� ¼ m τx cosðθþ π=2Þ þ τy sinðθþ π=2Þ� � (8)

where h0þ for φ= 0, π and h0� for φ= π/2, 3π/2. τx;y is Pauli matrix

of the edge state, m1 ¼ Re α2

2η þ β2

2η�

	 


, m2 ¼ Im α2

2η þ β2

2η�

	 


,

m ¼ ½ðu2 þ v2Þðm2
1 þm2

2Þ�1=2, mcos θ¼ um1 � vm2 and
msin θ¼ um2þvm1. Combining Eq. (6) and Eq. (8), the helical
Dirac edge state is gapped out with a band gap of Eg ¼ 2m. From
the definition of m, one can see that the band gap only depends
on the intensity of in-plane Zeeman field, but does not depend on
its direction. Most remarkably, one notices that the mass-angle
is θ and θ+ π/2 for edge along φ= 0, π and φ= π/2, 3π/2,
respectively, forming a fractional mass-kink with phase shift of
Δθ= π/2 at each 90° corner. According to Moore’s theory46, such a
phase shift will support a topological corner state with fractional

charge of Ns= e|Δθ/2π|= e/4. Therefore, a 2D SOTI is identified in
the monolayer FeSe, originated from the in-plane Zeeman field
induced fractional mass-kink with non-π phase shift. More details
about the analytic derivations can be found in the Supplementary
Material.

In-plane Zeeman field
In order to introduce the effect of in-plane Zeeman field in
monolayer FeSe, a special canted checkerboard AFM order can be
considered (Fig. 1e)65. The direction of the canted spin is
determined by zenith angle (γ) and azimuth angle (δ), as shown
schematically in inset of Fig. 3b. Experimentally, this spin
configuration can be realized by applying an in-plane magnetic
field, making the spin canted along the field direction, where
zenith and azimuth angle is tunable by field intensity and
direction66. The in-plane magnetic field vs canted zenith angle can
be roughly estimated as B ~ (Ecanted− Enon-canted)/μcanted (see
Supplementary Fig. 1), where Ecanted and Enon-canted are the energy
of canted and non-canted spin configuration, and μcanted is the net
magnetic moment in canted spin configuration.

Bulk topological Index
To further support our analytic results, the first-principles
calculations are performed to directly identify the 2D SOTI in
monolayer FeSe from bulk, edge and corner three aspects. If the
direction of in-plane spin component is perpendicular to the
diagonal mirror plane, the mirror symmetry is conserved in
monolayer FeSe with canted checkerboard AFM order. Therefore,
we can use the mirror-graded winding number to show its
nontrivial bulk topology. In the first Brillouin zone, the high-
symmetric k-path along M-Γ-M direction is invariant under mirror
operation. Along this k-path, the wavefunctions (χ) can be divided
into two separated sets with opposite mirror eigenvalues ±i. The
mirror-graded winding number (also called the Zak phase) is
calculated along M-Γ-M loop for each set as67 φ± ¼
i
H

χ ± i kð Þh j∂k χ ± i kð Þj idk. The quantized Zak phase is φ±= π,
showing a topological invariant to characterize the 2D SOTI68 in
monolayer FeSe.

Topological edge state
For the monolayer FeSe with checkerboard AFM order, the gapless
QSH edge state along ferromagnetic edge of [100] direction is
shown in Fig. 3a, where one Dirac point is sitting along Γ-X
direction51. By canting the spin direction, interestingly, we found
that the spectra of topological edge state is insensitive to azimuth
angle (δ) (see Supplementary Fig. 2). That is, it does not depend on
the direction of in-plane Zeeman field, which is consistent with
our analytic derivation. Without losing the generality, we will fix
azimuth angle (δ) and discuss the effect of zenith angle (γ) in the
following part. For azimuth angle δ= 45° along [110] direction,
the zoom-in topological edge state with small zenith angle
ranging from γ= 0.25° to 1.25° is shown in Fig. 3b, f, respectively.
Comparing to the gapless spectra shown in Fig. 3a, there are two
significant features can be observed for the canted spin. First, the
spin-degenerate bulk bands are split and bulk gap around X point
is reduced with the increasing of γ. This feature can be attributed
to the in-plane Zeeman field induced spin-splitting that results in
upshift and downshift of the opposite spin bands (see Supple-
mentary Fig. 3). With the increasing of γ, the intensity of in-plane
Zeeman field is enhanced, so the band splitting is increased and
bulk gap between opposite spins is reduced. Second, the
topological edge state is gapped out and Dirac gap exhibits a
non-monotonic behavior with the increasing of γ. This feature can
be attributed to the in-plane Zeeman field-induced mass-term and
band-reshaping. According to our analytic results, the Dirac gap is
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proportional to the intensity of in-plane Zeeman field. In
principles, it will increase with the increasing of γ. However, the
reduced bulk gap moves the bottom branch of topological edge
state gradually close to the top bulk band, making the global Dirac
gap decreased with further increasing of γ. Therefore, based on
canted checkerboard AFM order, we confirm the gapped
topological edge state in monolayer FeSe, identifying the first
unique character of 2D SOTI.

Topological corner state
Since the band topology is same in the canted spin opened Dirac
gap, we will focus on one gapped topological edge state with
γ= 0.75° and δ= 45° (Fig. 3d) to illustrate its corner state (see
Supplementary Fig. 4a–c). The rectangular cluster with four 90°

corners is constructed by cutting four ferromagnetic edges with
the same spin along naturally cleaved [100] and [010] directions69.
The discrete energy levels of the cluster are shown in Fig. 3g.
Clearly, there are four nearly degenerate corner states around the
Fermi-level, as labeled by the red dot. Here, the slight energy
splitting of corner state is due to the finite size effect-induced
coupling between different corners (see Supplementary Fig. 5).
The spatial distribution of them is shown in the inset of Fig. 3g,
which is localized at four corners. Therefore, we confirm the in-gap
topological edge state in monolayer FeSe, identifying the second
unique character of 2D SOTI. Additionally, if only spin-down is
canted in the checkerboard AFM order, we found that there are
still four corner states in the gapped topological edge states (see
Supplementary Fig. 6), so the 2D SOTI is also realizable by applying
out-of-plane magnetic field. Furthermore, by accounting the total

γ=0.25° γ=0.5°γ=0.0°

γ=0.75° γ=1.0° γ=1.25°
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Fig. 3 Robust topological edge and corner states. a The gapless QSH edge state along ferromagnetic edge of monolayer FeSe with
checkerboard AFM order. b–f Zoom-in gapped topological edge state by canting the spin direction with δ= 45°, (b) γ= 0.25°, (c) γ= 0.5°, (d)
γ= 0.75°, (e) γ= 1.0° and (f) γ= 1.25°. The canted spin-up and -down (red arrows) directions are determined by angle γ and δ, as shown
schematically in inset of (b). g Discrete energy levels of rectangular monolayer FeSe cluster with four naturally cleaved ferromagnetic edges of
the same spin (see also Fig. 1e). The four in-gap topological corner states are marked in red-dot around the Fermi-level. The inset is spatial
charge density distribution of the corner states. The radii of circle on each atom denotes the absolute value of charge density. h is the same as
(g), but for a rotated rectangular cluster with non-naturally cleaved ferromagnetic edges of the same spin.
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electrons in the system40, there is only one electron is left after
filling all energy levels below the four corner states. Consequently,
each corner state will hold a fractional charge of e/4, which is
consistent with our analytic derivation.

Robustness of corner state
In order to facilitate the possible experimental measurement, the
robustness of topological corner state against perturbation and
edge-cutting orientation are further investigated. The local
perturbation is simulated by adding a finite random on-site
energy to atoms around the corner, and the global perturbation is
simulated by breaking the C4 symmetry slightly. In both cases, the
topological corner states are still localized at four corners, but the
relative intensity becomes different among them (see Supple-
mentary Fig. 4d and Supplementary Fig. 7). Moreover, we found
that the rectangular cluster constructed from non-naturally
cleaved ferromagnetic edge along arbitrary orientation can also
support the existence of topological corner state. The discrete
energy levels and spatial distribution of corner states are shown in
Fig. 3h and its inset, which are comparable to those shown in
Fig. 3g and its inset. The same results are obtained for the
rectangular cluster with four AFM edges (see Supplementary Fig.
4e). Consequently, the topological corner state in monolayer FeSe
can be revealed by cutting the edge along irregular orientation,
providing more convenience for scanning tunneling microscopy
detection. If the monolayer FeSe is stacked vertically into a three-
dimensional (3D) structure of (LiFe)OHFeSe70, the angle-resolved
photoemission spectroscopy measured band structures71 are
similar to the monolayer FeSe studied in this work51. Considering
the weak coupling between the neighboring FeSe layers in (LiFe)
OHFeSe72, a 3D weak SOTI73 is also realizable by the canted
checkerboard AFM order, where the topological corner states are
stacked into a one-dimensional topological hinge state with little
dispersion along the vertical direction (see Supplementary Fig. 8).

DISCUSSION
Recently, the 2D SOTI in monolayer FeSe with checkerboard AFM
order is also studied by Xu et al.74. In their work, the topological
edge state is gapped by Sz symmetry breaking, and the
topological corner state with fractional charge of e/2 is realized
at 90° corner connected by two ferromagnetic edges with
opposite spin. While in our work, the topological edge state is
gapped by spin canting, and the topological corner state with
fractional charge of e/4 is realized at 90° corner connected by two
ferromagnetic edges with the same spin. Previously, the domain
wall state near the Fermi-level has been observed experimentally
in FeSe without nematicity75. Within the framework of our theory,
it may be attributed to the spin canting induced mass-angle shift
in different domains.
In conclusion, based on analytic model and first-principles

calculations, we identify an intriguing fractional mass-kink induced
topological corner state in monolayer FeSe with canted checker-
board AFM order. Our results greatly extend the topological
physics for mass-inversion induced domain wall state and provide
a way to design the higher-order topological materials with
arbitrary fractional charge.

METHODS
First-principles calculations
The first-principles calculations are carried out in the framework of
generalized gradient approximation with Perdew-Burke-Ernzerhof
functionals using the Vienna Ab initio Simulaiton Package (VASP)76.
All calculations are performed with a plane-wave cutoff of 400 eV on the
11 × 11 × 1 Monkhorst-Pack k-point mesh, and the convergence
criterion of energy is 10−5 eV. The vacuum layer of 15 Å thick is used
to ensure decoupling between neighboring slabs. During the structural

relaxation, all atoms are relaxed until the forces are smaller than
0.01 eV/ Å. The lattice constant of monolayer FeSe is fixed to the bulk
lattice constant of SrTiO3 at 3.901 Å51. In order to simulate the canted
checkerboard AFM order under the in-plane magnetic field, the
direction of magnetic moment for all atoms in monolayer FeSe are
constrained in our calculations.

First-principles tight-binding Hamiltonian
The first-principles tight-binding Hamiltonian is obtained from the band
fitting by using the Wannier90 package77. The five d orbitals of Fe and
three p orbitals of Se are used in band fitting to the first-principles bands
with spin-orbital coupling. The unit cell of monolayer FeSe includes 32
fitted Wannier orbitals. By extending this unit cell first-principles tight-
binding Hamiltonian to ribbon and cluster configurations, the spectrum of
topological edge and corner states for monolayer FeSe can be calculated.
The low-energy effective Hamiltonian in Eq. (1) is only used to analytically
derive the fractional mass-kink in monolayer FeSe, which is not used to
calculate the spectrum of topological edge and corner states. The detailed
derivation of Eq. (1) can be found in ref. 58, which is also supported by the
first-principles calculations.
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