
J Reliable Intell Environ (2015) 1:101–121

DOI 10.1007/s40860-015-0013-3

ORIGINAL ARTICLE

Antifragility: systems engineering at its best

Eric Verhulst1
· Bernhard Sputh1

· Pieter Van Schaik1

Received: 14 October 2015 / Accepted: 29 October 2015 / Published online: 17 November 2015

© Springer International Publishing Switzerland 2015

Abstract Systems engineering has emerged because of the

growing complexity of systems and the growing need for sys-

tems to provide a reliable service. The latter has to be defined

in a wider context of trustworthiness and covering aspects

like safety, security, human–machine interface design and

even privacy. What the user expects is an acceptable quality

of service (QoS), a property that is difficult to measure as it

is a qualitative one. In this paper, we present a novel crite-

rion, called assured reliability and resilience level (ARRL)

that defines QoS in a normative way, largely by taking into

account how the system deals with faults. ARRL defines 7

levels of which the highest one can be described as the level

where the system becomes antifragile.

1 Introduction

One of the emerging needs of embedded systems is better

support for safety and, increasingly so, security. These are

essentially technical properties. The underlying need is trust-

worthiness. This covers not only safety and security, but also

aspects of privacy and usability. All of these aspects can be

considered as specific cases of the level of trust that a user or

stakeholder expects from the system. When these are lacking

B Eric Verhulst

eric.verhulst@altreonic.com

Bernhard Sputh

bernhard.sputh@altreonic.com

Pieter Van Schaik

pieter.vanschaik@altreonic.com

1 Altreonic NV, Gemeentestraat 61A bus 1, 3210 Linden,

Belgium

we can say that the system has failed or certainly resulted

in a dissatisfied user. The effects can be catastrophic with

loss of lives and costly damages, but also simply annoyance

that ultimately will result in financial consequences for the

producer of the system. To achieve the desired properties,

systems engineering standards and in particular safety stan-

dards were developed. These standards do not cover the full

spectrum of trustworthiness. They aim to guarantee safety

properties because they concern the risk that people are hurt

or killed and the latter is considered a higher priority objective

than all other ones (at least today). It is because of said risk

that safety-critical systems are generally subjected to certi-

fication as a legal requirement before putting them in public

use. In this paper, we focus on the safety engineering aspects,

but the analysis can be carried over to the other domains and

critical properties as well.

While safety standards exist, a first question that arises is

why each domain has specific safety standards [1]. They all

aim to reduce the same risk of material damages and human

fatalities to a minimum, so why are they different from one

domain to another? One can certainly find historical reasons,

but also psychological ones. Safety standards are often asso-

ciated with or concern mostly systems with programmable

electronic components. For example, IEC 61508 [2]—the so-

called mother of all safety standards—explicitly addresses

systems with programmable components. The reason for

this is that with the advent of programmable components

in system design, systems engineering became dominantly

a discrete domain problem, whereas the preceding tech-

nologies were dominantly in the continuous domain. In the

continuous domain components have the inherent property

of graceful degradation, while this is not the case for dis-

crete domain systems. A second specific trait is that, in the

discrete domain, the state space is usually very large with

state changes that can happen in nanoseconds. Hence it is

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s40860-015-0013-3&domain=pdf
http://orcid.org/0000-0003-2629-1339

102 J Reliable Intell Environ (2015) 1:101–121

very important to be sure that no state change can bring the

system into an unsafe condition. Despite identifiable weak-

nesses, different from domain to domain, safety engineering

standards impose a controlled engineering process resulting

in fairly well predictable safety that can be certified by exter-

nal parties. However, the process is relatively expensive and

essentially requires that the whole project and system is re-

certified whenever a change is made. Similarly, a component

such as a general purpose computer that is certified as safe

to use in one domain cannot be reused as such in another

domain. The latter statement is even generous. When strictly

following the standards, within the same domain each new

system requires a re-certification or at least a re-qualification,

so that even within product families reuse is limited by safety

concerns.

Many research projects have already attempted to address

the issues, whereby a first step is often trying to understand

the problem. Two projects were inspirational in this con-

text. A first project was the ASIL project [3]. It analyzed

multiple standards like IEC-61508, IEC-62061, ISO-26262,

ISO-13849, ISO-25119 and ISO-15998 as well as CMMI and

Automotive SPICE with the goal to develop a single process

flow for safety-critical applications, focusing on the auto-

motive and machinery sectors. This was mainly achieved by

dissecting the standards in a semi-atomic way whereby the

paragraphs were tagged with links to an incrementally devel-

oped V-model of the ASIL flow. In total this has resulted in

more then 3000 identified process requirements and about

100 different work products (so-called artefacts required for

certification). The process itself contains about 350 steps

divided in organizational processes, development and sup-

porting processes. The project demonstrated that a unifying

process flow compatible with multiple safety standards is

achievable although tailoring is not trivial. The ASIL flow

was also imported in the GoedelWorks portal [4]. The lat-

ter is based on a generic systems engineering metamodel,

demonstrating that using a higher-level abstract model for

system engineering (in casu, safety engineering) is possible.

At the same time it made a number of implicit assumptions

explicit. For example, the inconsistent use of terminology

and concepts across different domains is a serious obstacle

to reuse.

A second project that is now terminated was the FP7

OPENCOSS project [5]. It aimed at reducing the cross-

domain and cross-product certification or safety assessment

costs. In this case the domains considered are avionics, rail-

way and automotive. The initial results have amongst other

shown how vast the differences are in applying safety stan-

dards into practical processes. The different sectors are also

clearly at different levels of maturity in adopting the safety

standards, even if generally speaking the process flows are

similar. The project focused not so much on analyzing the

differences but on coming up with a common metamodel

(the so-called CCL or Common Certification Language) that

supports building up and retrieving arguments and evidence

from a given project with the aim to reuse these for other

safety-critical projects. The argument pattern used is pro-

vided by the GSN [6] notation.

Hence, both projects have provided the insight that strictly

speaking cross-domain reuse of safety-related artefacts and

components is not possible due to the vast differences

between the safety standards. In what follows we will see that

the notions of safety as a goal (often called the safety integrity

level or SIL) are different from one domain to another. This

can be justified. The safety assurance provided for a given

system is specific to that system in its certified configuration

and its certified application. This is often in contrast with the

engineering practice. Engineers constantly build systems by

reusing existing components and composing them into larger

subsystems. This is not only driven by economic benefits, but

it often increases the trust in a system because the risk for

residual errors will be lower, at least if a qualification process

for these components is in use. Nevertheless, engineering and

safety standards contain relatively very few rules and guide-

lines on reusing components hampering the development of

safe systems by composition.

Another system aspect that is emerging is lifecycle man-

agement. This aspect comes to the foreground as systems

have increasingly longer lifetimes, whereby the components

are more and more connected in a larger system. In addi-

tion, the lifetimes are such that individual components will

be replaced or upgraded as they age or can be replaced with

more novel, more efficient or more performant technologies.

Typical examples are Internet Of Things, smart grids and

infrastructure that becomes “smart” by using embedded elec-

tronics. The distinguishing feature is that a developed system

can no longer be developed in isolation as it becomes part of

a system of systems.

This paper analyzes why the current safety-driven appro-

ach is unsatisfactory for reaching trustworthiness as a lifecy-

cle goal for systems. It introduces a new criterion called the

assured reliability and resilience level (ARRL) that allows

components to be reused in a normative way while pre-

serving the safety integrity levels at the system level. The

higher ARRL level break out of the component domain and

define the system itself as a component in a larger system that

includes it operating environment. ARRL-6 and -7 include

the definition of a process that must be in place and aims

at continuously improving the system. This property corre-

sponds to the notion of antifragility as originally formulated

as a qualitative concept by Taleb [7].

123

J Reliable Intell Environ (2015) 1:101–121 103

2 Safety integrity levels

As safety is a critical property, it is no wonder that safety

standards are perhaps the best examples of concrete systems

engineering standards, even if safety is not the only prop-

erty that is relevant for systems engineering projects. Most

domains have their own safety standards partly for histori-

cal reasons, partly because the heuristic knowledge is very

important or because the practice in the domain has become

normative. We consider first the IEC 61508 standard, as this

standard is relatively generic. It considers mainly program-

mable electronic systems (Functional Safety of Electrical/

Electronic/ Programmable Electronic Safety-related Systems

(E/E/PE, or E/E/PES). The standard consists of 7 parts and

prescribes 3-stage processes divided in 16 phases. The goal

is to bring the risks to an acceptable level by applying safety

functions. IEC 61508 starts from the principle that safety is

never absolute; hence it considers the likelihood of a haz-

ard (a situation posing a safety risk) and the severity of the

consequences. A third element is the controllability. The

combination of these three factors is used to determine a

required SIL or Safety Integrity Level, categorized in 4 levels,

SIL-1 being the lowest and SIL-4 being the highest. These

levels correspond with normative allowed Probabilities of

Failure per Hour and require corresponding Risk Reduction

Factors that depend on the usage pattern (infrequent versus

continuous). The risk reduction itself is achieved by a com-

bination of reliability measures (higher quality), functional

measures as well as assurance from following a more rigorous

engineering process. The safety risks are in general classi-

fied in 4 classes, roughly each corresponding with a required

Table 1 Categorization of safety risks

Category Typical SIL Consequence upon failure

Catastrophic 4 Loss of multiple lives

Critical 3 Loss of a single life

Marginal 2 Major injuries to one or more

persons

Negligible 1 Minor injuries at worst or material

damage only

No consequence 0 No damages, except user

dissatisfaction

SIL level whereby we added a SIL-0 for completeness. This

classification can easily be extended to economic or finan-

cial risks. Note, that we use the term SIL as used in IEC

61508, while the table is meant to be domain independent

(Table 1).

The SIL level is used as a directive to guide selecting

the required architectural support and development process

requirements. For example, SIL-4 imposes redundancy and

positions the use of formal methods as highly recommended.

While 61508 has resulted in derived domain-specific stan-

dards (e.g. ISO 26262 for automotive [8], EN 50128 [9] for

railway), there is no one to one mapping of the domain-

specific levels to IEC-61508 SIL levels. Table 2 shows an

approximate mapping, whereby we added the aviation DO-

178C [10] standard that was developed from within the

aviation domain itself. It must be mentioned that the Risk

Reduction Factors are vastly different as well. This is mainly

justified by the usage pattern of the systems and the accepted

“fail safe” mode. For example, while a train can be stopped

if a failure is detected, a plane must at all cost be kept in

the air in a state that allows it still to land safely. Hence,

Table 2 is not an exact mapping of the SIL levels but an

approximate one. However, in general each corresponding

level will require similar functional safety support, similar

architectural support as well as higher degrees of rigor in

the development process followed, even if the risk reduction

factors are quantitatively different.

The SIL levels (or the domain-specific ones) are mostly

determined during a HARA (hazard and risk analysis) exe-

cuted before the development phase and updated during

and after the development phase. The HARA tries to find

all Hazardous situations and classifies them according to 3

main criteria: probability of occurrence, severity and con-

trollability. This process is however difficult and complex,

partly because the state space explodes very quickly, but also

because the classification is often not based on historical data

(absent for any new type of system) but on expert opinions.

It is therefore questionable if the assigned safety levels are

accurate enough and if the risk reduction factors are realis-

tic, certainly for new type of systems. We elaborate on this

further.

Once an initial architecture has been defined, another

important activity is executing an FMEA (failure mode effect

Table 2 Approximate cross-domain mapping of safety integrity levels

Domain Domain-specific safety levels

General (IEC-61508) Programmable electronics (SIL-0) SIL-1 SIL-2 SIL-3 SIL-4

Automotive (26262) ASIL-A ASIL-B ASIL-C ASIL-D –

Aviation (DO-178/254) DAL-E DAL-D DAL-C DAL-B DAL-A

Railway (CENELEC 50126/128/129) (SIL-0) SIL-1 SIL-2 SIL-3 SIL-4

123

104 J Reliable Intell Environ (2015) 1:101–121

analysis). While a HARA is top-down and includes environ-

mental and operator states, the FMEA analyzes the effects of

a failing component on the correct functioning of the system

(and in particular in terms of the potential hazards). Failures

can be categorized according to their origin. Random failures

are typically a result of physical causes, whereas systematic

failures are a result of either design or implementation errors.

In all cases, when programmable electronics are used, their

effect is often the same: the system can go immediately or in

a later time interval into an unsafe state. It is also possible that

single or even multiple faults have accumulated but remain

latent until the error is triggered by a specific event.

In all cases only an adequate architecture can intercept

the failures before they generate further errors and hence

pose a safety risk. As such the HARA and FMEA will both

define safety measures (like making sure that sensor data

correspond to the real data even when a sensor is defective).

While the HARA, being executed prior to defining an archi-

tecture, should define the safety measures independently of

the chosen implementation architecture, the FMEA will be

architecture dependent and hence also related to the com-

ponents in use. The results of the FMEA are not meant to

be reused in a different system, even if the analysis is likely

generic enough to support the reuse in other systems. As

such, there is no criterion defined that allows us to classify

components in terms of their trustworthiness, even if one can

estimate some parameters like MTBF (mean time between

failures) albeit in a given context. In the last part of this

paper, we introduce a criterion that takes the fault behavior

into account. Note that while generic, it should be clear that

the focus of this paper is on software components running on

programmable electronic components. This will be justified

further.

2.1 Quality of service levels

An inherent weakness from the systems engineering and

user’s point of view is that trustworthiness, in all its aspects,

is not the only property of a system. A system that is being

developed is part of a larger system that includes the user (or

operator) as well as the environment in which the system is

used, see Fig. 1.

A HARA, for example, looks primarily at the safety risks

that can originate in any of these three contextual systems.

Both additional systems do not necessarily interact in a pre-

dictable way with the envisioned system and have an impact

on the safety properties and assurance. Note that we can also

consider security risks as a subtype of safety risk, the dif-

ference being the origin of the resulting fault (maliciously

injected versus originating in the system or its operating envi-

ronment).

From the user’s point of view, the system must deliver an

acceptable and predictable level of service, which we call the

Fig. 1 The context in which a system under development is used

quality of service (QoS). A failure in a system is not seen as

an immediate safety risk but rather as a breach of contract on

the QoS, whereby the system’s malfunction can then result

in a safety-related hazard or a loss of mission control, even

when no safety risks are present. As such we can see that a

given SIL is a subset of the QoS. The QoS can be seen as

the availability of the system as a resource that allows the

user’s expectations to be met. Aiming to reduce the intrinsic

ambiguities of the safety levels we now formulate a scale of

QoS as follows:

– QoS-1 is the level whereby there is no guarantee that

there will always will be enough resources to sustain the

service. Hence the user should not rely on the system

and should consider it as untrustworthy. When using the

system, the user is taking a risk that is not predictable.

– QoS-2 is the level whereby the system must assure the

availability of the resources in a statistically acceptable

way. Hence, the user can trust the system but knows that

the QoS will be lower from time to time. The user’s risk is

mostly one of annoyance and dissatisfaction or of reduced

service.

– QoS-3 is the level whereby the system can be trusted to

always have enough resources to deliver the highest QoS

at all times. The user’s risk is considered to be negligible.

We can consider this classification to be less rigorous than

the SIL levels, because it is based on the user’s perception

of trustworthiness and not on a combination of probabilities

even when these are questionable (see Sect. 4). On the other

hand, QoS levels are more ambitious because they define

minimum levels that must be assured in each QoS level. Of

course, the classification leaves room for residual risks; but

those are not considered during the system’s design but are

accepted as uncontrollable risks with negligible probabilities.

Neither the user nor the system designer has much control

over them. Perfect systems that never encounter issues are

physically not possible.

123

J Reliable Intell Environ (2015) 1:101–121 105

2.2 Some data for thought

While risks associated with health and political conflicts are

still very dominant as cause of death and injuries, techni-

cal risks like working in a factory or using a transportation

system are considered more important because they have a

higher emotional and visible economic cost, even if the num-

ber of fatalities is statistically low. The reason is probably

because the perception is that these risks are avoidable and

hence a responsible party can be identified, eventually result-

ing in financial liabilities.

As a result, sectors like railway and aviation are statisti-

cally very safe. As an example, about 1000 people are killed

every year worldwide in aircraft-related accidents, which

makes aviation the safest transport mode in the world [11].

In contrast the automotive sector adds up to about 1.2 mil-

lion fatalities per year worldwide and even developed regions

like the USA and Europe experience about 35,000 fatalities

per year (figures for 2010) [12]. These figures are approxi-

mate, as the statistics certainly do not include all causalities.

Although both sectors have their safety standards, there is a

crucial difference. Whereas in most countries aircrafts and

railway systems are strictly regulated and require certifi-

cation, in the automotive sector the legal norms are much

weaker partly because the driver is considered as the main

cause of accidents. The latter biases significantly the “con-

trollability” factor in the required SIL determination.

Taking a closer look at the SIL classifications of IEC 61508

and the automotive derived ones in ISO-26262, we notice

three significant differences:

1. Whereas IEC-61508 and ISO-26262 both define 4 levels,

they do not map to each other—in particular SIL-3 and

SIL-4 do not map to ASIL-C and -D.

2. The highest ASIL-D level corresponds to a SIL-3 level in

terms of casualties, although it is not clear if this means

a few casualties (e.g. not more than five like in a car) or

several hundreds (like in an airplane.)

3. The aviation industry experiences about 1000 casualties

per year worldwide, whereas the automotive industry

experiences 1200 times more per year worldwide, yet

the ASIL level are de facto lower.

When we try to explain these differences, we can point to

the following factors:

1. ISO-2626 was defined for automotive systems that have

a single central engine (at least that is still the prevail-

ing vehicle architecture). As a direct consequence of the

centralized and non-redundant organization such a vehi-

cle cannot be designed to be fault-tolerant (which would

require redundancy) and therefore cannot comply with

SIL-4 (which mandates a fault-tolerant design).

2. While ASIL-C more or less maps onto SIL-3 (upon a

fault the system should transition to a fail-safe state),

ISO-26262 introduces ASIL-C requiring a supervising

architecture. In combination with a degraded mode of

operation (e.g. limp mode), this weaker form of redun-

dancy can be considered as fault tolerant if no common

mode failure affects both processing units [13].

3. Automotive systems are not (yet) subjected to the same

stringent certification requirements as railway and avi-

ation systems, whereby the manufacturers as well as

the operating organization are legally liable, whereas

in general the individual driver is often considered the

responsible actor in case of an accident. Note that, when

vehicles are used in a regulated working environment, the

safety requirements are also more stringent, whereby the

exploiting organization is potentially liable and not nec-

essarily the operator or driver. Hence, this lesser financial

impact of consumer-grade products is certainly a nega-

tive factor even if the public cost price is high as well.

4. The railway and aviation sectors are certified in con-

junction with a regulated environment and infrastructure

that contributes to the overall safety. Automotive vehi-

cles are engineered with very little requirements in term

of where and when they are operated and are used on

a road infrastructure that is developed by external third

parties. The infrastructure which cars share forces them

to be operated in a much closer physical proximity than

airplanes. This in turn also increases the probability of

accidents. This partly explains why the high number of

worldwide casualties is not reflected in the ASIL desig-

nation.

5. One should not conclude from the above that a vehi-

cle is hence by definition unsafe. Many accidents can be

attributed to irresponsible driving behavior. It is however

a bit of a contradiction that the Safety Integrity Levels

for automotive are lower than those for aviation and rail-

way if one also considers the fact that vehicle accidents

happen in a very short time interval and confined spaces

with almost no controllability by the driver. In railway

and aviation often minutes and much space are available

for the driver or pilot to attempt to regain control.

6. ISO-26262 also defines guidelines for decomposing a

given ASIL level. However, the process is complex and is

driven by an underlying goal to reduce the cost supported

by the rationale that simultaneous failures are not likely.

The latter assumption is questionable.

123

106 J Reliable Intell Environ (2015) 1:101–121

2.3 The weaknesses in the application of the safety

integrity levels

As we have seen above, the use of the safety integrity levels

does not result in univocal safety. We can identify several

weaknesses:

1. A SIL level is a system property derived from a prescribed

process whereas systems engineering is a mixture of plan-

ning, prescribed processes and architecting/developing.

As such a SIL level is not a normative property as it is

unique for each system.

2. SIL levels are the result of probabilities and estimations,

while analytical historical data are not always present

to justify the numbers. Also here we see a difference

between the automotive domain and the aviation and

railway domains. The latter require official reporting of

any accident; have periodic and continuous maintenance

schedules (even during operational use) and the acci-

dents are extensively analyzed and made available to

the community. Black boxes are a requirement to allow

post-mortem analysis. Nevertheless, when new technolo-

gies are introduced the process can fail, as was recently

demonstrated by the use of Lithium-ion batteries and

Teflon cabling by Boeing [14].

3. SIL levels, defined as a system level property, offer lit-

tle guidance for reusing and selecting components and

sub-system modules whereas engineering is inherently a

process whereby components are reused. An exception

is the ISO-13849 machinery standard and its derivatives,

all IEC-61508 derived standards. Also the aviation sector

has developed a specific standardized IMA architecture

described in the DO-197 standard that fosters reuse of

modular avionics, mainly for the electronic on board

processing [15]. ISO-26262 also introduced the notion of

a reusable component called SEooC (safety element out

of context) allowing a kind of pre-qualification of com-

ponents when used in a well-specified context. While we

see emerging notions of reuse in the standards, in general

very little guidance is offered on how to achieve a given

SIL level by composing systems from different compo-

nents. The concept is there, but not yet formalized.

4. An increasing part of safety-critical systems contain soft-

ware. Software as such has no reliability measures, only

residual errors while its size and non-linear complexity

is growing very rapidly, despite efforts in partitioning

and layering approaches that rather hide than address the

real complexity. This growth is not matched by an equal

increase in controllability or productivity [16]. If one of

the erroneous (but unknown) states is reached (due to a

real program error or due to an external hardware distur-

bance) this can result in a safety risk. Such transitions to

an erroneous state cannot be estimated up front during

a SIL determination. In addition, new advanced digital

electronics and their interconnecting contacts do not have

well known reliability figures. They are certainly subject

to aging and stress (like analog and mechanical compo-

nents), but they can fail catastrophically in a single clock

pulse measured in nanoseconds.

5. The SIL level has to be seen as the top-level safety

requirement of a system. In each application domain dif-

ferent probabilistic goals (in terms of risk reduction) are

applied with an additional distinction between intermit-

tent and continuous operation. Hence cross-domain reuse

or certification can be very difficult, because the top level

SIL requirements are different, even if part of the certifi-

cation activities can be reused.

6. A major weakness of the SIL is however that it is based

on average statistical values, with often no information

on the statistical spread. Not only are correct figures

very hard or even impossible to obtain, they also depend

on several factors such as usage pattern, the operating

environment, and the skills and training of the human

operator. Correct statistical values such as the mean value

assume a large enough sampling base, which is often not

present. Moreover it ignores that disruptive events like

a very unlikely accident can totally change these values.

As an example we cite the Concorde airplane that was

deemed to be the safest aircraft in the world until one

fatally crashed. After the catastrophic event it “became”

almost instantly one of the most unsafe airplanes in the

world, at least statistically speaking, partly because the

plane was less intensively used than most commercial

planes.

The last observation is crucial. While statistical values and

estimations are very useful and essential design parameters,

very low residual risks can still have a very high probability

of happening. We call this the Law of Murphy: if something

can happen, eventually it will happen. Referring to their low

statistical probability will not save lives. The estimated prob-

ability can be very different from the one observed after the

facts. The latter

2.4 SIL calculations and non-linearity

SIL determination in the standards is often based on sta-

tistical values such as the probability of occurrence and

semi-subjective estimations of the severity of the hazard and

the controllability. While a human operator can often be a cru-

cial element in avoiding a catastrophe, it is also a subjective

and uncontrolled factor; hence it should be used with cau-

tion as an argument to justify lesser functional risk reduction

efforts. In addition there is a gray zone whereby the human

operator might be seen as having inadequately reacted, but

a deeper analysis will often highlight ambiguities and con-

123

J Reliable Intell Environ (2015) 1:101–121 107

Table 3 Technology levels in a system

Technology level Dominant property Dominant fault types Typical safety measures

Environment External constraints Unforeseen interactions Co-design of infrastructure and

system

Operator/user Human interaction Human–machine interface

confusion

Analysis of HMI and testing.

Adequate training

Software Discrete state-space, non-linear time Design faults and logical errors Redundancy and diversity at

macro-level, formal correctness

Electronics Combinatorial state-space, discrete

time

Transient faults and wear out Redundancy at micro-level

Material Mainly continuous or linear properties Permanent or systemic faults Adding robustness safety margin

fusion generated by the user interface subsystem [17]. In

general, in any system with software programmable compo-

nents, we can distinguish three levels of technology, as well

as 2 external domains as summarized in Table 3. In terms

of safety engineering, one must also take into account the

human operator and the environment in which the system is

used. They mainly impose usage constraints on the safe use

of the system.

We can now see more clearly why safety standards think

mostly in terms of probabilities and quality. In the days before

programmable electronics, system components were “lin-

ear”, governed by material properties. One only has to apply

a large enough safety margin (assuming an adequate archi-

tecture) whereby an observable graceful degradation acts as

a monitoring function. Non-linearities (i.e., discontinuities)

can happen if there is a material defect or too much stress.

Electronic devices are essentially also material devices and

are designed with the same principles of robustness margins,

embedded in technology-specific design rules.

With the introduction of digital logic, a combinatorial state

machine was introduced and a single external event (e.g. a

charged particle) could induce faults. The remedy is redun-

dancy at the micro-level: parity bits, CRC codes, etc. Note

however that digital logic is not so linear anymore. It goes

through the state machine in steps and a single faulty bit can

lead to an erroneous illegal state or numerical errors.

Software makes this situation worse as now we have an

exponentially growing state machine. In addition software is

a non-linear system. Every clock pulse the state is changed

and even the execution thread can switch to another one. The

remedy is formal proof (to avoid reaching undesired states)

and redundancy (but with diversity).

Each of the levels actually depends on the lower levels,

whereby we have the special situation that software assumes

that the underlying hardware is perfect and fault free. Any

error in software is either a design or an implementation error,

whereby the cause is often an incomplete or ambiguous spec-

ification, or a hardware induced fault. Therefore, reasoning

in terms of probabilities and quality degrees for digital elec-

tronics and software has value but means little when using it

as a safety-related design parameter. In the discrete domain

a component is either correct or not correct, whereby we use

the term correct in the sense of being free of errors. While we

can reduce the probability of reaching an erroneous illegal

state by means of, for instance, using a better development

process or a better architecture, the next event (external or

internal state transition like the on-chip clock) can result in

a catastrophic outcome. This must be the starting point for

developing safe systems with discrete components if one is

really serious about safety. In general, graceful degradation

does not apply to discrete state space systems.

3 The missing link in safety engineering:

the ARRL criterion

Despite the weaknesses of the SIL criterion, safety stan-

dards are still amongst the best of the available engineering

standards and practices in use. In addition, those standards

contain many hints on how to address safety risks, though

not always in an outspoken way.

As an example, every standard outlines safety pre-

conditions. The first one is the presence of a safety culture.

Another essential principle in safety engineering is to avoid

any unnecessary complexity. In formal terms: keeping the

project’s and system’s state space under control. A further

principle is that quality and the resulting reliability come

before safety otherwise any safety measure becomes unpre-

dictable. This is reflected in the requirements for traceability

and configuration management. We focus on the last one to

define a novel criterion for achieving safety by composition.

Traceability and configuration management are only really

possible if the system is developed using principles of orthog-

onal composability, hence we need modular architectures

whereby components are (re)-used that carry a trustworthi-

ness label. Trustworthiness is here meant to indicate that the

component meets its specifications towards the external inter-

face it presents to other components. We can call this the

123

108 J Reliable Intell Environ (2015) 1:101–121

Table 4 ARRL levels

ARRL level ARRL definition

ARRL-0 The component might work (“use as is”), but there is no assurance. Hence all risks are with the user

ARRL-1 The component works as tested, but no assurance is provided for the absence of any remaining issues

ARRL-2 The component meets all its specifications, if no fault occurs. This means that it is guaranteed that the

component has no implementation errors, which requires formal evidence as testing can only uncover

testable cases. The component still provides ARRL-1 level assurance by testing as also formal evidence

does not necessarily provide complete coverage but should uncover all so-called systematic faults, e.g., a

wrong parameter value. In addition, the component can still fail due to randomly induced faults, for

example an externally induced bit-flip

ARRL-3 The component inherits all properties of the ARRL-2 level and in addition is guaranteed to reach a

fail-safe or reduced operational mode upon a fault. This requires monitoring support and some form of

architectural redundancy. Formally speaking this means that the fault behavior is predictable as well as

the subsequent state after a fault occurs. This implies that specifications include all fault cases as well as

how the component should deal with them

ARRL-4 The component inherits all properties of the ARRL-3 level and can tolerate one major fault. This

corresponds to requiring a fault-tolerant design. This entails that the fault behavior is predictable and

transparent to the external world. Transient faults are masked out

ARRL-5 The component inherits all properties of the ARRL-4 level but is using heterogeneous sub-components to

handle residual common mode failures

Inheritance rule The component inherits all properties of any lower level ARRL properties

component’s contract it presents to its ambient environment.

In addition, in practice many components are developed

independently of the future application domain (with the

exception of for instance normative parameters for the envi-

ronmental conditions). The conclusion is clear: we need to

start at the component level and define a criterion that gives

us a normative definition. We also need reusability guidance

on how to develop components in a way that allows reusing

them with no negative impact on safety at the system level.

In previous sections we have shown why SIL might not

be a suitable criterion. In the attempt to deal with the short-

comings of SIL in what follows we introduce the ARRL or

Assured Reliability and Resilience Level to guide us in com-

posing safe systems. The different ARRL classes are defined

in Table 4. They are mainly differentiated in terms of how

much assurance they provide in meeting their contract in the

presence of faults.

Before we elaborate on the benefits and drawbacks of the

ARRL criterion, we should mention that there is an implicit

assumption about a system’s architecture. A system is com-

posed by defining a set of interacting components. This has

important consequences:

1. The component must be designed to prevent the propa-

gation of errors. Therefore the interfaces must be clearly

identifiable and designed with a “guard”. These interfaces

must also be the only way a component can interact with

other components. The internal state is not accessible

from another component, but can only be made available

through a well-defined protocol (e.g. whereby a copy of

the state is communicated).

2. The interaction mechanism, for example a network con-

nection, must carry at least the same ARRL credentials

as the components it interconnects. Actually, in many

cases, the ARLL level must be higher if one needs to

maintain a sufficiently high ARRL level at the level of

the (sub)-system composed of the components.

3. Hence, it is better to consider the interface as a component

on itself, rather than for example assuming an implicit

communication between the components.

Note that when a component and its connected interfaces

meet the required ARRL level, this is a required precondition,

not a sufficient precondition for the system to meet a given

ARRL and SIL level. The application itself developed on top

of the assembled components and its interfaces must also be

developed to meet the corresponding ARRL level.

4 Discussion of the ARRL levels

By formalizing the ARRL levels, we make a few essential

properties explicit:

– Inheritance: high level ARRLs inherit the properties of

a lower level ARRL. This is essential for the resilience

properties.

– The component must carry evidence that it meets its

specifications. Hence the use of the “Assured” qualifier.

Without evidence, no verifiable assurance is possible. The

set of assured specifications, that includes the assump-

tions and boundary conditions, can be called the contract

123

J Reliable Intell Environ (2015) 1:101–121 109

fulfilled by the component. In addition, verifiable and

supporting evidence must be available to support the con-

tract’s claims.

– Reliability is used to indicate the need for a sufficient

quality of the component. A high reliability implies that

the MTBF will be high (in terms of its lifetime) and is

hence not a major issue in using the component.

– Resilience is used to indicate the capability of the com-

ponent to continue to provide its intended functionality

in the presence of faults. This implies that fault condi-

tions can be detected, their effects mitigated and error

propagation is prevented [18].

– There is no mentioning of safety or security levels

because these are system level properties that also include

the application specific functionality.

– The ARRL criterion can be applied in a normative way,

independently of the application domain. The contract

and its evidence for it should not include domain-specific

assumptions.

– By this formalization we also notice that the majority

of the components (software or electronic ones) on the

market will only meet ARRL-1 (when tested and a test

report is produced). ARRL-2 assumes the use of for-

mal evidence and very few software products meet these

requirements. From ARRL-3 on, a software component

has to include additional functionality that deals with

error detection and isolation and requires a software-

hardware co-design. With ARRL-4 the system’s archi-

tecture is enhanced by explicitly adding redundancy and

whereby it is assumed that the faults are independent in

each redundant channel. In software, this corresponds to

the adoption of design redundancy mechanisms so as to

reduce the chance of correlated failures.

– When a component has a fault its ARRL level drops into

a degraded mode with a lower ARRL level. For the higher

ARRL levels this means that the functionality can be pre-

served but its assurance level will drop. This is achieved

by making the fault behavior explicit and hence verifi-

able.

– The SIL levels as such are not affected.

ARRL-5 further requires 3 quasi-independent software

developments on different hardware, because ARRL-4 only

covers a subset of the common mode failures. Less visi-

ble aspects are for instance common misunderstanding of

requirements, translation tool errors and time dependent

faults. The latter require asynchronous operation of the com-

ponents and diversity using a heterogeneous architecture.

5 ARRL architectures illustrated

While Table 3 discusses several technology levels in a sys-

tem or component, the focus is on the hardware (electronics)

and software levels. The lowest level is largely the contin-

uous domain where the rules and laws of material science

apply. In general, this domain is well understood and apply-

ing design and safety margins mitigates most safety risks. In

addition, components in this domain often exhibit graceful

degradation, a property that inherently contributes to safety.

This even applies to the semiconductor materials used for

developing programmable chips.

The levels related to the environment and the user/operator

of a system are mostly related to external factors that can

create hazardous situations. Hence these must be considered

when developing the system and they play an important role

in the HARA. However, as such these are external and often

unique factors for every system, the reuse factor (except for

example in identifying reusable patterns and scenarios) is

limited.

In this paper, the focus is on how a component or sub-

system can be reused in the context of a safety-critical

application. This is mostly an issue in the hardware and

software domains because these technology domains are

characterized by very large state spaces. In addition, as men-

tioned before, such systems often will operate in a dynamic

and reconfigurable way. In addition, a component developed

in these discrete technologies can fail practically speaking in

a single instant in time. To mitigate these risks, ARRL levels

explicitly take the fault behavior into account as well as the

desired state after a fault occurred. This results in derived

requirements for the architecture of the component, the con-

tract it carries as well as for the evidence that supports it.

Therefore the evidence will also be related to the process

followed to develop the component. To clarify the ARRL

levels, a more visual representation is used and discussed

below.

5.1 The ARRL component view

Figure 2 illustrates the generic view of a component. It is seen

as a functional block that accepts input vectors, processes

them and generates output vectors. In the general sense, the

processing can be seen as the transfer function of the com-

ponent. While the latter terminology is mostly used in the

continuous domain, in the discrete domain the transfer func-

tion is often a state machine or a collection of concurrent state

machines. Important for the ARRL view is that the process-

ing function is not directly linked with the inputs and outputs

but via component interfaces that operate as guards.

5.2 An illustrated ARRL-1 component

As the ARRL-0 provides no assurance at all for its behav-

ior, we can gracefully skip this level, hence we start with

the ARRL-1 level (Fig. 3). Such a component can only be

partially “trusted”, i.e. as far as it was tested. The uncer-

123

110 J Reliable Intell Environ (2015) 1:101–121

Fig. 2 ARRL generic view of a

component

Fig. 3 A generic ARRL-1

component

Fig. 4 A generic ARRL-2

component

tainty is related to unanticipated input values; doubts that

the input/output guards are complete, remaining errors in

the processing function, invalid assumptions (e.g. erroneous

requirements [19]) and hence there can be unanticipated out-

put values. In other words, while a test report provide some

evidence, the absence of errors if not guaranteed and as such a

123

J Reliable Intell Environ (2015) 1:101–121 111

Fig. 5 A generic ARRL-3

component

Fig. 6 A generic ARRL-4

component

123

112 J Reliable Intell Environ (2015) 1:101–121

Fig. 7 A generic ARRL-5

component

ARRL-1 component cannot be used as such for safety-critical

systems.

5.3 An illustrated ARRL-2 component

An ARRL-2 component (Fig. 4) covers the holes left at the

ARRL-1 level. To reach completeness of absence of errors,

we first of all assume that the underlying hardware (at the

material level) does not introduce any faults from which

errors can result. Therefore we speak of “logical correctness”

in absence of faults. This level can only be reached if there

is formal evidence supporting such a claim. At the hardware

level, this means for example extensive design verification,

extensive testing and even burn-in of components to find any

design or production-related issues. At the software level we

could require formal proof that no remaining errors exist. If

not practical, formal evidence might also result from “proven

in use” arguments whereby stress testing can be mandatory.

The latter are weaker arguments than those provided by for-

mal techniques, but even when formal techniques are used,

one can never be 100 % sure because even formal models

can have errors but they generally increase the confidence

significantly. Such errors can further be mitigated by addi-

tional process steps (like reviews, continuous integration and

validation) but in essence the residual errors should have a

probability that is as low as practically feasible so that in

practice the component would be considered error-free and

hence fully trustworthy, at least if no faults induce errors.

5.4 An illustrated ARRL-3 component

An ARRL-3 component (Fig. 5) inherits first of all the

properties of ARRL-2. This means, its behavior is logically

correct in absence of faults in relationship to its specifica-

tions. ARRL-3 introduces additionally:

– Faults (by default induced by the hardware or by the envi-

ronment) are detected.

– Faulty input values are remapped to a valid range (e.g.

by clamping) whereby a valid range value is one that is

part of the logically correct behavior.

– Two processing units are used. These can be identical

or dissimilar as long as faults are detected before the

component can propagate them as erroneous values to

other components.

– Faults induced in the components are detected by com-

parison at the outputs.

– The output values are kept within a legal range, hence

faulty values will not result in an error propagation that

can generate errors downstream in the system.

Note that above does not exclude more sophisticated

approaches. Certain faults induced in each sub-unit, typi-

123

J Reliable Intell Environ (2015) 1:101–121 113

cally transient faults, can be locally detected and corrected

so that the output remains valid. The second processing unit

can also be very different and only act as a monitor (which

assumes that faults are independent in time and space). Com-

mon mode failures are still a risk.

5.5 An illustrated ARRL-4 component

ARRL-3 components detect failures and prevent error prop-

agation but they result in the system loosing its intended

functionality. This is due to the fact that redundancy is too

low to reconstruct the correct state of the system. An ARRL-

3 component addresses this issue by applying N out of M

(N < M, N >= 2) voting. This applies as well to the input

as to the outputs. This allows to safeguard the functionality

at ARRL-3 level and is a crude form of graceful degradation.

The solution also assumes independence of faults in the M

“channels” and hence most common mode failures are mit-

igated. This boundary condition implies often that no state

information (such as introduced by the power supply) can

propagate to another channel.

Note that while the diagram uses a coarse grain represen-

tation, some systems apply this principle at the micro-level.

For example radiation-hardened processors can be designed

to also support Single Event Upsets by applying triplication

and voting at the gate level. This does not address all com-

mon mode failures (like power supply issues) but often such

a component can be classified as an ARRL-4 component

(Fig. 6) (implying that in the example the power supply is

very trustworthy).

5.6 An illustrated ARRL-5 component

An ARRL-4 component provides continuity in its func-

tionality but can still fail due to residual common mode

failures. Most of the residual common mode failures are

process related. Typical failures are related to the specifica-

tions not being complete or wrong due to misinterpretation.

Another class of failures could be time dependent. To miti-

gate the resulting risks, diversity is used. This can cover using

completely different technologies, different teams, applying

different algorithms and even using time shifting or using

orthogonal placement of the sub-components to reduce the

influence of externally induced magnetic fields. In the figure

(Fig. 7) this is visualized by using different colors.

This diversity technique is an underlying principle in most

safety engineering processes, for example by requiring that

tests be done by different people than those who developed

the item. It also has as a consequence that such an archi-

tecture works with a minimum of asynchronicity, whereby

the subcomponents “handshake” (in a time window), which

is only possible if the sub-components can be trusted in the

sense of ARRL-2 or ARRL-3.

5.7 Rules of composition (non-exhaustive)

A major advantage of the ARRL criterion is that we can now

define a simple rule for composing safety-critical systems.

We use here an approximate mapping to the different SIL

definitions by taking into account the recommended archi-

tecture for reaching a certain SIL level.

“A system can only reach a certain SIL level if all its

components are at least of the same ARRL level or if they

are arranged into a whole that exhibits a higher ARRL level

due to the application of a fault tolerant architecture.”

The following side-conditions apply:

– The composition rule defines a necessary condition, not

a sufficient condition. Application specific layers must

also meet the ARRL criterion.

– ARRL-4 components can be composed out of ARRL-3

components using redundancy. This requires an addi-

tional ARRL-4 voting component

– ARRL-3 components can be composed using ARRL-2

components (using at least 2 whereby the second instance

acts as a monitor).

– All interfaces and interactions need to have the same

ARRL level as the components.

– Error propagation is to be prevented. Hence a partitioning

architecture (using a distributed hardware and concurrent

software architecture) is a must.

– ARRL-5 requires an assessment of the certification of

independent development and, when applied to software

components, a certified absence of correlated errors.

– A benefit of the approach is that it leaves less room for

ad-hoc, often questionable and difficult to verify decom-

positions of SIL levels. While this might increase the

cost, this will likely be cost-efficient over the lifespan of

a given technology and reduce the development cost.

Figure 8 illustrates this for a (simplified) 2 out of 3

voter. Note that the crossbar implements also an ARRL-4

architecture.

Fig. 8 An AARL_4 2-out-of-3 voter

123

114 J Reliable Intell Environ (2015) 1:101–121

Fig. 9 Texas Instruments’ Hercules microcontroller

5.8 The role of formal methods

ARRL-2 introduces the need for formal correctness. This

might lead to the conclusions that ARRL-2 makes the use of

formal techniques mandatory as well as providing a guaran-

tee of correctness. This view needs further nuance.

In recent years, formal methods have been gaining atten-

tion. This is partly driven by the fact (and awareness) that

testing and verification can never provide complete cover-

age of all possible errors, in particular for discrete systems

and specifically for software. This is problematic because

safety and security issues often concern so-called “corner

cases” that do not manifest themselves very often. Formal

methods however have the potential to cover all cases either

by using formal models checkers (that automatically verify

all possible states of the model) or by formal proofs (based

on mathematical reasoning). In general we can distinguish

a further separation in two domains: the numeral accuracy

and stability domain and the event domain whereby the state

space itself is verified. Often the same techniques cannot be

applied for both.

Practice has shown that using formal methods can greatly

increase the trustworthiness of a system or component. Often

it will lead to the discovery of logical errors and incomplete

assumptions about the system. Another benefit of using for-

mal methods during the design phase is that it helps in finding

123

J Reliable Intell Environ (2015) 1:101–121 115

cleaner, more orthogonal architectures that have the benefit

of less complexity and hence provide a higher level of trust-

worthiness as well as efficiency [20]. One can therefore be

tempted to say that formal methods not only provide correct-

ness (in the sense of the ARRL-2 criterion) but also assist in

finding more efficient solutions.

Formal methods are however not sufficient and are cer-

tainly not a replacement for testing and verification. Formal

methods imply the development of a (more abstract) model

and also this model cannot cover all aspects of the system,

especially non-functional ones. It might even be incomplete

or wrong if based on wrong assumptions (e.g. on how to

interpret the system’s requirements). Formal methods also

suffer from complexity barriers, typically manifested as a

state space explosion that makes their use impractical. The

latter however is a strong argument for developing a compos-

able architecture that uses small but well proven trustworthy

components as advocated by the ARRL criterion. At the same

time, the ARRL criterion shows that formal models must

also model the additional functionality that each ARRL level

requires. This is in line with what John Rushby puts for-

ward in his paper [21] whereby he outlines a formally driven

methodology for a safe reuse of components by taking the

environment into account.

The other element is that practice has shown that devel-

oping a trustworthy system also requires a well-managed

engineering process whereby the human factor plays a cru-

cial role [7]. Moreover, processes driven by short iteration

cycles whereby each cycle end with a validation or (partial)

integration have proven to be more cost-efficient as well as

more trustworthy with less residual issues. Formal methods

are therefore not something like a miracle cure. Their use

is part of a larger process that aims at reaching trustworthi-

ness. The benefit of using formal methods early in the design

phase is that it contributes to reducing the state space in an

early stage so that the cost and effort of fixing issues that are

discovered later in the process is much reduced. In the con-

text of the ARRL criterion they increase the assurance level

considerably because of the completeness of the verification,

a goal that is only marginally reachable by only testing.

5.9 Applying ARRL on a component

Texas Instruments offers an ARM based microcontroller

(MCU) with a specific architecture aimed at supporting

embedded safety-critical applications (Fig. 9) [22]. The

MCU has many features that support this claim. The most

important one is that the ARM CPU adopts an ARRL-3

architecture whereby both CPU cores are lock-stepped. In

case of a difference between the two CPUs, the MCU is

halted. To mitigate common mode failures a time delay of 2

clock pulses is used and in addition the two cores are rotated

with 90◦ to reduce e.g. electromagnetic disturbances. In addi-

tion, Memory Protection Units (MPU) allow the programmer

to partition the software in isolated memory blocks. The

chip also has quite a number of additional safety (or rather:

reliability) features. For example, most memory has error

correcting logic to handle bit errors.

At first sight the MCU could be classified as an ARRL-3

component because the processing cores are configured in

lockstep mode. However, the chip has also a large number

of peripherals in a single instance on the chip. While some

have parity bits (but not all), they can most likely be classi-

fied as ARRL-2 components on the chip. In addition, the chip

has a programmable timer block (that has its own small con-

troller) that is not protected at all from faults. Note that this is

deduced from the publicly available documentation. Further

information might have an impact on these conclusions.

What can we conclude from this, granted superficial, exer-

cise? First of all, while the MCU core processor can be

classified as ARRL-3, most of the peripherals are ARRL-2

or even ARRL-1. Hence, the whole MCU, even better sup-

porting safety-critical applications than most off-the-shelf

MCUs, is still an ARRL-2 component, unless one doesn’t

use some of the peripherals or if the faults are mitigated at

the software level. Secondly, ARRL components must carry

a contract and the evidence. Even if the documentation sup-

plied by the manufacturer is extensive, it is not in a form

that allow a definite conclusion to be drawn. This is in line

with the requirements of safety standards, whereby exten-

sive process evidence as well as supporting documentation

is required to qualify or certify a system or sub-system.

The example also clearly shows that starting from the

ARRL-3 level, it becomes difficult to develop software com-

ponents in isolation of the hardware it is running on (ARRL-2

level software is assumed to be perfectly error-free in absence

of hardware faults). This is due to the fact that additional

fault handling at ARRL-3, vs. ARRL-2, is hardware and

often application specific. Nevertheless, it is partially pos-

sible by strictly specifying the boundary values that are valid

for the software component. The errors resulting from hard-

ware faults can then be trapped in the interface layer, that

itself can be considered as a software component that often

will make use of the underlying hardware support.

5.10 SIL and ARRL are complementary

The ARRL level criterion is not a replacement for the SIL

level criterion. It is complementary in the same sense that the

HARA and FMEA are complementary (Fig. 10). The HARA

is applied top-down whereby the system is considered in its

environment including the possible interactions with a user

or operator. The goal of the HARA is to find the situations

whereby a hazard can result in a safety risk. The outcome is

essentially a number of safety measures that must be part of

123

116 J Reliable Intell Environ (2015) 1:101–121

Fig. 10 Correspondence between HARA and FMEA with SIL and

ARRL

the system design without necessarily prescribing how these

are to be implemented

The FMEA takes a complementary approach after the

implementation architecture has been selected. FMEA aims

at identifying the faults that are likely to result in errors ulti-

mately resulting in a system failure whereby a safety risk

can be encountered. Hence the HARA and FMEA meet in

the middle confirming their findings.

By introducing the ARRL criterion we take a first step

towards making the process more normative and generic, of

course still a tentative step because it will require validation

in real test cases. The SIL is a top-level requirement decom-

posed in normal case requirements (ARRL-1 and -2) and

fault case requirements (ARRL-3, -4, -5). From a functional

point of view, all ARRL levels provide the same functionality

but with different degrees of assurance and hence trust-

worthiness from the point of view of the user. Concretely,

different ARRL levels do not modify the functional require-

ments and specifications of the components. The normative

ARRL requirements result in additional functional specifi-

cations and corresponding functional support that assures

that faults do not result in the functional specifications to

be jeopardized. The non-functional specifications might be

impacted as well. For example, the additional functionality

will require more resources (e.g. memory, energy and CPU

cycles) and is likely to increase the cost price of the sys-

tem. However, it provides a way to reuse components with

lesser efforts from one domain to another in a product fam-

ily. For example a computer module (specified for compatible

environmental conditions) can be reused between different

domains. The same applies to software components. How-

ever, this requires that the components are more completely

specified than it is now often the case. ARRL level compo-

nents carry a contract and the supporting evidence that they

will meet this contract given a specific set of fault conditions.

Note that when using formal methods, each of these ARRL

levels also requires different formal models. The higher-level

ARRL models must model the fault behavior in conjunction

with the normal behavior, just like invariants are part of the

formal models. By defining a composition rule of ARRL

components to achieve a certain level of Safety, we now also

define safety in a quasi-domain independent way, simplifying

the safety engineering process. Note however that any safety-

critical system still has an application specific part that must

be developed to meet the same level of ARRL to reach the

required SIL.

5.11 An ARRL inspired process flow

We can now also define an ARRL inspired process flow. It

is strictly top-down for the requirements engineering part

while bottom-up for developing the architecture. The reader

should note that such a process is not limited to safety engi-

neering but rather considers this as a special case of systems

engineering in general.

It is shown in Table 5, in a simplified way. For simplicity,

we merged the ARRL-1 and -2 levels as de facto, ARRL-1

provides very little assurance in terms of safety.

6 Do we need an ARRL-6 and ARRL-7 level?

An ARRL-5 system can be seen as a weak version of a

resilient system. While it can survive a major fault, it does

so by dropping into an ARRL-4 mode. The next failure is

likely catastrophic. However airplanes are also designed as

part of a larger system that helps to prevent reaching that

state. Continuous built-in-test functions and diagnostics will

detect failures before they become a serious issue. Ground

crews will be alerted over radio and will be ready to replace

the defective part upon arrival at the next airport. We could

call this the ARRL-6 level whereby fault escalation is con-

strained by early diagnostics and monitoring and the presence

of a repair process that maintains the operational status at an

optimal level. Note that in large systems like server farms and

telecommunication networks similar techniques are used.

Using monitoring functions and hot-swap capability on each

of the 1000’s of processing nodes, such a system can reach

almost an infinite lifetime (economically speaking). Even the

technology can be upgraded without having to shut down the

system.

The latter example points us in the direction of what nor-

mative ARRL-6 and -7 levels could be. Those are levels

whereby the system is seen as a component in a larger sys-

tem that includes a continuous monitoring and improvement

process. The later implies a learning process as well. The avi-

ation industry seems to have reached this maturity level. The

123

J Reliable Intell Environ (2015) 1:101–121 117

Table 5 An ARRL driven process flow

Phase ARRL-1, ARRL-2 ARRL-3 additional ARRL-4 additional ARRL-5 additional

Requirements

capturing

Normal cases test

cases

Fault cases (safety

and security cases)

Requirements on

fault tolerance

Requirements on

diversity and

independence

Specifications

derivation by

refinement

Functional and

non-functional

specifications

derived from

requirements

Safety and security

specifications

derived from safety

requirements by

analysis (HARA).

Explicit fail-safe

mode

Specifications on

selected

fault-tolerant

architecture

Specifications on

selected diversity

support

Model building by

refinement and

specifications

mapping

Architectural model.

Simulation model.

Formal models

from ARRL-2 on

Formal models. All

models include

safety and security

support

See ARRL-3.

Models include

fault-tolerant

functionality

See ARRL-4

Heterogeneous

models

Model analysis and

verification

/ testing

On normal case

architecture and

models

Evidence of a

fail-safe

architecture

Evidence of a

fault-tolerant

architecture

Evidence of an

heterogeneous

/ design diverse

fault-tolerant

architecture

Implementation Manual or code

generation

See ARRL-2, code

generation

recommended

See ARRL-3 See ARRL-4

Integration and

validation

Does the ARRL-1,

-2 implementation

meet SIL-1 or -2

level?

Does the ARRL-3

implementation

meet the SIL-3

level?

Does the ARRL-4

implementation

meet the SIL-4

level?

Does the ARRL-5

implementation

meet the SIL-5

level?

Table 6 ARRL-6 and ARRL-7 definitions

ARRL level ARRL definition

ARRL-6 The component (or subsystem) is monitored and

designed for preventive maintenance whereby a

supporting process repairs or replaces defective

items while maintaining the functionality and

system’s services

ARRL-7 The component (or subsystem) is part of a larger

“system of systems” that includes a continuous

monitoring and improvement process

supervised by an independent regulating body

Inheritance rule The component inherits all properties of any

lower level ARRL properties

term maturity is no coincidence, it reminds us of the maturity

levels as defined by CMMI levels for an organization. Table 6

summarizes the new ARRL levels whereby we remind the

reader that each ARRL level inherits the properties of the

lower ARRL levels.

6.1 Beyond ARRL-5: antifragility

Antifragility is a term quote by Taleb [7], mostly in the con-

text of a subjective human social context. He quotes the

term to indicate something beyond robustness and resilience

that reacts to stressors (and alike) by actually improving

its resistance to such stressors. Taking this view in the

context of systems engineering we see that such systems

already exist. They are distinguished by considering the sys-

tem as a component in a greater system that includes the

operating environment and its continuous processes and all

its stakeholders. Further differences are a culture of open-

ness, continuous striving for perfection and the existence of

numerous multi-level feedback loops whereby independent

authorities guide and steer the system as a whole. The result is

a system that evolves towards higher degrees of antifragility.

An essential difference with traditional engineering is that

the system is continuously being redefined and adapted in

an interactive process that aims at increasing the antifrag-

ile of the system. As we have seen in the earlier sections,

a domain like aviation has a process in place that over the

years has resulted in an increasing QoS. Airplanes are above

a minimum distance the safest but also the most cost-efficient

and energy-efficient way of traveling. As we will see, systems

engineering already applies some antifragility principles, but

not a strictly normative way as ARRL aims to define.

Applying the concept of anti fragility to the ARRL cri-

terion allows us to define two new levels for the normative

ARRL criterion. ARRL-6 indicates a system that preven-

123

118 J Reliable Intell Environ (2015) 1:101–121

tively seeks to avoid failures by preventive maintenance and

repair. ARRL-7 requires a larger process that is capable of

not only repairing but also updating the system in a controlled

way without disrupting its intended services, unless that is

needed. Given the existence of systems with such (partial)

properties, it is not clear whether the use of the neologism

“antifragile” is justified to replace reliability and resilience,

even if it indicates a clear qualitative and distinctive level.

This will need further study.

The normative ARRL levels describe as the name says,

levels of reliability and resilience. They approach the notion

of graceful degradation by redundancy but assuming that in

absence of faults the system components can be considered

as error-free. The additional functionality and redundancy

(that is also error-free) is to be seen as an architectural or

process level improvement. But in all cases, contrary to the

antifragility notion, the system will not gain in resilience or

reliability. It can merely postpone catastrophic failures while

maintaining temporarily the intended services. It does this

by assuming that all types of faults can be anticipated, which

would be the state of the art in engineering. Of course, in

practice all faults can’t be anticipated and therefore an addi-

tional layer is needed to deal with them. The proposed scheme

introduces already two concepts that are essential to take it a

step further. Firstly, there is redundancy in architecture and

process and secondly, there is a monitoring function that acts

by reconfiguring the system upon detecting a fault.

6.2 Antifragility assumptions

So, how can a system become “better” when subjected to

faults? As we introduce a metric as a goal, we must some-

how measure and introduce feedback loops. If we extrapolate

and scale up, this assumes that the system has a type of self-

model of itself that it can use to compare its current status

with a reference goal. Hence, either the designer must encap-

sulate this model within the system or the model is external

and becomes part of the system. If we consider systems that

include their self-model from the start, then clearly becoming

a “better” system has its limits, the limit being the designers’s

idea at the moment of conception. While there are systems

that evolve to reach a better optimum (think about neural net-

works or genetic algorithms), these systems evolve towards a

limit value. In other words they do not evolve, they converge.

If on the other hand we expand the system as in Fig. 1, then

the system can evolve. It can evolve and improve because we

consider its environment and all its stakeholders of which

the users as part of the system. They continuously provide

information on the system’s performance and take measures

to improve upon it. It also means that the engineering process

doesn’t stop when the system has been put to use for the

first time. It actually never ends because the experience is

transferred to newer designs.

There are numerous examples of antifragile systems

already at work, perhaps not perfect all the time though most

of the time. A prime example is the aviation industry that

demonstrates by its yearly decreasing number of fatalities

and increasing quality of service that it meets the criterion of

antifragility. Moreover, it is a commercial success. So let’s

examine some of its properties and extract the general prin-

ciples, as reflected in the aviation standards and practice [8].

6.3 Some industries are antifragile by design

To remain synoptic, we will list a few key principles of the

aviation industry and derive from them key generic princi-

ples which apply to other systems and provide them with

antifragile properties.

Table 7 can also be related to many other domains that

have a significant societal importance. Think about sectors

like medical devices, railway, automotive, telecommunica-

tions, internet, nuclear, etc. They all have formalized safety

standards which must be adhered to because when failing

they have a high impact at socio-economic level.

At the same time, systems like railway that are confined

by national regulations clearly have a higher challenge to

continue delivering their services at a high level. As a counter

example we can take a look at the automotive sector. Many

more people are killed yearly in traffic than in airplanes,

even if cars today are stuffed with safety functions. In the

next section we will explore this more in detail.

Deducting some general properties out of the table Table 7,

we can see that systems that could be termed antifragile are

first of all not new. Many systems have antifragile proper-

ties. Often they can be considered as complex (as there are

many components in the system) but they remain resilient

and antifragile by adopting a few fundamental rules:

1. Openness: all service critical information is shared and

public.

2. Constant feedback loops between all stakeholders at sev-

eral different levels.

3. Independent supervising authorities.

4. The core components are designed at ARRL-4 and

ARRL-5 levels, i.e. fault tolerant.

6.4 Automated traffic as an antifragile ARRL-7 system

As we discussed earlier [23–26], the automotive sector does

not yet meet the highest ARRL levels neither in the safety

standards (like IEC-26262) [2] and nor in reality. 1000 more

people are killed in cars than in airplanes worldwide and even

a larger number survive with disabilities.[11,12,27]. The

main reason is not that cars are unsafe by design (although

fault tolerance is not supported) but because the vehicles are

part of a much larger traffic system that is largely an ad-hoc

123

J Reliable Intell Environ (2015) 1:101–121 119

Table 7 Generic properties

derived from observing the

avionic sector

Aviation specific Generic property

The industry has a long track record The domain has undergone many technological

changes whereby an extensive knowledge was

built up

Development of systems follows a rigorous,

quantifiable, certifiable process, that is widely

published and adopted

The process is open and reflects the past

experience and is certified by an independent

external authority

Certification requirements foster developing

“minimal” implementations that still meet the

operational requirements

Systems are designed to be transparent and

simple, focusing on the must-haves and not on

the nice to haves

Airplanes are designed to be 100 % safe and to

be operated in 100 % safe conditions

The domain has a goal of perfection. Any

deviation is considered a failure that must be

corrected. By design the system, its

components and operating procedures aim at

absence of service and safety degradation

Any failure is reported in a public database and

thoroughly analyzed. After analysis, immediate

action can be mandated to rectify the issues to

prevent future mishaps

Any issue is seen as a valuable source of

information to improve processes and systems

Airplanes are operated as part of a larger

worldwide system that involves legal

authorities, the operators, the manufactures, the

public and supervising independent authorities.

A (sub)system is not seen in isolation but in its

complete socio-economic context. This larger

system is self-regulating but supervised and

controlled by an independent authority

Airplanes have a long life time and undergo

mid-life updates to maintain their serviceability

The focus is on the service delivered and not on

the system as a final product

Fault conditions are preventively monitored. The

system is fault tolerant through redundancy,

immediate repair and preventive maintenance

A process is in place that maintains the state of

the system at a high service level without

disrupting the services provided

system. Would it be feasible to reach a similar ARRL level

as in the aviation industry? What needs to change? Can this

be done by allowing autonomous driving?

A first observation is that the vehicle as a component now

needs to reach ARRL-4, even ARRL-5 and ARRL-6 levels.

If we automate traffic, following design parameters become

crucial:

– The margin for driving errors will greatly decrease. Vehi-

cles already operate in very dynamic conditions whereby

seconds and centimeters make the difference between an

accident and not an accident. With automated driving,

bumper to bumper driving at high speed will likely be

the norm.

– The driver might be a back-up solution to take over when

systems fail, but he is unlikely to be trained well enough

and therefore to react in time (seconds).

– A failing vehicle can generate a serious avalanche effect

whereby many vehicles become involved and the traffic

system can be seriously disrupted.

Hence, vehicles need to be fault tolerant. First of all they

have to constantly monitor and diagnose the vehicle compo-

nents to pro-actively prevent the failing of subsystems and

secondly when a failure occurs the function must be main-

tained allowing to apply repair in a short interval.

A second observation is that the automated vehicle will

likely constantly communicate with other vehicles and with

the traffic infrastructure. New vehicles start to have this

capability today as well, but with automated vehicles this

functionality must be guaranteed at all times as disruption of

the service can be catastrophic.

A third observation is that the current road infrastructure is

likely too complex to allow automated driving in an economi-

cal way. While research vehicles have been demonstrated the

capability to drive on unplanned complex roads, the question

is whether this is the most economical and trustworthy solu-

tion.

Automated traffic can be analyzed in a deeper way. Most

likely, worldwide standardization will be needed and more

openness on when things fail. Most likely, fully automated

driving providing very dense traffic at high speed will require

dedicated highways, whereas on secondary roads the system

will be more a planning and obstacle avoidance assistance

system to the driver. One can even ask if we should still speak

of vehicles. The final functionality is mobility and transport.

For the next generation, cars and trucks as we know them

today might not be the solution. A much more modular and

scalable, yet automated, transport module that can operate

off-road and on standardized auto-highways is more likely

the outcome. Users will likely not own such a module but

123

120 J Reliable Intell Environ (2015) 1:101–121

rent it when needed whereby operators will be responsible

for keeping it functioning and improving it without disrupting

the service. Independent authorities will supervise and pro-

vide an even playing field. Openness, communication and

feedback loops at all levels will give it the antifragility prop-

erty that we already enjoy in aviation.

6.5 Is there an ARRL-8 level and higher?

One can ask the question whether we can define additional

ARRL levels. ARRL levels 0 to 7 are clearly defined in the

context of (traditional) systems engineering whereby humans

are important agents in the required processes to reach these

levels. One could say that such a system as shown in Fig. 1 is

self-adaptive. However the antifragile properties (even when

only partially fulfilled) are designed in and require conscious

and deliberate actions to maintain the ARRL level. If we look

at biological systems we can see that such systems evolve

without the intervention of external agents (except when they

stress the biological system). Evolution as such has reached a

level whereby the “architecture” is self-adaptive and redun-

dant without the need for conscious and deliberate actions.

We could call this the ARRL-8 level.

When considering bio- and genetic engineering, we can

see that we could take it a step further. Genetic engineer-

ing (and that includes early breeding techniques) involves

human intervention in ARRL-8 level systems. The bound-

aries however become fuzzy. One could consider this as an

ARRL-9 level but also as an ARRL-7 level using biological

components. This raises interesting philosophical and ethi-

cal questions that requires a deeper understanding on how

genetic building blocks really work. This topic requires fur-

ther study and is not within the scope of this paper.

7 Conclusion and future work

This paper analyzed the concept of safety integrity level (SIL)

and put it in a wider perspective of quality of service and trust-

worthiness. These concepts are more generic and express the

top-level requirements of a system in the perspective of a

prospective user. We have discussed some weaknesses in the

SIL concept, mainly its probabilistic system view whereas

engineering is often based on composition using components

or sub-systems. A new concept called ARRL was introduced

defining a normative criterion for components and their inter-

actions. However, it was shown that SIL and ARRL are

complementary. An ARRL enabled process flow was defined.

It has the advantage that it better separates the additional

safety functions from the normal use case support than the

traditional more monolithic approach.

As to future work, the concept will further be validated

and applied in the context of safety-critical applications. This

will help in deepening the criterion and allowing it to be used

for defining contract carrying components. Issues that need

further elaboration are for example:

– How can an ARRL level as a design goal be refined into

sub goals?

– When is a contract complete and sufficient to certify that

a given ARRL level has been reached?

– How can the component’s contract and evidence be pro-

vided in an application domain independent way?

– What is the impact on the safety/systems engineering

process?

– What is the impact on the system architecture?

Another important issue is analyzing how the composition

of a system by using ARRL qualified components results in

emerging properties that can result in a safety-critical state.

The underlying assumption here is that a system can already

be in a critical state, to be seen as a collection of erroneous

states present in its components, before an event can trigger

a catastrophic state for the whole system. While this aspect

was briefly touched by requiring partitioning support and

corresponding ARRL levels for the interaction components,

this requires further attention. An interesting question is for

example if such a critical state can be detected before it results

in a catastrophic event.

At Altreonic, work is currently in progress to apply the

ARRL criterion on the internally developed real-time operat-

ing system OpenComRTOS [20]. While formally developed

and a lot of supporting evidence is available, still missing

supporting evidence has been identified. This was greatly

facilitated by the use of the GoedelWorks portal that allows

importing a software repository and its supporting docu-

ments. Most of the issues identified are related to the process

followed. This indicates, as it is the case in most safety engi-

neering projects, that an ARRL driven development must

take the normative criteria into account from the very begin-

ning. If so, the supporting evidence, generated and stored in

the GoedelWorks repository, will provide a “qualification”

package for the product developed. This is similar to the

qualification requirements for externally procured compo-

nents and subsystems as found in most safety standards. The

difference is that an ARRL qualified component will be much

more domain independent, a design goal that is also fulfilled

by the GoedelWorks generic metamodel.

Nevertheless, we believe that the ARRL criterion, being

normative, is a promising approach for achieving safety

across different domains and systems in a product family by

composing qualified trustworthy components. At the same

time it puts forward that the specification of a component

with its contract and supporting evidence is a complex under-

123

J Reliable Intell Environ (2015) 1:101–121 121

taking but in line with the sometimes unspoken assumptions

one finds back in safety and systems engineering texts.

This is work in progress. Feedback and contributions are

welcome.

References

1. Ledinot E, Astruc JM, Blanquart JP, Baufreton P, Boulanger JL,

Delseny H, Gassino J, Ladier G, Leeman M, Machrouh J, Qur P,

Ricque B (2012) A cross-domain comparison of software develop-

ment assurance standards. In: ERTS22012. http://web1.see.asso.fr/

erts2012/Site/0P2RUC89/1A-3.pdf

2. Functional Safety and IEC 61508. http://www.iec.ch/functional

safety/

3. Automotive safety integrity level. http://www.flandersdrive.be/

sites/default/files/publicaties/ASIL%20-%20Public%20Results.

pdf

4. Trustworthy systems engineering with goedelworks.

http://www.altreonic.com/sites/default/files/

SE%20with%20GoedelWorks%203_0.pdf

5. Open platform for evolutionary certification of safety-critical sys-

tems. http://www.opencoss-project.eu/

6. Gsn (goal structuring notation). http://www.goalstructuringnota

tion.info/

7. Taleb NN (2012) Antifragile. Random house, things that gain from

disorder

8. ISO, Road vehicles—Functional safety, ISO 26262, part 1–10,

International standard under publication, Geneva, 2011

9. CENELEC, EN50128—Railway applications-Communication

Signaling and Processing Systems-Software for Railway Con-

trol and Protection Systems, European standard under publication,

Brussels, 2011

10. Special C. of RTCA, DO-178C Software Considerations in Air-

borne Systems and Equipment Certification (2011)

11. Aircraft crashes record office (acro). http://www.baaa-acro.com/

12. Global status report onroad safety (2013) Supporting a decade of

action. Tech rep, World Health Organisation. http://www.who.int/

iris/bitstream/10665/78256/1/9789241564564_eng.pdf

13. Goel L, Tyagi VK (1993) A two unit series system

with correlated failures and repairs. Microelectron Reliab

33(14):2165–2169. doi:10.1016/0026-2714(93)90010-V. http://

www.sciencedirect.com/science/article/pii/002627149390010V

14. Wikipedia: Boeing 787 dreamliner battery problems—wikipedia,

the free encyclopedia (2015). https://en.wikipedia.org/w/index.php

?title=Boeing_787_Dreamliner_battery_problems&oldid=672415

823. Accessed 28 July 2015

15. RTCA (2005) DO-297 integrated modular avionics (IMA) devel-

opment guidance and certification considerations

16. Florio VD, Blondia C (2008) On the requirements of new software

development. Int J Bus Intell Data Min 3(3):330–349. doi:10.1504/

IJBIDM.2008.022138

17. Leveson NG (2012) Engineering a safer world. MIT Press

18. De Florio V (2015) On resilient behaviors in computational systems

and environments. J Reliab Intell Environ 1(1):33–46. doi:10.1007/

s40860-015-0002-6

19. De Florio V (2010) Software assumptions failure tolerance: role,

strategies, and visions. In: Casimiro A, de Lemos R, Gacek C

(eds) Architecting dependable systems VII. Lecture notes in com-

puter science, vol. 6420. Springer, Berlin Heidelberg, pp 249–272.

doi:10.1007/978-3-642-17245-8_11

20. Verhulst E, Boute R, Faria J, Sputh B, Mezhuyev V (2011) Formal

development of a network-centric RTOS. Springer, New York

21. Rushby J (2012) Composing safe systems. In: Arbab F, lveczky

P (eds) Formal aspects of component software. Lecture notes in

computer science, vol 7253. Springer, Berlin Heidelberg, pp 3–11.

doi:10.1007/978-3-642-35743-5_2

22. Texas instruments (2013) RM42x 16/32-Bit RISC flash micro-

controller technical reference manual. http://www.ti.com/lit/ug/

spnu516a/spnu516a.pdf

23. From safety integrity level to assured reliability and resilience level

for compositional safety critical systems. http://www.altreonic.

com/sites/default/files/Altreonic_ARRL_DRAFT_WIP011113.

pdf

24. Verhulst E, Sputh B (2013) ARRL: a criterion for compositional

safety and systems engineering. A normative approach to spec-

ifying components. In: 2013 IEEE international symposium on

software reliability engineering workshops (ISSREW), pp 37–44.

doi:10.1109/ISSREW.2013.6688861

25. Verhulst E, de la Vara JL, Sputh B, de Florio V (2013) ARRL: a

novel criterion for composable safety and systems engineering. In:

SafeComp/SASSUR workshop. Toulouse

26. Verhulst E, de la Vara JL, Sputh B, de Florio V (2013) From safety

integrity level to assured reliability and resilience level for com-

posable safety critical systems. In: ICSSEA’13 (2013)

27. European Commission, Statistics—accidents data. http://ec.

europa.eu/transport/road_safety/specialist/statistics/index_en.

htm

123

http://web1.see.asso.fr/erts2012/Site/0P2RUC89/1A-3.pdf
http://web1.see.asso.fr/erts2012/Site/0P2RUC89/1A-3.pdf
http://www.iec.ch/functionalsafety/
http://www.iec.ch/functionalsafety/
http://www.flandersdrive.be/sites/default/files/publicaties/ASIL%20-%20Public%20Results.pdf
http://www.flandersdrive.be/sites/default/files/publicaties/ASIL%20-%20Public%20Results.pdf
http://www.flandersdrive.be/sites/default/files/publicaties/ASIL%20-%20Public%20Results.pdf
http://www.altreonic.com/sites/default/files/SE%20with%20GoedelWorks%203_0.pdf
http://www.altreonic.com/sites/default/files/SE%20with%20GoedelWorks%203_0.pdf
http://www.opencoss-project.eu/
http://www.goalstructuringnotation.info/
http://www.goalstructuringnotation.info/
http://www.baaa-acro.com/
http://www.who.int/iris/bitstream/10665/78256/1/9789241564564_eng.pdf
http://www.who.int/iris/bitstream/10665/78256/1/9789241564564_eng.pdf
http://dx.doi.org/10.1016/0026-2714(93)90010-V
http://www.sciencedirect.com/science/article/pii/002627149390010V
http://www.sciencedirect.com/science/article/pii/002627149390010V
https://en.wikipedia.org/w/index.php?title=Boeing_787_Dreamliner_battery_problems&oldid=672415823
https://en.wikipedia.org/w/index.php?title=Boeing_787_Dreamliner_battery_problems&oldid=672415823
https://en.wikipedia.org/w/index.php?title=Boeing_787_Dreamliner_battery_problems&oldid=672415823
http://dx.doi.org/10.1504/IJBIDM.2008.022138
http://dx.doi.org/10.1504/IJBIDM.2008.022138
http://dx.doi.org/10.1007/s40860-015-0002-6
http://dx.doi.org/10.1007/s40860-015-0002-6
http://dx.doi.org/10.1007/978-3-642-17245-8_11
http://dx.doi.org/10.1007/978-3-642-35743-5_2
http://www.ti.com/lit/ug/spnu516a/spnu516a.pdf
http://www.ti.com/lit/ug/spnu516a/spnu516a.pdf
http://www.altreonic.com/sites/default/files/Altreonic_ARRL_DRAFT_WIP011113.pdf
http://www.altreonic.com/sites/default/files/Altreonic_ARRL_DRAFT_WIP011113.pdf
http://www.altreonic.com/sites/default/files/Altreonic_ARRL_DRAFT_WIP011113.pdf
http://dx.doi.org/10.1109/ISSREW.2013.6688861
http://ec.europa.eu/transport/road_safety/specialist/statistics/index_en.htm
http://ec.europa.eu/transport/road_safety/specialist/statistics/index_en.htm
http://ec.europa.eu/transport/road_safety/specialist/statistics/index_en.htm

	Antifragility: systems engineering at its best
	Abstract
	1 Introduction
	2 Safety integrity levels
	2.1 Quality of service levels
	2.2 Some data for thought
	2.3 The weaknesses in the application of the safety integrity levels
	2.4 SIL calculations and non-linearity

	3 The missing link in safety engineering: the ARRL criterion
	4 Discussion of the ARRL levels
	5 ARRL architectures illustrated
	5.1 The ARRL component view
	5.2 An illustrated ARRL-1 component
	5.3 An illustrated ARRL-2 component
	5.4 An illustrated ARRL-3 component
	5.5 An illustrated ARRL-4 component
	5.6 An illustrated ARRL-5 component
	5.7 Rules of composition (non-exhaustive)
	5.8 The role of formal methods
	5.9 Applying ARRL on a component
	5.10 SIL and ARRL are complementary
	5.11 An ARRL inspired process flow

	6 Do we need an ARRL-6 and ARRL-7 level?
	6.1 Beyond ARRL-5: antifragility
	6.2 Antifragility assumptions
	6.3 Some industries are antifragile by design
	6.4 Automated traffic as an antifragile ARRL-7 system
	6.5 Is there an ARRL-8 level and higher?

	7 Conclusion and future work
	References

