
UCLA
UCLA Previously Published Works

Title
Antifungal Activity of Bacillus Species Against Fusarium and Analysis of the Potential 
Mechanisms Used in Biocontrol.

Permalink
https://escholarship.org/uc/item/9g13v1g6

Authors
Khan, Noor
Martínez-Hidalgo, Pilar
Ice, Tyler A
et al.

Publication Date
2018

DOI
10.3389/fmicb.2018.02363
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9g13v1g6
https://escholarship.org/uc/item/9g13v1g6#author
https://escholarship.org
http://www.cdlib.org/


MPMI Vol. 31, No. 10, 2018, pp. 1075–1082. https://doi.org/10.1094/MPMI-01-18-0004-R

Cell Autoaggregation, Biofilm Formation, and
Plant Attachment in a Sinorhizobium meliloti lpsB Mutant

Fernando Sorroche,1 Pablo Bogino,1 Daniela M. Russo,2 Angeles Zorreguieta,2 Fiorela Nievas,1

Gustavo M. Morales,3 Ann M. Hirsch,4 and Walter Giordano1,†

1Departamento de Biologı́a Molecular, Universidad Nacional de Rı́o Cuarto, Rı́o Cuarto, Córdoba, Argentina; 2Fundación
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Bacterial surface molecules are crucial for the establishment of
a successful rhizobia-legume symbiosis, and, in most bacteria,
are also critical for adherence properties, surface colonization,
and as a barrier for defense. Rhizobial mutants defective in
the production of exopolysaccharides (EPSs), lipopolysac-
charides (LPSs), or capsular polysaccharides are usually
affected in symbiosis with their plant hosts. In the present
study, we evaluated the role of the combined effects of LPS
and EPS II in cell-to-cell and cell-to-surface interactions in
Sinorhizobium meliloti by studying planktonic cell autoag-
gregation, biofilm formation, and symbiosis with the host
plant Medicago sativa. The lpsB mutant, which has a de-
fective core portion of LPS, exhibited a reduction in biofilm
formation on abiotic surfaces as well as altered biofilm
architecture compared with the wild-type Rm8530 strain.
Atomic force microscopy and confocal laser microscopy
revealed an increase in polar cell-to-cell interactions in the
lpsB mutant, which might account for the biofilm deficiency.
However, a certain level of biofilm development was ob-
served in the lpsB strain compared with the EPS II-defective
mutant strains. Autoaggregation experiments carried out
with LPS and EPS mutant strains showed that both poly-
saccharides have an impact on the cell-to-cell adhesive in-
teractions of planktonic bacteria. Although the lpsB mutation
and the loss of EPS II production strongly stimulated early
attachment to alfalfa roots, the number of nodules induced
in M. sativa was not increased. Taken together, this work

demonstrates that S. meliloti interactions with biotic and abi-
otic surfaces depend on the interplay between LPS and EPS II.

Lipopolysaccharide (LPS) is one of the most important
structural components of the outer membrane of gram-negative
bacteria by contributing to structural properties and acting as a
permeability barrier. LPS is formed by amphiphilic glyco-
conjugates of variable composition within and between species
and consists of three portions, lipid A, core oligosaccharides,
and O antigen (Lerouge and Vanderleyden 2002). Because of
their position at the contact zone with the external environment,
the LPS of many bacterial species is the main determinant of
interaction with biotic or abiotic surfaces (Benito et al. 1997;
Bouchet et al. 2003; Harvill et al. 2000; Lee et al. 2014; Lindhout
et al. 2009; Nesper et al. 2001).
For the symbiotic bacteria of legume plants, collectively

called rhizobia, LPS contributes to the establishment of the
symbiotic relationship by suppressing host defenses, facilitat-
ing rhizobial entry into root hairs (Scheidle et al. 2005; Tellström
et al. 2007), promoting infection thread formation (Dazzo et al.
1991; de Maagd et al. 1989), and, eventually, bacteroid differ-
entiation (Campbell et al. 2002; Margaret et al. 2013; Stacey
et al. 1991).
The Medicago symbiont S. meliloti produces a heteroge-

neous population of LPS, LPS-1, and LPS-2, based on elec-
trophoretic profiles. It is believed that LPS-2 contains rough
LPS (R-LPS), which lacks O-antigen, and that LPS-1 consists
of smooth LPS, which includes the O-antigen (Sharypova et al.
2003). The lpsB gene codes for a type I glycosyltransferase
involved in the synthesis of the LPS core. A lpsB mutant shows
dramatic changes in the sugar composition of R-LPS, notably
an increase in the relative amount of xylose and a disappear-
ance of uronic acids as well as the absence of immunoreactivity
with antibodies raised against wild-type (wt) LPS (Campbell
et al. 2003; Kanipes et al. 2003; Lagares et al. 1992).
The strain Rm6963 (lpsBmutant in the Rm2011 background)

is Fix+ in alfalfa but is less competitive for nodulation than the
wt strain, showing a delayed onset of nodulation and a reduced
ability to nodulate the primary root, which results in a higher
number of nodules, albeit smaller in size, being formed on
lateral roots (Lagares et al. 1992). Interestingly, this mutant is
Fix

_
withM. truncatula as its host and the nodules exhibit signs

of a strong defense response and an abnormal pattern of in-
fection (Niehaus et al. 1998). The lpsBmutation in the Rm1021
genetic background displays a Fix± phenotype with both
M. sativa and M. truncatula hosts (Campbell et al. 2003).
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Because LPS is exposed to the external environment, it is
therefore potentially active in terms of adhesive interactions with
living and inert interfaces. Alterations in LPS lead to alterations
in biofilm formation in several bacterial species, including
Escherichia coli (Puttamreddy et al. 2010), Pseudomonas aer-
uginosa (Lau et al. 2009), Xanthomonas axonopodis (Li and
Wang 2011a), Klebsiella pneumoniae (De Araujo et al. 2010),
and Porphyromonas gingivalis (Yamaguchi et al. 2010).
It is likely that different polymer types mediate attachment

depending on substrate chemistries. For example, polymers
with nonpolar sites, such as LPS, may dominate in binding to
hydrophobic surfaces, whereas polymers capable of hydrogen
bonding or electrostatic interactions, such as polysaccharides,
may govern binding to hydrophilic surfaces. Different poly-
mer types may also act cooperatively in binding to a surface to
stabilize the adhesive interaction. For example, a Pseudomonas
fluorescens mutant lacking the O antigen of the LPS, which
results in the consequent increased exposure of the lipid moiety
of the LPS, displayed increased adhesion to hydrophobic sub-
strates (Williams and Fletcher 1996). LPS is important in bio-
film formation in rhizobia and the effects depend on the species,
the particular mutation, or both. In fact, Lee et al. (2010) de-
scribed a LPS mutant of Bradyrhizobium japonicum lacking the
O antigen that showed increased formation of biofilms on a
plastic support. In Rhizobium leguminosarum bv. viciae 3841, the
participation of the lipid A component of the LPS in desiccation
tolerance, biofilm formation, and motility has been reported
(Vanderlinde et al. 2009), and mutants of R. leguminosarum bv.
viciae A34 defective in the O chain or O-chain core moiety
developed biofilms with an altered three-dimensional structure
(Russo et al. 2015).

Planktonic autoaggregation, which is based on adhesive in-
teractions among bacteria (Rickard et al. 2003; Sorroche et al.
2012), provides information about bacteria-to-bacteria inter-
actions that causes them to settle and sediment. Surface
structures and extracellular polysaccharides, in combination with
environmental signals, are critical for autoaggregation and biofilm
development in most bacterial species (Fujishige et al. 2006;
Schembri et al. 2001; Sorroche et al. 2010). For many rhizobac-
teria, including rhizobia, autoaggregation and biofilm formation
are important for bacterial survival and plant colonization (Bogino
et al. 2013).
In S. meliloti, autoaggregation, mucoid phenotype, and bio-

film formation are three traits that were shown to depend on
EPS II production (Rinaudi and González 2009; Sorroche et al.
2010). Moreover, a positive correlation was found between
autoaggregation and biofilm formation in native S. meliloti
strains, indicating that both phenotypes depend on the same
physical adhesive forces (Sorroche et al. 2012). In this work, we
explored the effect of a mutation in LPS in the presence and
absence of EPSII in terms of cell-to-cell and cell-to-surface
interactions as well as in symbiosis with the host plant.

RESULTS AND DISCUSSION

The lpsB mutation alters cell-to-cell interactions
and biofilm formation in S. meliloti.
The S. meliloti strains used in this study are described in

Table 1. Crystal violet staining of the attached bacterial pop-
ulations in microtiter plate wells revealed an approximately
30% reduction in biofilm formation in the lpsB mutant as
compared with the wt strain (Fig. 1), suggesting that LPS plays
a role in bacterial attachment to plastic surfaces. We earlier
demonstrated that EPS II provides an extracellular matrix to
promote biofilm development on plastic and glass surfaces.
Strains that did not produce EPS II, such as Rm8530 expA or
Rm1021, were drastically affected in biofilm formation
(Rinaudi and González 2009; Sorroche et al. 2012). Thus, we
questioned whether EPS production was affected in the lpsB
mutant. After 7 days of incubation on solid medium, the lpsB
single mutant strain seemed to be slightly less mucoid than the
wt strain (Fig. 2). Anthrone-mediated EPS quantification re-
vealed a slight decrease in EPS production by the lpsB mutant
(Supplementary Table S1). Moreover, swimming motility (Sup-
plementary Figs. S1 and S2) and growth in the lpsB mutant
background were strongly reduced (Supplementary Fig. S3; Sup-
plementary Table S2). These additional phenotypes indicate
that the lpsB mutation has pleiotropic effects and that the defect
in growth might explain the reduced swimming behavior of this
mutant.
The EPS II-deficient strain expA was strongly affected in

biofilm formation, as previously shown by Rinaudi and González
(2009), so we predicted that the double mutant expA lpsB would
form an even more reduced biofilm. However, the lpsB muta-
tion partially rescued the biofilm-deficient phenotype of expA
(Fig. 1). Although expA and expA lpsB mutants did not show
clear differences in mucoid appearance after 7 days of incu-
bation on solid medium, culture supernatants of the latter con-
tained more than twice the amount of anthone-positive material
as the single expA mutant and even more so in comparison with
an exoY expA double. Taken together, the above results indicate
that in the absence of EPS II, the lpsB mutation enhances at-
tachment to plastic. A possible explanation is that a lpsB mu-
tant has a more hydrophobic surface or that it produces another
polysaccharide.
The reduced biofilm effect of the lpsB mutation observed in

the presence of EPS II prompted us to explore biofilm archi-
tecture and cellular interactions in the wt strain and lpsBmutant

Table 1. Sinorhizobium meliloti strains used in this study

Strain Relevant properties Reference

Rm8530 SU47 str21 expR101 (expR+),
referred as the wild type in
this work

Glazebrook and
Walker 1989

Rm6963 Rm2011 lpsB::Tn5 Lagares et al. 1992
Rm8530 expA expA3::Tn5-233 Sorroche et al. 2010
Rm8530 lpsB Rm8530 lpsB::Tn5 Present work
Rm8530 lpsB
pBBRLPSB

Complemented Rm8530 lpsB Present work

Rm8530 expA
lpsB

Rm8530 expA::Tn5-233 lpsB::
Tn5

Present work

Fig. 1. Biofilm formation on microtiter plates after growth in tryptone yeast
broth for 24 h, under shaking conditions (200 rpm). Low phosphate minimal
glutamate medium (MGM) was used for the biofilm experiments because it
facilitates EPSII production (Marketon and González 2002). Error bars
represent standard deviation of the mean of at least four independent ex-
periments with eight replicates each. Different letters indicate statistically
significant differences, according to Fischer least significant difference test
(P £ 0.05).
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in greater detail, using confocal laser scanning microscopy
(CLSM) (Fig. 3). We therefore restricted our observations to
EPS II-producing strains, because it has been shown that EPS
II S. meliloti strains develop a flat and unstructured biofilm
(Rinaudi and González 2009). Green fluorescent protein (GFP)-
tagged wt and lpsB mutant biofilms were grown in minimal
glutamate medium (MGM) for 3 days inside glass chambers and
were visualized by CLSM. As shown in Figure 3, biofilm for-
mation was notably perturbed in the lpsB mutant as compared
with wt strain, which developed a more compact and organized
structure. A similar result was observed in plant-pathogenic
Xanthomonas spp. (Petrocelli et al. 2012; Li and Wang 2011b)
and Xylella fastidiosa (Clifford et al. 2013), in which LPS mu-
tants developed less-structured biofilms.
Honeycomb-like structures are a type of highly ordered bac-

terial array in which the bacteria adhere to each other through
lateral cell interactions, forming rows of identically oriented
cells. Rhizobial biofilms with honeycomb-like structures have
been previously reported in R. leguminosarum (Russo et al.
2006) and S. meliloti Rm8530 (Rinaudi and González 2009).
In the latter, EPS II seems to be essential for the development
of these bacterial arrangements. As expected, honeycomb-like
structures were visualized in the Rm8530 strain (Fig. 3A). In-
terestingly, despite the fact that lpsB synthesizes EPS II,
honeycomb-like arrays were not observed in mutant biofilms
(Fig. 3B). Although lateral interactions between cells occurred
in both wt and mutant rhizobia, polar interactions were seen
almost exclusively in the lpsB mutant, leading to the formation
of typical bacterial zigzag rows or bouquets, as observed by
atomic force microscopy (AFM) and CLSM (Fig. 4A and B,
respectively).
These observations indicate that lpsB has a role in determining

the type of cell-to-cell interaction and, therefore, biofilm devel-
opment. Microscopic observations suggest that an increase in
cell-to-cell polar interactions in the lpsB mutant disrupts the
development of a highly structured biofilm. Our results agree
with those obtained in Pseudomonas aeruginosa, in which
changes in LPS expression resulted in quantifiable cellular me-
chanical changes that were correlated with structural changes in
bacterial biofilms (Lau et al. 2009). Conversely, in Bradyrhi-
zobium spp., an altered LPS leads to increased biofilm devel-
opment (Lee et al. 2010, 2014).
Taken together, our results indicate that a mutation affecting

the LPS core impacts biofilm formation, possibly via an in-
crease of polar interactions between the bacteria.

Cell-to-cell adhesive interactions in the planktonic phase
are increased in the lpsB mutant.
Based on our previous results on biofilm formation of

S. meliloti, we proceeded to study cell-to-cell interactions of
planktonic bacteria. During bacterial growth in MGM, we no-
ticed that the lpsB mutants were so strongly flocculated that it

proved almost impossible to disperse the rhizobia after vor-
texing, suggesting that the mutated LPS strongly increased cell-
to-cell interaction (Supplementary Fig. S4). In addition,
observations of 12 images (40 × 40 µm) obtained from AFM of
three independent cultures of each strain allowed us to de-
termine that, in the wt strain, 61% of the bacteria were solitary,
whereas 39% of the bacterial cells were clustered. By contrast,
a reciprocal relationship was seen in the lpsB mutant in that
34% of the bacteria were solitary and 66% of the cells were in
groups. Formation of the flocs during growth in MGM, however,
seemed not to be correlated with the quantity of anthrone-positive

Fig. 2.Bacterial growth on Luria Bertani (LB) plates. Mucoid (Rm8530 and Rm8530 lpsB) and nonmucoid (Rm8530 expA and Rm8530 expA lpsB) phenotypes
were observed after 7 days of incubation at 28�C. The mucoid phenotype, present or absent, is more obvious on LB plates.

Fig. 3. A, Confocal laser scanning microscopy of green fluorescent
protein–tagged Rm8530 and B, Rm8530 lpsB strains. Biofilm structure at
72 h. Higher magnification views on the right show differences in biofilm
architecture between the two strains. Lateral cell interactions and honeycomb-
like structures were visualized only in the Rm8530 strain.
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material in culture supernatants and was independent of EPS II,
because both wt and expA-mutant cultures grew as dispersed
cultures. In contrast, in tryptone yeast (TY) rich medium, all
strains grew normally as suspensions, and autoaggregation was
manifested only in EPS II-producing strains when they were left
in static conditions after late exponential growth phase, as pre-
viously described in Sorroche et al. (2010).
To quantify autoaggregation, we used bacterial cultures

grown in TY medium and proceeded as described below. In
these conditions, the lpsB mutant displayed full autoag-
gregation, similar to the wt strain (Fig. 5). We hypothesized that
the strong aggregative activity of EPS II masks the relatively
milder adhesive effects of the mutated LPS, thus precluding
the study of the specific contribution of the lpsB mutation in
autoaggregation under these conditions. To test this, we assayed
the autoaggregation of the lpsB mutant in the presence of the
expA mutation. As shown in Figure 5, the expA lpsB double
mutant showed increased autoaggregation as compared with the
expA single mutant, indicating that a mutated LPS increases
cell-to-cell interaction that leads to an augmented autoag-
gregation percentage in the absence of EPS II.
To corroborate this, we centrifuged wt and lpsB cultures,

washed the pellets to eliminate the EPS II in the culture me-
dium, resuspended the cells in fresh TY medium, and left them
to autoaggregate in static conditions. Suspensions using washed

pellets of expA and expA lspB were included as controls. Under
these artificial EPS-free suspension conditions, the autoag-
gregation percentage of both lpsB mutants was significantly
higher than the wt strain (Table 2), whereas autoaggregation of

Fig. 4. Cell-to-cell interactions of Rm8530 and Rm8530 lpsB strains.A,Atomic force microscopy images of wild-type (wt) and mutant strains on PEI-modified
glass (5 × 5 µm and 8 × 8 µm). B, GFPuv derivative strains after incubation in minimal glutamate medium for 24 h. Lateral bacterium-to-bacterium adhesive
interactions of the Rm8530 wt strain are indicated with arrows in the upper images. Polar adhesive interactions of the Rm8530 lpsB strain are indicated with
arrows in the lower images.

Fig. 5. Autoaggregation of the Sinorhizobium meliloti wt strain and the
expA and lpsB mutants in tryptone yeast medium. Error bars represent
standard deviation of the mean of at least three independent experiments
with two replicates each. Different letters indicate statistically significant
differences, according to Fischer least significant difference test (P £ 0.05).
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the expAmutant was similar to the wt strain. All washed pellets
were also resuspended in cell-free EPS II-containing superna-
tants (from cultures of the wt strain) and full autoaggregation
was observed in all artificial suspensions (Table 2).
Taken together, the above results suggest that the lpsB mu-

tation generates a more adhesive LPS that stimulates bacterial
autoaggregation independently of the production of extracel-
lular polysaccharides. Such “stickiness” in a mutated LPS might
be the result of an increased cell surface hydrophobicity. It has
been previously reported that an altered LPS in B. japonicum
increased cell surface hydrophobicity, which was related to cell
aggregation (Lee et al. 2014).

A lpsB mutation stimulates bacterial adsorption
to roots but does not improve symbiosis.
Rhizobial attachment to roots is a critical point in the es-

tablishment of a symbiotic interaction and is dependent on
bacterial surface-associated components and root lectins (Gage
2004; Hirsch 1999; Rinaudi and Giordano 2010; Rodrı́guez-
Navarro et al. 2007). We hypothesized that genes affecting
adhesion to abiotic surfaces will also have an impact on rhi-
zobial attachment to roots. Based on the different adhesive
behaviors of S. melilotimutants on inert surfaces, we quantified
early adhesive interactions between rhizobial cells and alfalfa
roots. In our experimental conditions, the wt strain showed the
lowest percentage of root adhesion (0.04 ± 0.01). Mutations in
LPS (Rm8530 lpsB) and EPS II (Rm8530 expA) significantly
increased root attachment (0.67 ± 0.08 and 0.28 ± 0.1, respec-
tively), supporting the hypothesis that the rhizobial cell surface
is changed, most likely by becoming stickier. Interestingly, the
double mutant (Rm8530 expA lpsB) attached to alfalfa roots at a
significantly higher percentage (1.13 ± 0.16) compared with the
single mutants. For all S. meliloti mutants, the experiment was
repeated three times.
Although rhizobial adsorption to roots was elevated in the

treatments with the expAmutant compared with the wt strain, it
was lower than that of the lpsB mutants. Previous results sug-
gested that EPS II partially inhibits rhizobial adhesion to roots,
possibly through a “shielding effect” (Sorroche et al. 2012).
Even though we used highly diluted inocula in our adsorption
assays (approximately 103 colony-forming units [CFU]/ml), we
cannot rule out the possibility that weak adsorption of EPS II to
the bacterial cell surface exerts an inhibitory effect through at

least three different mechanisms: i) EPS II causes rhizobia to
aggregate, thus preventing them from adsorbing to roots, ii)
EPS II does not exhibit affinity for the root surface, which
results in a lack of adherence of EPS II-producing bacteria to
roots, and iii) the presence of EPS II on the bacterial surface
reduces free adhesives sites of the mutated LPS, thereby
blocking cell adhesion to the root surface. Similar results were
obtained for R. rhizogenes, in which a mutation in the rkpK
gene that leads to the synthesis of R-LPS (LPS II) causes the
formation of denser biofilms on both abiotic and root-tip sur-
faces and a strong autoaggregation phenotype. These data
suggested that the lack of the O antigen in rkpK mutant LPS
enhanced adherence among cells (Abarca-Grau et al. 2012).
Nodulation assays performed on M. sativa (Table 3) dem-

onstrated that the higher degree of attachment to roots in lpsB
mutants did not result in an increase of either nodule number or
the number of nodulated plants 4 weeks postinoculation. These
results indicate that rhizobial adsorption to roots does not correlate
with the nodule number in lpsBmutants. It furthermore suggests a
mechanismwhereby themutualistic interaction becomes restricted
after the initial attachment phase of rhizobia to plant roots.
In conclusion, results obtained in the present study showed

that the interplay between the lpsB mutation, leading to the
synthesis of an altered LPS, and EPS II determines adhesion
phenotypes. The mutation in LPS clearly influenced cell-to-cell
physical interactions by increasing pole-to-pole attachment
in both biofilms and planktonic cells. In addition, the mutants
showed a greater tendency to autoaggregate independently of
EPS II. However, the biofilm phenotype of lpsB mutant de-
pended on EPS II in that a stimulation of biofilm formation
was observed in the expA lpsB mutant as compared with the
expA mutant (i.e., in absence of EPS II). On the other hand, if
lpsB were mutated in an EPS II-producing background, a bio-
film deficiency resulted instead. Mutations in LPS and EPS II
improved rhizobial attachment to roots but did not stimulate
nodulation. Our results also suggest that the coordination of
LPS and EPS synthesis in the rhizosphere might have an impact
on the colonization of host plants and possibly affect compe-
tition or cooperation with other bacteria.

MATERIALS AND METHODS

Bacterial strains and culture conditions.
S. meliloti strains (Table 1) were grown in TY broth (Beringer

1974) on a rotary shaker (200 rpm) at 30�C, until reaching late
exponential growth phase. For CLSM, the strains were sub-
cultured (1:100) in MGM medium (Marketon and González
2002). When required, the final concentrations of antibiotics
used were streptomycin, 500 µg/ml; neomycin, 200 µg/ml; and
gentamicin, 40 µg/ml. For visualization of mucoid or nonmucoid
phenotypes, S. meliloti strains were streaked onto plates con-
taining Luria Bertani (LB) medium (Sambrook et al. 1989).

Phage transductions.
Transductions using phage FM12 were performed as de-

scribed by Finan et al. (1984). The mutant allele lpsB::Tn5 was
transduced from the donor Rm6963 (Lagares et al. 1992) to

Table 2. Autoaggregation of artificial bacterial suspensionsa

Resuspended in

Pellets TY medium Supernatant from Rm8530

Rm8530 19.1 ± 4.3 b 95.4 ± 1.5 a
Rm8530 lpsB 69.4 ± 6.0 c 96.5 ± 1.5 a
Rm8530 lpsB pBBRLPSB 20.8 ± 7.0 b 94.2 ± 1.9 a
Rm8530 expA lpsB 65.0 ± 5.4 c 95.9 ± 1.9 a
Rm8530 expA 17.2 ± 5.9 b 93.5 ± 2.8 a

aMean autoaggregation percentages and standard deviations of at least four
independent experiments with two replicates each are shown. Different
letters indicate statistically significant differences, according to Fischer
least significant difference test (P £ 0.05). TY = tryptone yeast.

Table 3. Nodulation assaya

Plant responses Rm8530 Rm8530 lpsB Rm8530 lpsB pBBRLPSB Rm8530 expA lpsB Rm8530 expA Noninoculated

Nodule number 2.7 ± 0.4 3.2 ± 0.4 3.1 ± 0.3 1.4 ± 0.2 * 3.0 ± 0.3 0
Nodulated plants (%) 100.0 90.0 89.0 71.0 90.9 0
Shoot fresh weight (mg) 64.7 ± 3.9 66.6 ± 4.0 69.0 ± 4.2 60.3 ± 3.9 69.0 ± 5.2 71.2 ± 3.6
Root fresh weight (mg) 37.2 ± 2.7 ab 39.6 ± 2.4 a 36.2 ± 3.0 a 31.7 ± 2.2 bc 29.4 ± 1.1 c 28.4 ± 1.3 c

aMean and standard deviations of at least three independent experiments with five replicates each are shown. For each parameter, different letters or an asterisk
indicate statistical differences among strains according to Fisher’s least significant difference test (P £ 0.05).
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recipient strains Rm8530 and Rm8530 expA. Cotransduction of
the neomycin marker and the sodium dodecyl sulfate (SDS)-
sensitivity phenotype associated with the lpsB mutation
(Campbell et al. 2002) were verified in the transductant strains.

Complementation of the lpsB mutation.
The complete lpsB gene was amplified by polymerase chain

reaction (PCR) using primers lpsBPROMFw (59-TCTAGAAAG
GAAGTCGGCGATTCGAT-39; XbaI restriction site is under-
lined) and lpsBRev (59-GAATTCTCAACGCATCAGGCTTTCG
TA-39; EcoRI restriction site is underlined). The PCR product was
cloned into pGEM-T Easy (Promega) and was checked by se-
quencing. A 1,220-bp fragment containing the complete lpsB was
excised, using XbaI-EcoRI, and was ligated into pBBRMCS5
(Kovach et al. 1995) to generate pBBRLPSB. This plasmid
was used to transform competent cells of E. coli S17. A bipa-
rental mating conjugation was carried out between a trans-
formant clone and Rm8530 lpsB strain to obtain Rm8530 lpsB
pBBRLPSB.
Sensitivity to hydrophobic compounds was evaluated ac-

cording to the protocol described by Lagares et al. (1992). The
addition of 0.1 g of SDS per liter to the LB medium clearly
inhibited the growth of the Rm8530 lpsB mutant, whereas the
wt and complemented strains grew normally. Similarly, the other
phenotypes linked to the lpsB mutation described in this work
were also complemented by plasmid pBBRLPSB.

Swimming assay.
Swimming motility was determined in plates containing diluted

(1:10) TY medium with 0.3% agar. A bacterial suspension was
inoculated by puncture in the center of the plate and incubation for
8 days at 28�C. Colony diameters were measured in centimeters.

Bacterial growth kinetics.
Bacterial growth was determined by measuring optical den-

sity at 600 nm (OD600). S. meliloti strains were grown at 28�C in
TY medium on a rotary shaker at 150 rpm. Cultures started with
an initial OD600 of 0.001 (approximately105 CFU/ml). The
number of viable cells was determined by performing serial di-
lutions, plating on TYmedium, and counting colonies after 48 h at
28�C. Results were expressed as the number of CFU per milliliter.

Biofilm formation assay.
Biofilm formation was determined macroscopically by a

quantitative assay in 96-well microtiter dishes made of poly-
vinylchloride. Biofilms were stained with crystal violet (CV)
based on the method of O’Toole and Kolter (1998), with modi-
fications. Briefly, bacteria were grown in 2 ml of TY broth
supplemented with the appropriate antibiotic and were incubated
with agitation for 48 h at 28�C. The cultures were diluted with
fresh medium to give an OD600 = 0.1. A suspension (100 µl) was
added to each well and was incubated with agitation for 24 h at
30�C. Bacterial growth was quantified by measuring the OD600.
Planktonic cells were gently aspirated with a pipette, and then,
180 µl of a CV aqueous solution (0.1% wt/vol) was added, and
staining proceeded for 15 min. Each CV-stained well was rinsed
thoroughly and repeatedly with water, then scored for biofilm
formation by the addition of 150 µl of 95% ethanol. The OD560

of solubilized CV was measured in a MicroELISA auto reader
(Series 700 microplate reader, Cambridge Technology). At the
same time, negative controls were made using sterile TY
medium.

EPS determination.
The anthrone-sulfuric acid and glucose standard method

(Loewus 1952) was used to determine EPS in the supernatant of
bacterial cultures grown in MGMmedium. The experiment was

done three times and the EPS concentration was normalized to
the dry weight of bacterial cells.

CLSM.
A confocal laser-scanning microscope (Carl Zeiss LSM510-

Axiovert 100 M) was used to visualize S. meliloti biofilms
during a three-day time course experiment, using chambered
cover glass slides with a 1 µm thick borosilicate glass base
(Lab-Tek Nunc). Confocal images were acquired from bacterial
cultures carrying the plasmid pRU1319, which expresses GFP
(GFPuv) (Allaway et al. 2001). GFP-labeled bacterial cultures
diluted 1:1,000 were grown in the chambers for 3 days at 30�C
inside a humid petri dish, to prevent desiccation, as described
by Russo et al. (2006). Images were processed using the Zeiss
LSM Image Browser version 3.2.0.

AFM imaging.
For bacteria immobilization, glass slides were previously

treated with branched polyethyleneimine (PEI) (molecular weight
approximately 25,000) (Sigma-Aldrich). Briefly, glass slides were
washed twice with 96% (vol/vol) ethanol and water (Elga Classic,
resistivity >18 MW cm), were incubated overnight at 4�C with a
0.1% (wt/vol) aqueous PEI solution, and were rinsed twice with
water. Fresh bacterial cultures at late exponential phase of growth
on TY were washed twice with sterile saline solution and bacterial
suspensions were adjusted to an OD600 of 0.25 nm. Bacteria were
electrostatically immobilized by depositing 20 µl of a bacterial
suspension on the PEI-coated slides. Bacteria were allowed to
adhere to the substrate for 30 min at 28�C. Afterward, the slides
were washed twice with water to remove unattached cells. All
imaging was performed in air using an Agilent Technologies
model 5500 scanning probe microscope (Agilent Technologies,
Inc.) working in acoustic ACmode. Rectangular aluminum-coated
silicon cantilevers with force constants of 40 N/m and resonance
frequency in the range of 300 to 350s kHz (MikroMasch) were
employed for the characterizations. The experimental data were
visualized and were analyzed utilizing Gwyddion 2.45 (a free
SPM data analysis software).

Autoaggregation assay.
Bacteria were grown in 2 ml of TY broth supplemented with

the appropriate antibiotics, were incubated for 24 h at 30�C, were
diluted 1:100 in TY, and were further incubated for 48 h under
the same conditions. Bacterial suspensions (5 ml) were then
transferred to a glass tube (10 × 70 mm) and were allowed to
settle for 24 h at 4�C. A 0.2-ml aliquot of the upper portion of the
suspension was transferred to a microtiter plate, and the OD600

was measured (ODfinal). A control tube was vortexed for 30 s,
and the OD600 was determined (ODinitial). The autoaggregation
percentage was calculated as 100 × [1 _ (ODfinal/ODinitial)].
For autoaggregation experiments involving artificial bacte-

rial suspensions (i.e., suspensions generated by resuspending
the pellet of one strain with the cell-free supernatant of a dif-
ferent strain), the cultures were centrifuged at 4,200 × g for
20 min. The supernatant and pellet were immediately used to
reconstitute a different suspension, which was left in static
conditions as described before.

Adsorption of rhizobia to alfalfa roots.
Early adsorption of bacteria to roots was done as previously

described by Caetano-Anollés and Favelukes (1986). Adhesive-
ness (%) is defined as the percentage of bacteria in the inoculum
that became adsorbed to roots.

Nodulation assays.
Seeds of the alfalfa cultivar Pampeana from INTA (Insti-

tuto Nacional de Tecnologı́a Agropecuaria, Argentina) were
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surface-sterilized 30 s by immersion in ethanol, then a 10-min
immersion in hydrogen peroxide, and, finally, were washed in
sterile distilled water. Sterilized seeds were aseptically germi-
nated, were transferred to the petri plates containing solid (0.6%
agar) Hoagland’s medium, and were inoculated with a bacterial
suspension containing 1 × 107 CFU/ml. Plants were grown in a
chamber under controlled conditions (16 h of light and 8 h of
dark, 28�C). The inoculated and uninoculated (control) plants
were harvested 28 days later. The root systems were washed,
nodules were counted, and the aerial plant parts and roots were
weighed. All experiments were performed in triplicate.

Statistical analysis.
The autoaggregation assays were performed in quintuplicate.

For the biofilm assays, each strain was plated in at least eight
wells of each microtiter dish. The data were subjected to one-
way analysis of variance, followed by comparison of multiple
treatment levels with the control, using post hoc Fisher9s least
significant difference test. All statistical analyses were per-
formed using Infostat version 1.0.
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