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Abstract

The incidence of opportunistic fungal infections has increased in recent decades due to the growing proportion of
immunocompromised patients in our society. Candida krusei has been described as a causative agent of disseminated
fungal infections in susceptible patients. Although its prevalence remains low among yeast infections (2–5%), its intrinsic
resistance to fluconazole makes this yeast important from epidemiologic aspects. Non mammalian organisms are feasible
models to study fungal virulence and drug efficacy. In this work we have used the lepidopteran Galleria mellonella and the
nematode Caenorhabditis elegans as models to assess antifungal efficacy during infection by C. krusei. This yeast killed G.
mellonella at 25, 30 and 37uC and reduced haemocytic density. Infected larvae melanized in a dose-dependent manner.
Fluconazole did not protect against C. krusei infection, in contrast to amphotericin B, voriconazole or caspofungin. However,
the doses of these antifungals required to obtain larvae protection were always higher during C. krusei infection than during
C. albicans infection. Similar results were found in the model host C. elegans. Our work demonstrates that non mammalian
models are useful tools to investigate in vivo antifungal efficacy and virulence of C. krusei.
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Introduction

Fungal infections have emerged worldwide due to a growing

population of immunosuppressed patients, including patients with

cancer, AIDS, solid-organ and hematopoietic stem cell transplant

recipients, premature neonates, and patients recovering from

major surgery [1–5]. These infections have significant morbidity

and mortality rates and are difficult to prevent, diagnose and treat

[6–8].

Candida spp are commensal yeasts responsible for different

clinical manifestations, from mucocutaneous overgrowth to blood

stream infections [1,9–12]. Candida albicans is still the major cause

of invasive fungal disease. However, a growing number of

infections produced by non-albicans Candida spp has been reported

in the last years [1,13–15]. Among them, there are some species

that are intrinsically resistant or have reduced susceptibility to

antifungals. The massive use of antifungals in prophylaxis, such as

fluconazole, has facilitated the selection of pathogenic fungi

resistant to these agents [16–19].

Candida krusei is an opportunistic pathogen which presents

intrinsic resistance to fluconazole. The infection is associated with

the prophylactic or therapeutic use of this antifungal agent [20–

23]. Two mechanisms of azole resistance in C. krusei have been

described: overexpression of drug efflux pumps [24] and

diminished sensitivity of the target enzyme, the cytochrome

P450 sterol 14-demethylase (encoded by the CYP51 gene) [25].

Diseases caused by C. krusei have high associated mortality (30–

60%) [26,27]. Despite the intrinsic resistance to fluconazole, C.

krusei is usually susceptible to voriconazole in vitro, which correlates

with the binding of this drug to the target enzyme [21].

Antifungal resistance in vitro does not always correlate with

clinical resistance. The best correlation between in vitro and clinical

efficacy is found in HIV-positive patients with oropharyngeal

candidiasis [22,28,29]. In contrast, although C. parapsilosis shows

reduced in vitro susceptibility to echinocandins, these antifungals

have been shown to be effective in the treatment of invasive

candidiasis caused by this species [30].
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The use of invertebrate hosts has recently emerged and

facilitated the study of fungal pathogenesis. Among these non-

mammalian hosts, amoebae (Acanthamoeba castellanii, Dictyostellium

discoideum), nematodes (Caenorhabditis elegans) and insects (Drosophila

melanogaster, Galleria mellonella) have been successfully used to study

the virulence of some fungi [31–35]. Moreover, some aspects of

the innate response are conserved between these hosts and

mammals [36]. Galleria mellonella is a lepidopteran (Pyralidae) that

provides important advantages as host model. The larvae can be

incubated in a range of temperature between 25 to 37uC, so it is

possible to simulate the natural fungal habitat and the infection

conditions in mammals. In addition, as in mammalian models, it is

possible to introduce by injection exact doses of pathogens to the

larvae, which poses a technical improvement over other non-

conventional hosts. Galleria mellonella has six types of phagocytic

cells that play an important role in the defense system [37,38]. The

density of these cells in the haemolymph is not constant, and

changes during infection can be easily measured and used as a

parameter of the response of the larvae after exposure to

pathogens [39]. The viability of the larvae can be easily recorded

by the lack of movement and the massive melanization induced by

G. mellonella in response to infection [40–42]. Another organism

that is used as model host is the soil nematode Caenorhabditis elegans,

which feeds on microorganisms, but is susceptible to bacterial and

fungal pathogens [33,43–45]. Caenorhabditis elegans has been used to

study virulence, filamentation and antifungal efficacy of antifungal

drugs [44,46].

In this study, we initially aimed to characterize the interaction

between G. mellonella and C. krusei with two purposes: 1) To get

insights about virulence traits of this pathogenic yeast, and 2) to

investigate if antifungal efficacy in vivo correlates with the

susceptibility profile shown by C. krusei in vitro. Furthermore, we

have complemented our studies with C. elegans, and observed

similar behaviors, indicating that non-conventional models can be

used to investigate C. krusei virulence and antifungal efficacy.

Materials and Methods

Strains and media
Candida albicans SC5314 [47], C. krusei ATCC 6258 and two

clinical isolates (CL8053 and CL80317) from the Yeast Collection

of the Mycology Reference Laboratory of the Spanish National

Centre for Microbiology and Cryptococcus neoformans variety grubii

(H99 strain, ATCC 20882) were used in this study. The yeasts

were grown overnight in liquid Sabouraud medium (Difco, BD,

USA) at 30uC with shaking. Escherichia coli OP50 strain was

obtained from the Caenorhabditis Genetics Center (University of

Minnesota) and was maintained on LB agar plates at 37uC.

Antifungal susceptibility testing (AFST)
Minimum inhibitory concentration (MIC) values were deter-

mined using the EUCAST protocol [48,49]. For AFST, 10

different clinical isolates of C. albicans and 10 clinical isolates of C.

krusei were obtained from the yeast collection of the Mycology

Reference Laboratory of the Spanish National Centre for

Microbiology. Data were expressed as geometric mean, mode,

range (minimum-maximum) and MIC frequency distribution.

Insect larvae manipulation and incubation conditions
Galleria mellonella larvae (0.3–0.5 g, R.J. Mous Livebait, The

Netherlands) were placed in Petri dishes and incubated at 37uC in

the dark the night before the experiments. Larvae with color

alterations (i.e. dark spots or with apparent melanization) were

excluded. Antifungals and yeast suspensions were injected in the

haemocele through the last left pro-leg of the larvae using a 10 mL

Hamilton syringe (Hamiltion, USA). The pro-leg had been

previously cleaned with 70% ethanol. A total of 10 mL were

injected in each larva. Larvae death was monitored by visual

inspection of the color (brown-dark brown) and by lack of

movement after touching them with forceps. For each condition, a

total of 20 larvae were used, and each experiment was repeated at

least twice. After infection, larvae were incubated at 25, 30 or

37uC.

Survival assay
Yeasts were grown overnight in liquid Sabouraud, washed with

PBS, and suspended in the same buffer. Cell density was estimated

with an Automatic Cell Counter TC10 (Bio Rad). For survival

assays, larvae were inoculated with 107, 56106 and 2.56106 cells/

larva of C. krusei and 106, 56105 and 105 cells/larva of C. albicans.

The inocula were prepared in PBS plus 20 mg/L of ampicillin to

prevent bacterial contamination. The infected larvae were

incubated at 25uC, 30 or 37uC, and the death was daily monitored

during 7 days.

Growth curve at different temperatures
Yeast strains were grown overnight and diluted in fresh

Sabouraud liquid medium at 103 cells/mL. Two hundred

microliters of this suspension were placed in 96-well microdilution

plates, and incubated at 25, 30 or 37uC in a Labsystems IEMS

Reader MF spectrophotometer. Optical density (OD) was

determined at 530 nm every hour during 72 hrs.

In vivo phagocytosis assay
Yeast cells were stained with 10 mg/mL Calcofluor white

(Sigma, St. Louis, MO) for 30 min at 37uC. Then, these cells were

injected into G. mellonella larvae (107 cells/larva, 5 per group), and

phagocytosis was analyzed after 3 hrs of incubation at 25 and

37uC. Haemolymph was collected in 1.5 mL tubes and diluted 1:1

in IPS buffer (Insect Physiological Saline: 150 mM sodium

chloride, 5 mM potassium chloride, 10 mM Tris-HCl pH 6.9,

10 mM EDTA and 30 mM sodium citrate) to avoid coagulation

and melanization of the haemolymph. Haemocytes were placed

on a slide and phagocytosis was visually quantified using a Leica

DMI 3000B microscope. One hundred haemocytes from each

larva were counted in each case, and the percentage of haemocytes

containing yeasts was calculated and plotted. Cryptococcus neoformans

H99 strain was used as control. Phagocytosis was also analyzed in

larvae infected in the same way, but treated with 64 mg/kg

fluconazole or 4 mg/kg amphotericin B.

Determination of haemocyte density
Groups of five G. mellonella were infected with 107 yeast cells/

larvae and incubated at 37uC for 3 hrs. The haemolymph of each

larva was collected in 1.5 mL tubes and diluted 1:10 in IPS buffer.

The cells were counted using a haemocytometer.

Measurement of in vivo filament formation
Galleria mellonella was infected with 107 cells/larva of C. albicans

and C. krusei strains. The larvae were incubated at 37uC for

24 hours. Larvae were macerated in 100 mm nylon cell strainers

(Falcon, BD, USA) with 1 mL of IPS. The liquid was then

collected, centrifuged and suspended in 1 mL of the same buffer.

Samples were stained with Calcofluor white (Sigma, St. Louis,

MO), as described above, and yeast morphology was observed

with a Leica DMI 3000B fluorescence microscope.

Candida krusei Infection in Non-Mammalian Models

PLOS ONE | www.plosone.org 2 March 2013 | Volume 8 | Issue 3 | e60047



Melanization quantification
Larvae were infected with PBS, 56105, 106 and 56106 cells/

larva of C. krusei. Then, the haemolymph of each larva was

collected after 3 and 24 hrs in 1.5 mL tubes and diluted 1:10 with

IPS buffer. The samples were placed in 96 well microdilution

plates. To quantify melanin levels, we took advantage of existing

protocols that quantify laccase activity by detecting the final

product of the reaction by measuring the OD in the visible range

(400–500) [50,51]. In our conditions, we observed that 405 nm

was an optimal OD to quantify larval melanin and to correlate the

results with the visualization of the dark compound. So the OD at

405 nm was measured using a Labsystems IEMS Reader MF

spectophotometer. Melanization of larvae infected with C. albicans

(56105 cells/larva) and C. krusei (56106 cells/larva) and treated

with 64 mg/kg fluconazole and 4 mg/kg amphotericin B was also

evaluated.

Treatment with antifungal drugs
Infected larvae were treated with amphotericin B (1, 2 or 4 mg/

kg, Sigma Aldrich Quimica, Madrid, Spain), fluconazole (128, 64,

32, 12, or 4 mg/kg, Pfizer SA, Madrid, spain), voriconazole (7.5 or

10 mg/kg, Pfizer SA, Madrid, Spain) or caspofungin (1, 2 or

4 mg/kg Merck & Com, Inc, NJ, USA). In some experiments, a

combination of fluconazole and amphotericin B was also used.

Antifungals were applied immediately after the infection. Groups

of 10 larvae were treated with the antifungals alone to test the

toxicity.

Fungal burden determination
Infected larvae were selected at different times of infection,

washed with 70% ethanol and cut into small pieces with a scalpel.

Two mL of PBS-ampicillin were added and the mix was

homogenized gently with a vortex and glass beads for 10 seconds.

The mix was finally suspended in 9 mL of PBS-ampicillin.

Different dilutions were made for each sample and 50 mL from

these dilutions were placed on Sabouraud-cloramphenicol agar

plates (Oxoid). The plates were incubated at 37uC for 48 h, and

the number of colony forming units (CFUs) was determined.

Histology
Three larvae from different groups (uninfected, infected and/or

treated with antifungals) were collected on different days of the

infection. The larvae were preserved in 70% ethanol and

longitudinal incisions were made with a scalpel in the dorsal part.

The samples were fixed with 10% buffered formaline for 24 hrs.

Then, the samples were dehydrated with increasing concentrations

of ethanol, rinsed with xylol, and embedded in paraffin. Tissue

sections (5 microns) were stained with periodic acid Schiff (PAS)

solution and observed with a Leica DMI3000 microscope.

Caenorhabditis elegans strain and infection conditions
The following C. elegans mutant strain, obtained from CGC, was

used in all experiments: AU37 (glp-4(bn2) I; sek-1(km4) X). This

strain was grown on agar plates seeded with E. coli OP50 and

incubated at 15uC according to standard procedures [52]. This

strain is usually chosen for virulence and antifungal efficacy assays

because glp-4 mutants are sterile at 25uC. This allows to easily

following up the survival of the individual animals from the

beginning to the end of the experiment and avoids mixing with

their progeny [33,44]. The sek-1 gene encodes a mitogen-activated

protein kinase which is important for the defense of C. elegans

against microbial infections [33,44]. Therefore worms defective for

sek-1 are more susceptible to infection and die earlier than wild-

type C. elegans animals. Candida strains were cultivated in liquid

Sabouraud medium (Difco, BD, USA) at 35uC with shaking. One

hundred mL from this culture were inoculated on solid BHI media

(Difco) containing kanamycin (90 mg/mL) and ampicillin (200 mg/

mL) and incubated at 30uC for 24 hours. Synchronized worms in

the L4 stage were added to the center of the agar plates inoculated

with the yeast strains lawns and incubated for three hours at 25uC.

In parallel, L4 worms were placed on agar plates containing lawns

of E. coli OP50 strain. After the three hours incubation, worms

were washed with M9 and transferred to 12-well plates with 1 mL

60% M9 buffer [45], 40% BHI, 10 mg/mL cholesterol in ethanol,

200 mg/mL ampicilin and 90 mg/mL kanamycin. Around 20–30

worms were placed in each well. For antifungal efficacy,

amphotericin B (1 and 2 mg/mL), fluconazole (12 mg/mL),

voriconazole (0.25, 7.5 and 10 mg/mL), caspofungin (2, 4 and

6 mg/mL), or a combination of amphotericin B (1 mg/mL) plus

fluconazole (12 mg/mL) were added to the media. Plates were

incubated at 25uC and individual worm survival was monitored

daily. Nematodes were considered dead when they did not

respond to touching. A minimum of two independent experiments

was carried out for each treatment. Images were captured with a

video camera (JVC KY-F550) attached to a dissecting microscope

(Leica MZ7.5).

Statistics
Graphs and Statistics analyzes were performed with Graph Pad

Prisma 5 (La Jolla CA, USA). Survival curves were analyzed by

Log-rank (Mantel-Cox) Test and phagocytosis assays, haemocyte

density, melanization quantification and fungal burden were

analyzed using t-Test.

Results

Candida krusei killed G. mellonella in a dose dependant
manner
We first investigated if C. krusei killed G. mellonella. Our results

showed that G. mellonella is susceptible to C. krusei infection

(Figure 1A). The death rate of the larvae depended on the yeast

dose injected. Most reproducible results were found when larvae

were infected with 56106 C. krusei cells. However, C. krusei was less

virulent than other fungi, such as C. albicans, which killed G.

mellonella at lower doses (56105, Figure 1B). To confirm that the

death was not a consequence of a shock due to big amounts of

yeast injected in the larvae, we inoculated a group of larvae with

yeast inactivated by incubation in 4% paraformaldehyde. As

shown in Figure 1C, inactivated yeast did not kill G. mellonella,

confirming that larvae death was dependent on living yeast.

To verify if C. krusei virulence in G. mellonella depended on the

temperature at which the larvae are incubated, we compared

virulence of C. krusei and C. albicans at different temperatures (25,

30 or 37uC). Candida albicans was more virulent at 37uC than at

30uC. In contrast, no statistical difference was observed in the

survival of G. mellonella infected with C. krusei and incubated at the

different temperatures, indicating that C. krusei virulence does not

depend on temperature (Figure 1D). Similar findings were

obtained with C. krusei clinical isolates (result not shown). We also

studied the virulence of these two species at environmental

temperature (25uC). In agreement with the previous data, we

found that C. krusei was virulent at 25uC, while C. albicans virulence

was significantly decreased at this temperature (data not shown).

To confirm these results, we investigated if C. krusei growth was

affected by temperature in a similar manner as C. albicans. So we

performed growth curves of both species at 30 and 37uC. As

shown in Figure 1E and F, C. albicans grew better at 37uC

Candida krusei Infection in Non-Mammalian Models
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compared to 30uC (two-fold reduction in generation time). In

contrast, C. krusei grew similarly at both temperatures (0.85 fold

decrease in generation time when the cells were grown at 37uC

compared to 30uC). We found similar results at 25uC (data not

shown), supporting that C. krusei growth is not affected by the

incubation temperature. The final OD reached at the stationary

phase at different temperatures was different with both species.

Candida albicans reached higher OD at 37uC, which differed from

the situation found in C. krusei, where the final OD at the

stationary phase was almost identical at 30 and 37uC. Latency

period was longer at 30uC, but the same trend was observed in

both species (Figures 1E and 1F).

Yeast inoculation caused early melanization of the larvae
Galleria mellonella larvae appeared melanized after a few minutes

of C. krusei injection (Figure 2A). To quantify this phenomenon, we

collected the haemolymph and measured its optical density at

405 nm. When larvae were infected with 56106 C. krusei cells,

there was a significant accumulation of melanin in the haemo-

lymph (4.3 times compared to the non-infected larvae), and this

melanization increased over time (5 times at 24 hrs, Figure 2B).

Clinical isolates showed a similar behavior (Figures 2C and D). We

evaluated if C. krusei induced melanization of G. mellonella at lower

temperatures, and we found that this phenomenon also occurred

at 25uC (data not shown).

Phagocytosis and effect of C. krusei on haemocyte
density
We examined if different C. krusei strains had any effect on

haemocyte density. As shown in Figure 3A, C. krusei produced a

decrease in haemocyte density in a similar manner to C. albicans.

We then investigated if C. krusei cells were phagocytosed by G.

mellonella haemocytes. We compared the phagocytosis of this

pathogen to the one measured with C. albicans and C. neoformans.

The phagocytosis for all Candida strains (albicans and krusei) was

significantly lower to the phagocytosis observed with C. neoformans

(Figure 3B). The same result was found when phagocytosis was

assessed at 25uC (data not shown).

Candida krusei can filament in vitro, so we investigated if this

change also took place during infection in G. mellonella. We

included C. albicans in these experiments as control, since it has

been reported that this yeast can form hyphae in this model host

[53]. As expected, C. albicans efficiently produced filaments in the

larvae. Candida krusei also produced filaments, and in G. mellonella

crude extracts they were frequently found in clumps of fat body of

dark color, which we believe that are composed mainly of insect

melanin. This fact may explain the fast melanization of G. mellonella

when infected with C. krusei.

Antifungal efficacy during C. krusei infection in G.

mellonella
One of the main features for C. krusei is its in vitro susceptibility

profile. As shown in Figure 4, C. krusei is less susceptible to

amphotericin B, voriconazole and caspofungin than C. albicans,

and intrinsically resistant to fluconazole. So we studied if this

phenotype correlated with a lack of response to the antifungal

during infection in G. mellonella. For this purpose, we infected G.

mellonella with C. krusei or C. albicans, and treated the larvae with

different antifungals (fluconazole, voriconazole, amphotericin B

and caspofungin). In the case of larvae infected with C. krusei,

treatment with fluconazole, even at very high doses (32 or 64 mg/

kg) did not increase the survival (Figures 5A and B). At higher

Figure 1. Comparison of the virulence of C. krusei and C. albicans in G. mellonella. (A) Survival curve of G. mellonella infected with different
inocula of C. krusei ATCC 6258N PBS;& 107 cells/larva;m 56106 cells/larva;. 2.56106 cells/larva incubated at 37uC (B). Survival curve of G. mellonella
infected with different inocula of C. albicans SC5314 N PBS; & 106 cells/larva; m 56105 cells/larva; .105 cells/larvae (C) Survival of G. mellonella
infected with inactivated yeast. Control dead cellsN PBS;& C. krusei ATCC 6258 56106 cells/larva; m C. krusei ATCC 6258 56106 cells/larva (dead); .
C. albicans SC5314 106 cells/larva;¤ C. albicans SC5314 106 cells/larva (dead) (D); Effect of the incubation temperature on the virulence of C. albicans
and C. krusei. N PBS; m C. krusei ATCC 6258 (37uC); .C. krusei ATCC 6258 (30uC);¤ C. albicans SC5314 (37uC);&C. albicans SC5314 (30uC); Growth
curves of C. albicans (E) and C. krusei (F) at different temperatures. # 37uC; m 30uC.
doi:10.1371/journal.pone.0060047.g001
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concentrations (128 mg/kg), there was a decrease in the survival,

which is explained by the toxicity of the antifungal at this high

concentration, which induced 25% of death after 7 days of

treatment (data not shown). When the same experiments were

performed with C. albicans, treatment with all the fluconazole

concentrations produced significant survival (Figures 5C and 5D).

Concerning other azoles, C. krusei is considered susceptible to

voriconazole, although it presents higher MIC values to this

antifungal than C. albicans (see Figure 4). So we studied the efficacy

of voriconazole during infection in G. mellonella. We found that

both voriconazole concentrations tested (7.5 and 10 mg/kg)

protected larvae from C. albicans infection (Figure 6A). In contrast,

larvae infected with C. krusei were only protected with higher

Figure 2. Melanization of G. mellonella infected with C. krusei. (A) Visual appearance of G. mellonella larvae infected with different C. krusei
doses. (B, C and D) Optical Density (OD) of the haemolymph of G. mellonella infected with C. krusei ATCC 6258 (B), clinical isolate CL8053 (C) and
CL80317 (D) with 56105, 106, 56106 cells/larva. The different size inoculum reveals dose-response melanization (* p,0.05). All the experiments in this
figure were performed at 37uC.
doi:10.1371/journal.pone.0060047.g002

Figure 3. Interaction between C. krusei and haemocytes. (A) Changes in haemocyte density during C. krusei infection. The haemolymph of
infected larvae with C. neoformans, C. albicans SC5314, C. krusei ATCC 6258, CL8053 and CL80317 clinical isolates and PBS was collected and the
concentration of haemocytes was estimated using a haemocytometer (B). Phagocytosis percentage of C. neoformans, C. albicans SC5314, C. krusei
ATCC 6258, CL8053 and CL80317 clinical isolates. Asterisks denote differences statistically significant (p,0.05).
doi:10.1371/journal.pone.0060047.g003

Candida krusei Infection in Non-Mammalian Models
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voriconazole concentrations (Figure 6B). Lower doses did not have

any effect on survival.

Amphotericin B (4 mg/kg) prolonged survival of larvae infected

with C. albicans at all the concentrations tested (Figure 6A). In

contrast, amphotericin B only protected larvae infected with C.

krusei at the highest dose (4 mg/kg), which produced a 60%

survival at the fourth day (Figure 6B). In a similar way,

caspofungin was effective during C. albicans infection at all the

doses tested (Figure 6C), while it only protected larvae inoculated

with C. krusei at the highest dose (4 mg/kg) (Figure 6D). We also

used an antifungal combination with fluconazole (12 or 4 mg/kg)

and amphotericin B at a sub-therapeutic dose in G. mellonella

(1 mg/kg), but we found no synergic effect between the antifungals

(data not shown).

Fungal burden determination and histopathology
The fungal burden was determined by recovering the yeast cells

from the larvae infected with C. albicans or C. krusei and treated

with fluconazole (12 mg/kg) or amphotericin B (4 mg/kg). The

number of CFUs increased in larvae infected with both pathogens

with the time of infection (Figure 7). Treatment of larvae infected

with C. albicans with fluconazole or amphotericin B decreased the

number of CFUs by 1000-fold (Figure 7A). In larvae infected with

C. krusei, amphotericin B reduced the fungal burden by 10-fold.

Curiously, fluconazole also reduced the initial fungal burden,

although it did not have an effect after longer times (5 days,

Figure 7B).

To complement these studies, we performed histopathology of

infected and treated larvae. Candida albicans (Figure 8C and 8D)

and C. krusei (Figure 8K and 8L) were found both in yeast and

filament forms. The antifungal treatment with fluconazole

(12 mg/kg) in larvae infected with C. albicans or C. krusei decreased

the number of yeasts. Moreover, the fungi were mainly found in

defined structures surrounded by G. mellonella cells (Figure 8E, F,

M, N). Amphotericin B (4 mg/kg) had the same effect as

fluconazole, although fewer yeast cells were found with this

treatment (Figure 8G, H, O, P). The antifungals did not have a

different effect on larvae infected with C. albicans or C. krusei.

Figure 4. Antifungal susceptibility profile of C. krusei and C. albicans. A) Distribution of MIC values (n = 10) to amphotericin B, caspofungin,
fluconazole and voriconazole of C. albicans (white bars) and C. krusei (black bars). B) Description of antifungal susceptibility of C. albicans and C. krusei
to different antifungals. N = 10. The geometric mean (GM), mode, minimum (Min) and maximum (Max) are shown.
doi:10.1371/journal.pone.0060047.g004
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Treatment with the antifungals alone did not have any effect on

the histopathology of the larvae (result not shown).

Effects of amphotericin B and fluconazole on the
physiology of G. mellonella during C. albicans and C.

krusei infection
Antifungals have immunomodulatory properties in mammals

and in G. mellonella [54–56]. We studied the effect of Amphotericin

B (4 mg/kg) and fluconazole (12 and 64 mg/kg) on haemocyte

density, melanization and phagocytosis during G. mellonella

infection by C. krusei and C. albicans. None of the antifungal

treatments influenced the haemocyte density of C. krusei infected

larvae. However, fluconazole (64 mg/kg) reduced the haemocyte

density in larvae infected with C. albicans by two fold (p = 0.017,

Figure 9A).

None of the antifungals had a significant effect on the

melanization of larvae infected with C. krusei. In contrast,

antifungal treatment of larvae infected with C. albicans reduced

melanization after 24 hours of infection. Fluconazole (64 mg/kg)

and amphotericin B (4 mg/kg) reduced the melanization of these

larvae by 1.8 (p= 0.0139) and 1.5 fold, respectively (p = 0.003,

Figure 9B). No differences were observed in melanization or

phagocytosis after 3 hours of infection with C. albicans or C. krusei.

Antifungal drugs alone did not cause any effect in G. mellonella on

the parameters analyzed.

Virulence and antifungal efficacy in C. elegans model
The nematode C. elegans is another non mammalian model that

has been used as a host to study microbial virulence in this study.

We also used this model to evaluate the in vivo protection of

antifungals during C. krusei infection such as amphotericin B,

fluconazole, voriconazole, caspofungin, and a combination of

amphotericin B plus fluconazole. Candida albicans and C. krusei both

killed C. elegans worms. In both Candida strains, worm death was

associated with filamentation of the yeast in the worms

(Figure 10A). When we investigated the protection of the different

antifungal treatments, we found that all the antifungals protected

during C. albicans infection at all the concentrations tested

(Figure 10B). In contrast, in nematodes infected with C. krusei,

the behavior of the antifungals was different: amphotericin B only

protected at concentrations $2 mg/mL and fluconazole was not

protective at any of the concentrations used (Figure 10C).

Caspofungin showed similar protection as the one observed when

the worms were infected with C. albicans (Figure 10C). The

antifungal combination of fluconazole (12 mg/mL) and ampho-

tericin B (1 mg/mL) did not show any synergistic effect in this

model (result not shown). We also studied how voriconazole

protected the worms from infection. As shown in Figure 10D, all

the concentrations used (0.25, 7.5 and 10 mg/L) protected larvae

from infection by C. albicans. However, only the higher doses (7.5

and 10 mg/L) showed efficacy during C. krusei infection, while the

lowest dose (0.25 mg/L) was not protective.

Discussion

The use of invertebrate hosts to study the virulence of microbial

pathogens presents advantages over conventional mammals.

Amoebae, nematodes and insect hosts are good models to study

virulence and to elucidate host–pathogen interaction. Ethical

issues, cost and faster results are other benefits of these models

[41,42,57]. During evolution, non vertebrate animals have

developed immunity against microbial pathogens [42], and for

this reason, there are functional and structural similarities between

the innate immune system of mammals and insects. So, these

models can be used to study immune responses [57].

In this work, we have used two different hosts, G. mellonella and

C. elegans, to investigate virulence of C. krusei and antifungal

efficacy. Compared to other non-conventional models, G. mellonella

allows the use of precise pathogen doses by injection, low cost and

Figure 5. Efficacy of fluconazole during G. mellonella infection with C. krusei or C. albicans. Effect of fluconazole during infection of larvae
with 56106 cells of C. krusei (ATCC 6258) per larvae (A and B) and 56105 cells of C. albicans cells (SC5314) per larva (C and D) in G. mellonella.
Fluconazole treatment with 4 or 12 mg/kg (A and C); 32, 64 or 128 mg/kg (B and D).
doi:10.1371/journal.pone.0060047.g005
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Figure 6. Efficacy of voriconazole, amphotericin B or caspofungin during C. krusei and C. albicans infection in G. mellonella. A and B)
Voriconazole treatment efficacy (7 and 10 mg/kg) in G. mellonella infected with C. albicans SC5314 (A) or C. krusei ATCC 6258 (B). C and D)
Amphotericin B treatment efficacy (1, 2, 4 mg/kg) in G. mellonella infected with C. albicans SC5314 (C) or C. krusei ATCC 6258 (D). E and F)
Caspofungin treatment efficacy (1, 2, 4 mg/kg) in G. mellonella infected with C. albicans SC5314 (E) or Candida krusei ATCC 6258 (F). In all the cases,
the larvae were infected with 56105 C. albicans cells/larva and 56106 C. krusei cells/larva.
doi:10.1371/journal.pone.0060047.g006

Figure 7. Effect of antifungal treatment on fungal burden in G. mellonella infected with C. albicans or C. krusei. Galleria mellonella larvae
were infected with C. krusei ATCC 6258 (A, 56106 cells/larva) or C. albicans SC5314 (B, 56105 cells/larva) and CFUs recovered from G. mellonella. Black
bars, no treatment, white bars, fluconazole (12 mg/kg), grey bars, amphotericin B (4 mg/kg).
doi:10.1371/journal.pone.0060047.g007

Candida krusei Infection in Non-Mammalian Models

PLOS ONE | www.plosone.org 8 March 2013 | Volume 8 | Issue 3 | e60047



evaluation of survival at different temperatures. The virulence of

five C. albicans strains with mutations in genes related to

filamentation was evaluated in G. mellonella and it was demon-

strated that this model is useful as a filamentation assay [53]. In the

case of C. neoformans, the virulence of different isolates, morpho-

genesis and antifungal treatments in G. mellonella showed good

Figure 8. Histopathology of G. mellonella infected with C. krusei and C. albicans and treated with different antifungals. Galleria
mellonella was infected with 56105 cells/larva of C. albicans SC5314 (C–H), or with 56106 cells/larva of C. krusei ATCC 6258 (K–P). After 96 hours of
infection, larvae were processed for histopathology as described in Material and Methods. (A, B, I, J), uninfected controls; (C, D, K and L), untreated
controls; (E, F, M and N), larvae treated with fluconazole (12 mg/kg); (G, H, O and P), larvae treated with amphotericin B (4 mg/kg). (A, C, E, G, I, K,
M, O), low magnification; (B, D, F, H, J, L, N and P), high magnification.
doi:10.1371/journal.pone.0060047.g008

Figure 9. Effect of antifungal treatment of haemocyte density and melanization of G. mellonella infected with C. krusei or C. albicans.
(A) Hemocytic density of G. mellonella infected with C. albicans SC5314 or C. krusei ATCC 6258 treated with amphotericin B (4 mg/kg) or fluconazole
(64 mg/kg). (B) Optical Density (OD) of the haemolymph of G. mellonella infected with C. albicans or C. krusei treated with amphotericin B (4 mg/kg)
or with fluconazole (64 mg/kg). Black bars, no treatment; grey bars, fluconazole; white bars, amphotericin B. * p,0.05.
doi:10.1371/journal.pone.0060047.g009
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correlation with mammalian system [57,58]. Previous work

demonstrated that C. elegans is susceptible to different Candida

species. For that reason, this host has been used to look for new

compounds with antifungal activity [44,46]. Besides, the available

C. elegans mutant animals defective in signaling pathways involved

in the immune system allows the study of the molecular

mechanisms of host-pathogen interaction [59]. However, there

are also some cases in which there is no correlation between

virulence in mammals and G. mellonella [60], so further studies are

required to validate the use of these models.

For these reasons, C. krusei offers a good model to validate the

use of invertebrate models. This yeast shows reduced virulence in

mammalian systems and fungal burden is significantly lower in

animals infected with C. krusei than in animals infected with other

fungal pathogens, such as C. albicans [61], so it is possible to

compare its virulence with other highly virulent yeasts. Moreover,

C. krusei is intrinsically resistant to fluconazole, so it offers an

excellent model to correlate antifungal efficacy in vitro and in vivo.

Previous work showed that G. mellonella infected with 26106

cells/larva of C. krusei killed 20% of the larvae after 72 hrs [62]. In

our work, we have reproduced the model and observed that larvae

killing can be faster by increasing the pathogen concentration.

However, C. krusei was less virulent than C. albicans because the

amount of yeast required to cause 100% death on the fourth day

was 10 times higher. This is also in agreement with the reduced

virulence of C. krusei in mammalian models [63,64], but also

indicates that G. mellonella offers a simple method to study virulence

traits of C. krusei. This finding is of particular interest, since not

every microorganism (i.e., Pneumocystis murina) can cause disease in

G. mellonella [65].

The possibility to incubate G. mellonella at different temperatures

is one of the best advantages of this model because it permits to

study virulence at both environment and mammalian tempera-

tures. The virulence of some pathogenic microorganisms (such as

Cryptococcus neoformans, Fusarium spp and Acinetobacter baumannii) in G.

mellonella is affected by the incubation temperature of the larvae

Figure 10. Virulence of C. krusei and C. albicans in C. elegans and antifungal efficacy. Caenorhabditis elegans was infected as described in
material and methods with C. krusei (ATCC 6258), C. albicans (SC5314) and E. coli OP50. (A) Visual appearance of infected worms (506magnification).
(B) Antifungal efficacy in C. elegans infected with C. albicans. ¤ OP50, N C. albicans, & C. albicans and treated with 2 mg/mL amphotericin B
(p,0.0001),m Fluconazole 12 mg/mL (p,0.0001);.Caspofungin 2 mg/mL (p,0.0001). (C) Antifungal efficacy during C. krusei infection¤ OP50;N C.
krusei; & C. krusei treated with amphotericin B 2 mg/mL; (p,0.0001); mFluconazole 12 mg/mL (p = 0.1207); .Caspofungin 2 mg/mL (p,0.0001). (D)
Effect of voriconazole on survival of C. elegans worms infected with C. albicans (N, C. albicans, m, voriconazole 0.25 mg/L (p,0.0001); &,
voriconazole, 7.5 mg/L (p,0.0001); . voriconazole 10 mg/L (p,0.0001)). (E), Efficacy of voriconazole during infection of C. elegans by C. krusei (NC.
krusei; mvoriconazole 0.25 mg/L (p = 0.1217); . voriconazole 7.5 mg/L (9,0.0001); & voriconazole 10 mg/L (p,0.0001)).
doi:10.1371/journal.pone.0060047.g010
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after inoculation [66,67]. In contrast, no statistical difference in the

virulence of C. krusei was observed between the two temperatures.

This correlates with the growth rate of C. krusei at both

temperatures. In contrast to C. albicans, C. krusei growth was less

affected by the temperature. Interestingly, G. mellonella seems to

better tolerate environmental temperature than physiological

temperature, and it would be expected that immunity is impaired

at high temperature. However, our data indicate that in the case of

fungi with reduced virulence, immunity at high temperature can

control infection, and virulence of the fungus is more dependent

on virulence traits of the yeast. Candida krusei and C. albicans

produced filaments in G. mellonella, although the morphology was

different. Candida krusei tended to form cell aggregates with

melanization, characteristic of encapsulation. This result indicates

that G. mellonella differentially recognizes pathogenic yeasts, which

can be related to the different virulence exhibited by these two

Candida species.

Decrease in the amount of haemocytes has been associated with

increased susceptibility to fungal infections [39]. Candida krusei

induced a reduction in the proportion of haemocytes in a similar

way as C. albicans. This result suggests a mechanism of

phagocytosis avoidance by which Candida species induce killing

of G. mellonella, but does not explain the difference in virulence

shown by the different Candida spp. This reduction might be a

consequence of haemocyte explosion after filamentation of these

yeasts after internalization. Interestingly, Cryptococcus neoformans

does not cause a reduction in the number of hemocytes in the first

two hours post-infection [58,66], which might correlate with the

fact that this fungus is an intracellular pathogen and can survive in

phagocytic cells without affecting their viability [68,69]. In

addition, haemocytes are recruited at infection sites to form

clumps or nodules [38,70], so it is also possible that a proportion of

the haemocytes migrate from the haemolymph to the infection

sites. In agreement with our findings, it has been described that C.

albicans induced a reduction in the concentration of haemocytes. In

contrast, larvae infected with S. cerevisiae showed higher survival

and haemocytic concentration [39]. Moreover, the compound

[Ag2 (mal) (phen3)] increased the survival of larvae infected with

C. albicans, and also increased the haemocytic concentration [71].

Phagocytosis of C. krusei and C. albicans was also lower compared to

other fungi, such as C. neoformans. There are several mechanisms

that could account for this phenomenon. Candida spp might be

poorly phagocytosed due to impaired pathogen recognition by

insect haemocytes. In addition to the reduction of haemocyte

density and haemocyte explosion after filament formation

discussed above could also explain the reduced phagocytosis

observed. The future development of in vitro models to study yeast-

haemocyte interaction will be of great help to fully characterize

these phenomena.

Melanization is a humoral response of the insect that is

catalyzed by the enzyme phenoloxidase, and the reaction occurs

through the formation of capsules that surround foreign particles

[72]. We observed a fast melanization process after infection with

C. krusei. The degree of melanization depended on the inoculum

concentration, but not on the viability of the cells, indicating that

melanization is an unspecific process that depends on the presence

of foreign particles.

One of the main findings of our work is the correlation between

the in vivo efficacy of antifungals during C. albicans and C. krusei

infection and their in vitro susceptibility profiles. Fluconazole did

not have any protective effect during C. krusei infection in both G.

mellonella and C. elegans models. Similar findings have been

obtained with protection in immunosuppressed mice [63,73],

which validates the use of non-mammalian models to study

antifungal efficacy. Due to the simplicity of these models, we

believe that these hosts offer suitable and reliable systems to

evaluate antifungal efficacy in vivo. In this sense, C. elegans has been

successfully used to perform high-throughput assays to evaluate

fungal susceptibility to different types of compounds [46,74–76].

However, more information with resistant strains is required to

fully validate their use. We also noticed differences in the

protection between C. albicans and C. krusei in vivo after treatment

with voriconazole, amphotericin B and caspofungin. During C.

krusei infection, the caspofungin and amphotericin B concentra-

tions required for protection were always higher than during C.

albicans infection. Although C. krusei is considered susceptible to the

three drugs, it has reduced susceptibility to caspofungin and

amphotericin B compared to C. albicans [20,77,78]. So our data

are again in agreement with the different susceptibility profile

shown by these species in vitro. While several articles suggest

molecular mechanisms for the resistance to fluconazole exhibited

by C. krusei, it is not known why this species is less susceptible to

amphotericin B and caspofungin than C. albicans. The survival

experiments correlated with the fungal burden observed in the

larvae. Reduction of the fungal burden was very significant during

C. albicans with all the antifungals. In contrast, in larvae infected

with C. krusei, fluconazole had no effect on CFUs and the effect of

amphotericin B was less pronounced than in larvae inoculated

with C. albicans. These data indicate that larvae response is less

dynamic during C. krusei infection, which poses a limitation to

perform pharmacodynamic studies in this infection model. Similar

findings have been found in mammalian models. In immunosup-

pressed mice, fluconazole does not protect during C. krusei

infection and amphotericin B had a partial effect, while

anidulafungin treatment resulted in almost full survival of the

animals [79]. In agreement, in another study, fluconazole had a

very moderate effect in reducing fungal burden in neutropenic

mice compared to other azoles, such as isavuconazole [64]. The

use of antifungal combinations has not been sufficiently explored

to study the pharmacodynamics response during C. krusei infection,

and we believe that non mammalian models might offer a simple

and easy procedure to evaluate this important issue.

Caenorhabditis elegans is also useful to test antifungal efficacy

against several pathogenic fungi, including Candida spp and

Fusarium spp [44,80]. We found very similar results with C. elegans,

and these results are comparable with the ones found in G.

mellonella. This finding is important in the context of our work,

because we have been able to reproduce very similar results using

two different and independent host models. Despite the differences

in the immune responses between nematodes and insects, C. krusei

and C. albicans were virulent in both hosts. These results strongly

support the use of these hosts as screening models. Interestingly,

we could not find significant differences in the virulence of these

species in C. elegans, in contrast to the results found in G. mellonella,

where C. albicans was more virulent than C. krusei. We believe that

this difference between the behavior of the different yeast species

in G. melonella and C. elegans is the temperature at which the

virulence experiments are performed, which is significantly lower

in C. elegans.

Understanding fungal pathogenesis and the antifungal discovery

are key aspects in medical mycology. Non-conventional models

represent an important alternative for in vivo studies, even in the

case of organisms that present low virulence in mammalian

systems, such as C. krusei. Our results also demonstrate the

feasibility of non-mammalian models to identify new antifungal

compounds against resistant species. The correlation of the

virulence of pathogenic fungi in mammals and non-mammalian

models is still unclear. However, there is increasing evidence that
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some virulence phenotypes are reproduced in invertebrate models.

For this reason, we believe that more studies to validate the full use

of these hosts are required in the future.
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