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The high rates of morbidity and mortality caused by fungal infections are associated

with the current limited antifungal arsenal and the high toxicity of the compounds.

Additionally, identifying novel drug targets is challenging because there are many

similarities between fungal and human cells. The most common antifungal targets

include fungal RNA synthesis and cell wall and membrane components, though new

antifungal targets are being investigated. Nonetheless, fungi have developed resistance

mechanisms, such as overexpression of efflux pump proteins and biofilm formation,

emphasizing the importance of understanding these mechanisms. To address these

problems, different approaches to preventing and treating fungal diseases are described

in this review, with a focus on the resistance mechanisms of fungi, with the goal

of developing efficient strategies to overcoming and preventing resistance as well as

new advances in antifungal therapy. Due to the limited antifungal arsenal, researchers

have sought to improve treatment via different approaches, and the synergistic effect

obtained by the combination of antifungals contributes to reducing toxicity and could

be an alternative for treatment. Another important issue is the development of new

formulations for antifungal agents, and interest in nanoparticles as new types of

carriers of antifungal drugs has increased. In addition, modifications to the chemical

structures of traditional antifungals have improved their activity and pharmacokinetic

parameters. Moreover, a different approach to preventing and treating fungal diseases

is immunotherapy, which involves different mechanisms, such as vaccines, activation

of the immune response and inducing the production of host antimicrobial molecules.

Finally, the use of a mini-host has been encouraging for in vivo testing because these

animal models demonstrate a good correlation with the mammalian model; they also

increase the speediness of as well as facilitate the preliminary testing of new antifungal

agents. In general, many years are required from discovery of a new antifungal to clinical

use. However, the development of new antifungal strategies will reduce the therapeutic

time and/or increase the quality of life of patients.
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INTRODUCTION

When compared with antibacterial research, little progress has
been made in the development of new antifungal agents, which
has been justified by the low occurrence of fungal infections.
However, the current increase in incidence of fungal infections
has led to aggressive research on new antifungal agents as
evidenced by the rise in the number of publications since
the 1960s (Maertens, 2004; Ngo et al., 2016). Another reason
for the slow development of antifungal agents is the fact that
fungi are eukaryotic, with a close evolutionary relationship
with human hosts, which complicates the search for antifungal
targets. Nonetheless, detailed knowledge regarding the structure,
composition and biochemistry of fungal cells, in addition
to various facets of fungal infections, has contributed to
our understanding about the mechanism of action of many
antifungal agents (Borgers, 1980; Kanafani and Perfect, 2008).
Typically a long period of 8 to 10 years is required for an
antifungal to be approved for clinical use. Reducing toxicity,
enhancing bioavailability, improving the antifungal spectrum and
combating resistance are efforts that are expected to increase
the efficacy of the available antifungals. Indeed, elucidation
of the mode of action of a potential antifungal compound
can shorten the time from lead to candidate drug. Small
antifungal molecules from natural products could represent
structural templates for structure-activity relationship studies,
thus providing more information to optimize potential new
antifungal agents (Sheng and Zhang, 2011). Overall, new
strategies regarding antifungal therapy, target identification and
rational drug design technologies can significantly accelerate the
process of new antifungal development, reducing the time to cure
or providing better quality of life to patients.

ANTIFUNGAL MECHANISM OF ACTION:
OLD AND NEW TARGETS OF
ANTIFUNGAL CANDIDATES

Although the commercially available antifungal agents to date
have targets that are restricted to the plasma membrane and
the cell wall (Odds et al., 2003; Sundriyal et al., 2006; Ngo
et al., 2016), a certain diversity of targets has been discovered.
To develop new therapies, recent studies have focused on the
inhibition of fungal virulence factors. Somemechanisms of action
are described below, and an overview is presented in Figure 1.

Ergosterol
Ergosterol is a lipid responsible for membrane fluidity and
permeability and for the function of fungal integral membrane
proteins; accordingly, this sterol is essential for cell viability
(Leber et al., 2003; Tatsumi et al., 2013; Song et al., 2016). Several
antifungals primarily target ergosterol, either by inhibiting its
biosynthesis or by binding to it, causing formation of pores in
the membrane.

Azole antifungals act by inhibiting ergosterol biosynthesis via
the cytochrome P450 enzyme 14-α demethylase, which catalyzes
the conversion of lanosterol to ergosterol (Kathiravan et al.,
2012). Azoles affect the integrity of fungal membranes, altering
their morphology and inhibiting growth (Kathiravan et al., 2012;
Tatsumi et al., 2013).

The allylamine class, represented by terbinafine and naftifine,
function by inhibiting the early steps of fungal ergosterol
biosynthesis (Kathiravan et al., 2012) by targeting the enzyme
squalene epoxidase, encoded by ERG1. This inhibition leads
to accumulation of squalene and the absence of other

FIGURE 1 | Old and new targets as antifungal candidates.
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sterol derivatives. Allylamines are highly effective against
dermatophytes because they have been shown to accumulate
more in the skin and nail beds relative to the blood, possibly due
to their lipophilicity (Ngo et al., 2016).

Polyenes, such as nystatin and amphotericin B, exhibit
fungicidal activity primarily by binding to ergosterol to form
a complex capable of disrupting the membrane and leading
to leakage of monovalent ions as well as other cytoplasmic
contents (Odds et al., 2003; Walsh et al., 2008; Baginski and
Czub, 2009). A second mechanism of polyene action involves a
cascade of oxidation reactions and interactions with lipoproteins
that impair membrane permeability through the release of free
radicals (Sangalli-Leite et al., 2011; Mesa-Arango et al., 2012,
2014).

Cell Wall
The fungal cell wall, which is primarily composed of chitin,
glucans, mannans, and glycoproteins, is essential for adhesion
and fungal pathogenesis and also serves as a protective barrier,
limiting the access of molecules to the plasma membrane
(Bowman and Free, 2006; van der Weerden et al., 2013). The
two main mechanisms of action of antifungals targeting the
cell wall are related to the inhibition of chitin and β-glucan
synthesis.

In the period between 2001 and 2006, the echinocandin
class of drugs, represented by caspofungin, micafungin,
and anidulafungin, was developed. This class has different
mechanisms of action that are specific for the fungal cell wall.
Echinocandins target the protein complex responsible for the
synthesis of β-1,3 glucans by blocking the enzyme glucan
synthase (Odds et al., 2003). This blockage causes a decrease in
the incorporation of glucose monomers linking β-1,3 and β-1,6
glucans, thereby weakening the cell wall and leading to fungal
cell lysis (Kathiravan et al., 2012; Song and Stevens, 2016).

Chitin, a β-1-4-linked N-acetylglucosamine polymer, is an
essential component of the fungal cell wall, though it is
only present in very small amounts in yeasts (1–2%) but in
considerable quantities in filamentous fungi (10–20%) (Bowman
and Free, 2006; Morozov and Likhoshway, 2016). Nikkomycin
and polyoxins are antifungal agents that target chitin synthase,
which is responsible for elongation of the chitin chain and,
therefore, is considered an attractive target (Kathiravan et al.,
2012).

Inhibition of Nucleic Acid, Protein, and
Microtubule Syntheses
Inhibition of nucleic acid synthesis is related to the action of
5-flucytosine, which is converted primarily to 5-fluorouracil by
the enzyme cytosine deaminase and then to 5-fluorouridylic acid
by UMP pyrophosphorylase (Odds et al., 2003). Although 5-
flucytosine was synthesized in 1957, its antifungal property was
not discovered until 1964, 7 years later (Shukla et al., 2016). This
acid can be incorporated into RNA, resulting in premature chain
termination, thereby inhibiting DNA synthesis through effects on
the enzyme thymidylate synthase (Polak and Scholer, 1975; Odds
et al., 2003; Kathiravan et al., 2012).

With respect to the synthesis of microtubules, it is known
that griseofulvin interferes with intracellular production, thus
inhibiting fungal mitosis (Kathiravan et al., 2012).

Finally, sordarins suppress protein synthesis, which retards
cell growth. Essentially, two fungal proteins have been described
as target of sordarins: translation elongation factor 2 (eEF2) and
the large ribosomal subunit protein rpP0 (Botet et al., 2008).
Attempting to elucidate the mechanism of action, Justice et al.
(1998) performed genetic assays using Saccharomyces cerevisiae
mutants to demonstrate the fungal specificity of sordarins and
proved that eEF2 is a target.

Reactive Oxygen Species (ROS)
It is known that treatment with some antifungals such as AmB
and itraconazole can cause more than one effect on fungal
cells (Ferreira et al., 2013; Mesa-Arango et al., 2014). According
to Mesa-Arango et al. (2014), mitochondria naturally produce
free radicals. However, under adverse conditions, such as in
the presence of oxidants and UV light, these free radicals are
produced in abundance, causing damage to proteins, lipids and
DNA and leading to cell death. Accordingly, ROS production is
also associated with apoptosis. Treatment with AmB is able to
induce oxidative and nitrosative bursts in Candida, Cryptococcus,
and Trichosporon, enhancing its fungicidal effect (Ferreira et al.,
2013; Mesa-Arango et al., 2014).

Inhibition of Heat Shock Protein 90
(Hsp90)
Heat shock protein 90 (Hsp90) is a molecular chaperone of
the heat shock protein (Hsp) family. Synthesized as an adaptive
response to noxious conditions, these proteins contribute to the
survival of pathogenic microorganisms in the host (Jacob et al.,
2015). Hsp90 has been related to fungal pathogenicity, phase
transition in dimorphic fungi and antifungal drug resistance,
making it a potential target for antifungal therapy (Burnie et al.,
2006; Brown et al., 2010; Jacob et al., 2015). Jacob et al. (2015)
examined the transcription profiles of Trichophyton rubrum
under different stress conditions, such as interaction with nail
and skin cells and molecules, nutrients and treatment with
antifungal drugs. In addition to suggesting the role of Hsp90 in
the pathogenesis and susceptibility to dermatophytosis antifungal
agents, the authors also related this protein to the regulation of
other heat shock proteins.

Inhibition of Calcineurin Signaling
Calcineurin is defined as a conserved Ca2+-calmodulin
(CaM)-activated protein phosphatase 2B that belongs to the
phosphor-protein phosphatase family (Juvvadi et al., 2016).
This protein is involved in calcium-dependent signaling and
regulation of several important cellular processes in yeasts
(Candida spp., Cryptococcus spp.) and filamentous fungi
(Aspergillus fumigatus), including growth, cell wall integrity,
transition between morphological states, cation homeostasis,
stress responses, and drug resistance (Blankenship et al., 2003;
Steinbach et al., 2006; Chen et al., 2013; Juvvadi et al., 2016). More
important is the role of calcineurin in maintaining the integrity
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of the fungal cell wall by regulating downstream effectors and
influencing the biosynthesis of ergosterol, chitin and β-glucans.
Odom (2014) suggested that triphenylethylenes, described by
Butts et al. (2014), are a novel class of antifungal drugs that act
on calcium homeostasis in Cryptococcus neoformans via direct
inhibition of the calcineurin activator calmodulin.

MOLECULAR MECHANISMS OF
ANTIFUNGAL RESISTANCE

The widespread use of antifungal agents and the limited arsenal
associated with the increased number of opportunistic infections
have resulted in the progression of resistance to available
drugs. The antifungal resistance mechanism may occur through
different conditions such as a decrease in the effective drug
concentration, changes or overexpression of the drug targets,
and metabolic bypasses (Sanglard, 2016). Figure 2 depicts an
overview of several antifungal resistance mechanisms described
for Candida spp.

Molecular Mechanisms of Resistance to
Azoles
Azole resistance includes the following mechanisms: (1)
activation of efflux pumps, (2) qualitative changes in the target
enzyme, (3) quantitative changes caused by overexpression of
ERG11, and (4) alterations in cell wall composition.

Activation of Efflux Pumps

Reduction in intracellular antifungal accumulation in Candida
spp. is a consequence of the overexpression of membrane-
associated transporters acting as multidrug efflux pumps (Prasad
and Rawal, 2014). Two main classes of transporters are
described as being involved in this resistance mechanism. The
superfamily of ATP-binding cassette (ABC) proteins comprises
the primary activity, hydrolyzing ATP to provide energy to
drive the efflux of drugs. Transporters belonging to the major
facilitator superfamily (MFS) constitute the secondary activity;
these pumps utilize a proton electrochemical gradient across
the plasma membrane to extrude substrates (Cannon et al.,

FIGURE 2 | Candida sp. mechanisms of resistance to different antifungal classes.
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TABLE 1 | Burch and Russell: The three R’s concept and the action

required for its application.

3 R rule Action required

Reduction Careful experimental design

Consult the literature

Organize a pilot experiment before using a bigger amount

of animals

Realize an appropriate statistical test

Get the great amount of data from each animal

Refinement Eliminate the pain and search for better alternatives for

animal welfare

Be trained before execute the procedures

Use adequate doses of analgesics and anesthetic for the

painful procedures

Perform post chirurgical procedures like (e.g.,

thermoregulation)

Replacement use in silico methods (e.g., computer software)

use in vitro methods (e.g., cell culture and cell tissue)

2009). Although most Candida species are naturally susceptible
to azoles, an increasing number of cases of acquired resistance
have been reported in clinical isolates of patients exposed to
prolonged treatment, especially to FLZ (White et al., 1998;
Pfaller and Diekema, 2007; Arendrup, 2014; Espinel-Ingroff et al.,
2014).

Candida albicans azole-resistant isolates can overexpress
one or more efflux pumps (White, 1997; Franz et al., 1998;
Lopez-Ribot et al., 1998). C. albicans possesses 28 putative
types of ABC transporters, two of which, CDR1 and CDR2,
are well characterized and overexpressed in resistant-isolates.
Cdr1 has a greater contribution to FLZ resistance than Cdr2
(Sanglard et al., 1997; Sanglard et al., 2009; Prasad and
Goffeau, 2012). Additionally, gain-of-function mutation of TAC1
(transcriptional activator of CDR genes) is related to increased
levels of CDR1 and CRD2 (Coste et al., 2007). Regarding MFS
transporters, C. albicans has 96 potential MFS transporters,
though only one has been described with respect to azole
resistance, the MDR1 member of the DHA1 family (Gaur et al.,
2008).

It has been postulated that CDR genes in C. albicans are
involved in the removal of different azoles. CDR1 efflux is
associated with a wide range of substrates, whereas MDR1
appears to be specific for FLZ, as its overexpression results in
moderate resistance to FLZ (Sanglard et al., 1995; White et al.,
1998; Hiller et al., 2006; Cheng et al., 2007). The ABC and MFS
pumps differ in relation to their structures and mechanisms, and
differences in substrate specificity are expected (Keniya et al.,
2015).

The exact mechanism underlying FLZ resistance in C. glabrata
is not well defined; however, different studies indicate an essential
role for ABC transporters (Abbes et al., 2013). FLZ-resistant
C. glabrata clinical isolates present CDR1 andCDR2 upregulation
(Sanglard et al., 1999; Bennett et al., 2004). Sanguinetti et al.
(2005) observed increased expression of SQN2 (another ABC
transporter) in two isolates (among 29) expressing normal levels
of CRD1 and CRD2; SQN2 is possibly involved in the resistance
of this species.

Studies have demonstrated that the primary mechanisms
of azole resistance in clinical isolates of C. dubliniensis
is upregulation of Mdr1 (Moran et al., 1998). Mdr1 is
invariably overexpressed in C. dubliniensis strains with reduced
susceptibility to FLZ (Perea et al., 2001). Moreover, among
clinical isolates obtained from HIV-infected individuals
with oropharyngeal candidiasis, Perea et al. (2002) reported
upregulation of Mdr1 in all isolates with a high FLZ-resistance
level, whereas less than half of the isolates presented CDR
upregulation. Despite the 92% identity of the C. dubliniensis
CDR1 gene with C. albicans, this may occur because
C. dubliniensis genotype 1, previously described by Gee et al.
(2002), possesses a non-sense mutation in CDR1 that converts a
normal codon to a stop codon (TAG), resulting in expression of
a truncated protein of 85 kDa instead of the wild-type 170 kDa
(Perea et al., 2002).

Candida krusei carries two homologous genes for ABC
transporters previously described for C. albicans: ABC1 and
ABC2. The ABC1 gene is upregulated in cultures exposed to
imidazole and cycloheximide. However, cycloheximide exhibits
antagonist activity against FLZ, and this correlation between
antagonism and upregulation suggests that FLZ and other azoles
may be substrates for the ABC1 transporter (Katiyar and Edlind,
2001). Thereafter, Lamping et al. (2009) showed the involvement
of ABC1 in the innate azole resistance of C. krusei, and Guinea
et al. (2006) found that MDR proteins have a role in C. krusei
resistance. However, expression of MFS transporters was not
reported determined in FLZ-resistant C. krusei.

The FLZ resistance of C. parapsilosis has been linked to
overexpression of MRR1 in high association with a mutation
(Zhang et al., 2015) that concomitantly results in overexpression
of MDR1 and overexpression of CRD1 (Souza et al., 2015; Zhang
et al., 2015). The involvement of efflux pumps in C. tropicalis
clinical isolate antifungal resistance has not yet been observed,
but there is an in vitro study demonstrating the development of
FLZ-resistance associated with the up-regulation of MDR1 and
CDR1 (Barchiesi et al., 2000).

The involvement of efflux pumps has also been described
in other pathogenic fungi. In C. neoformans, overexpression of
the AFR1 gene, of the ABC transporter family, is associated
with FLZ resistance (Posteraro et al., 2003; Sanguinetti et al.,
2006). In addition, afr2p and Mdr1p, members of the ABC and
MFS families, respectively, from C. neoformans and C. gattii can
also promote resistance to FLZ and other azoles (Basso et al.,
2015).

The ABC transporter Afr1 also acts in azole resistance
in Aspergillus because overexpression of the AFR1 gene
from A. fumigatus can confer itraconazole resistance (Slaven
et al., 2002). Although Aspergillus fumigatus has four Mdr-like
efflux pumps, itraconazole-resistant isolates or strains under
itraconazole treatment only present overexpression of mdr3 and
mdr4 (da Silva Ferreira et al., 2004).

Efflux appears to be the most prevalent mechanism of
resistance in dermatophytes. Increased expression of the ABC
transporters genes TruMDR1 and TruMDR2 from T. rubrum is
observed in the presence of azoles (Cervelatti et al., 2006; Fachin
et al., 2006). The use of efflux pumps by dermatophytes is also
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implicated in resistance to other antifungals, such as terbinafine,
amphotericin B and griseofulvin (Cervelatti et al., 2006; Paião
et al., 2007; Yu et al., 2007; Ghannoum, 2016;Martins et al., 2016).

ERG11: Overexpression and Changes in Drug Targets

In the presence of FLZ, C. albicans increases ERG11 expression,
most likely via compensatory mechanisms, to deplete ergosterol
(Albertson et al., 1996). However, Franz et al. (1998) showed
that even in the absence of FLZ, resistant isolates express
ERG11 at higher levels compared to susceptible isolates exposed
to the drug. Overexpression of ERG11 results in increased
concentrations of lanosterol 14α-demethylase; consequently,
larger amounts of the antifungal are required to inhibit
the enzyme (Morschhäuser, 2002). This mechanism has been
described for many C. albicans FLZ-resistant isolates (White
et al., 2002; Chau et al., 2004; Goldman et al., 2004). ERG11
overexpression in azole-resistant isolates can occur via two
mechanisms of ERG11 amplification. One is formation of
an isochromosome containing two copies of the left arm
of chromosome 5, where ERG11 resides, and duplication
of the entire chromosome (Selmecki et al., 2006). The
second mechanism is mutation in the zinc cluster finger
transcription factor Upc2, which results in overexpression of
ERG11 in C. albicans (Dunkel et al., 2008). Overexpression
of ERG11 has also been reported for other azole-resistant
Candida species; however, the mechanisms remain unknown
(Barchiesi et al., 2000; Redding et al., 2002; Vandeputte
et al., 2005; Rogers, 2006; Jiang et al., 2013; Cowen et al.,
2014).

Another mechanism of azole resistance among Candida
strains involves non-synonymous point mutations in the
ERG11 gene, which encodes the target enzyme lanosterol
14α-demethylase. Mutations in ERG11 can result in post-
translational modifications in the amino acid sequence and
consequently in the three dimensional structure of Erg11p,
causing decreased binding affinity for azole components and
also reducing ergosterol biosynthesis without impeding enzyme
function but generating yeast with an altered phenotype resistant
to azole (Xiang et al., 2013). Among 160 different amino acid
substitutions, only 10 have been confirmed in FLZ resistance;
four were obtained in the laboratory but not yet detected in
clinical isolates (Chen et al., 2007). The substitutions R467K,
I471T, G464S, S405F, and K143R were only related to azole-
resistant C. albicans isolates (Sanglard et al., 1998; Lamb et al.,
2000; Morio et al., 2010), with the most common being R467K
and G464S (Morio et al., 2010). ERG11 mutations have been
described for other azole-resistant clinical Candida isolates,
including C. dubliniensis (Perea et al., 2002), C. krusei (Ricardo
et al., 2014), C. tropicalis (Vandeputte et al., 2005; Jiang et al.,
2013) and more recently C. parapsilosis (Grossman et al., 2015).
However, the same finding has not yet described for C. glabrata
(Gonçalves et al., 2016).

In non-Candida species, the most common mechanism of
azole resistance is alteration of the target protein. Several
studies describe point mutations in the ERG11 (CYP51) gene,
encoding 14-α-demethylase, leading to amino acid substitution
that decreases the affinity for azole (Xie et al., 2014).

In Cryptococcus spp., three point mutations in ERG11 have
been described in association with azole resistance: point
mutation G1855T leading to amino acid substitution of glycine
484 with a serine (G484S) (Rodero et al., 2003); substitution of
tyrosine 132 by phenylalanine occurring in the catalytic domain
(Sionov et al., 2012); and point mutation G1855A, also resulting
in the amino acid substitution G484S (Bosco-Borgeat et al., 2016).
Cryptococcus neoformans under FLZ stress is also able to adapt
via duplication of chromosome 1, on which the genes ERG11 and
AFR1 and that encoding the FLZ transporter protein are found
(Sionov et al., 2010).

Aspergillus spp. have two genes encoding 14-α-demethylase:
CYP51A and CYP51B. However, azole resistance is more
associated with mutation in CYP51A (Gonçalves et al., 2016).
Different point mutations and non-synonymous mutations have
been described in CYP51A, and the different patterns of azole
resistance depend on these mutations (Diaz-Guerra et al., 2003;
Mann et al., 2003; Chowdhary et al., 2014a; Leonardelli et al.,
2016). For example, non-synonymous mutations in codons
98,138, 220, 431, 434, and 448 may confer resistance to all azoles
in Aspergillus spp. (Howard et al., 2009).

In drug-resistant Aspergillus, tandem repeat mutation
associated with amino acid substitution in the CYP51A
promoter have been described, such as TR34/L98H and
TR46/Y121F/T289A (Verweij et al., 2007; Vermeulen et al.,
2013). The most prevalent is TR34/L98H, which is found in
different resistant Aspergillus isolates worldwide and seems to be
the major mutation associated with azole resistance (Lockhart
et al., 2011; Chowdhary et al., 2012, 2014b; Badali et al., 2013;
Seyedmousavi et al., 2013; Chen et al., 2016).

InHistoplasma capsulatum, a Y136F substitution in CYP51Ap
has also been implicated in decreased susceptibility to FLZ and
voriconazole (Wheat et al., 2006).

Erg3 Mutations: Alteration of Ergosterol Biosynthesis

Fungi exposed to azoles suffer from ergosterol depletion and
accumulation of toxic sterols, resulting in growth arrest (Kanafani
and Perfect, 2008). Another less frequent mechanism of azole
resistance is inactivation of the enzyme sterol 15,6-desaturase
encoded by the gene ERG3, which is essential for ergosterol
biosynthesis (Sanglard and Odds, 2002). Therefore, ERG3
protects yeast against toxic sterols; in contrast, deletions or
mutations in ERG3 result in high levels of azole resistance once
the production of toxic sterols is bypassed (Watson et al., 1989;
Kelly et al., 1997). ERG3 mutants have been well studied in
C. albicans and C. dubliniensis (Morio et al., 2012). Nonetheless,
few of these mutations result in amino acid changes in Erg3
(Pinjon et al., 2003; Chau et al., 2005; Martel et al., 2010;
Vale-Silva et al., 2012). Indeed, the exact mechanism by which
a single substitution results in azole resistance needs to be
investigated. Studies to date have demonstrated that cross-
resistance between azoles and polyenes may occur because of
ERG3 loss of function, which results in low ergosterol contents,
protecting yeast against the toxic effects of AmB (Anderson
et al., 2014; Sanglard, 2016). Some studies point to other
mutations in genes of ergosterol biosynthesis suspected to be
related to azole resistance, such as ERG6, ERG24, and ERG2
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(Jensen-Pergakes et al., 1998; Jia et al., 2002; Vincent et al.,
2013).

Molecular Mechanisms of Resistance to
Flucytosine
In relation to 5-FC, approximately 10% of C. albicans isolates
present primary resistance, even in the absence of drug exposure
(Arikan and Rex, 2005). Different studies have shown that
resistance to 5-FC is related to its metabolism. In C. glabrata
and C. albicans,mutation in cytosine deaminase confers primary
resistance to 5-FC, and deficiencies in cytosine permease activity
have also been associated with resistance in Candida species
(Hope et al., 2004; Vandeputte et al., 2011). Cytosine permease
is involved in the uptake of 5-FC, after which cytosine deaminase
produces 5-fluorouracil using cytosine; thus, 5-FC resistance is
associated with deficiency in enzymes related to uptake, transport
and transformation of 5-FC that result in failure to metabolize to
the active drug (Bondaryk et al., 2013). A C. lusitaniae mutant
lacking the enzyme uracil phosphoribosyl transferase, encoded
by the gene FUR1 (Papon et al., 2007), exhibits secondary
resistance to 5-FC. The enzyme UPRT converts 5-fluorouracil
to 5-fluorouridine monophosphate and inhibits thymidylate
synthetase by disrupting DNA synthesis.

The molecular mechanism of the resistance of Cryptococcus
neoformans to 5-FC is not well established but is often related to
mutation in pyrimidine salvage enzymes, as occurs in C. albicans
(Whelan, 1987).

Song et al. (2012) demonstrated that C. neoformans might
possess different mechanism of resistance against 5-FC that
are based on sensor histidine kinases. C. neoformans possesses
a two-component system, Tco2 and Tco1, to regulate 5-FC
response; deletion of TCO2 leads to strong 5-FC resistance, and
mutation in TCO1 increases susceptibility. In addition, through
transcriptomic analysis, it was found that 5-FC-regulated genes in
C. neoformans differ from those of S. cerevisiae. As most of these
genes are of unknown function in other fungi, C. neoformans
appears to have a unique mechanism of resistance against 5-FC.

Molecular Mechanisms of Resistance to
Echinocandins
Mutations in the FKS1 gene lead to alterations in the
conformation of the encoded enzyme, resulting in lower affinity
between Fks1 and echinocandins and consequently resistance to
these drugs (Gonçalves et al., 2016). Mutations in two hot spot
regions of FKS1 are conserved in clinical isolates of C. albicans:
the region between 641 and 648 (comprising a cytoplasmic
domain/binding site of echinocandins) and 1345–1365 are hot
spot 1 and hot spot 2 (HS2), respectively. These sites are
responsible for the majority of mutations conferring resistance
to echinocandins, including the most described: substitution of
serine at position 645 (Balashov et al., 2006). Different studies
have demonstrated alterations in FKS1 in other Candida species
(Park et al., 2005; Desnos-Ollivier et al., 2008; Garcia-Effron et al.,
2008, 2010), whereas mutations in Fks1 and its paralog Fks2 have
been associated with resistance inC. glabrata (Garcia-Effron et al.,
2009; Pham et al., 2014; Perlin, 2015).

Candida parapsilosis and C. guilliermondii show reduced
susceptibility to echinocandins, most likely due to a natural
polymorphism in the Fks1p hot spot region corresponding
to mutations acquired in resistant isolates of other species:
substitution of proline to alanine at positions 660 and 642
(Perlin, 2007; Garcia-Effron et al., 2008). Studies have shown
that activation of cell wall recovery or compensatory pathways
increases chitin production and that mutations that increase
the chitin level result in reduced caspofungin susceptibility in
C. albicans (Plaine et al., 2008).

Alterations in the Fks subunit have also been associated
with echinocandin resistance in other fungi. A mutant with an
amino acid substitution S678P in Fks1p resulted in resistance of
A. fumigatus to echinocandins (Rocha et al., 2007). Alterations
in FKS are also involved in Fusarium intrinsic resistance to
echinocandin (Katiyar and Edlind, 2009).

Cryptococcus neoformans is intrinsically resistant to
echinocandins without Fks alteration (Maligie and Selitrennikoff,
2005). Recently, Huang et al. (2016) investigated the molecular
basis of C. neoformans resistance to echinocandins through a
high-throughput genetic screen and found that the CDC50 gene
may be involved in echinocandin resistance. CDC50 encodes
the β-unit of membrane lipid flippase, which mediates the lipid
trafficking pathway.

Molecular Mechanisms of Resistance to
Polyenes
Although the development of acquired resistance to AmB
rarely occurs in Candida, there are some reports to date
(Favel et al., 2003; da Matta et al., 2007). Resistance to
AmB generated a common phenotype with alterations in
the membrane lipid composition and consequently a change
in fluidly and permeability. A greater number of cases of
therapy failure of AmB have been associated with C. lusitaniae
(Minari et al., 2001; Favel et al., 2003; Atkinson et al., 2008).
The main alterations involved in polyene resistance are in
enzymes participating in ergosterol biosynthesis. Defects in
ERG2 and ERG3, encoding C-8 sterol isomerase (converting
fecosterol to episterol with low affinity for AmB) and 15,6-
desaturase, respectively, result in quantitative and qualitative
modifications in the membrane sterol content, influencing
the amount of ergosterol or its availability for the action of
polyenes (Arikan and Rex, 2005; Sheikh et al., 2013). A defective
ERG3 gene resulted in low ergosterol levels in the fungal
membrane of fungal, conferring azole/polyene cross-resistance
to Candida isolates. Another likely AmB-resistance mechanism
is via enhanced activity of catalases, which reduce oxidative
damage (Sokol-Anderson et al., 1986; Kanafani and Perfect,
2008).

Although the mechanisms of resistance to AmB in Candida
spp. are well described, these mechanisms in non-Candida
species remain unclear. Resistance to AmB in C. neoformans
isolated from AIDS patients was linked to alterations in sterol
delta 8-7 isomerase (Kelly et al., 1994). Aspergillus strains are
commonly resistant to AmB, though this varies among species,
without alteration in ergosterol content. One of the mechanisms
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proposed for A. terreus AmB resistance is blockage of the Ras
signaling pathway by Hsp90 and Hsp70, inhibiting the formation
of aqueous pores (Blum et al., 2013; Blatzer et al., 2015).

BIOFILM AND ANTIFUNGAL
RESISTANCE

The ability of many fungi to form biofilms is one of the reasons
for antifungal drug resistance. Many medically important fungi
are described as biofilm-forming organisms, such as Candida
spp. (Chandra et al., 2005; Hinrichsen et al., 2008; Finkel and
Mitchell, 2011; Pires et al., 2011), Pneumocystis spp. (Cushion
et al., 2009), Coccidioides spp. (Davis et al., 2002), Aspergillus
spp. (Mowat et al., 2009; Kaur and Singh, 2014), Zygomycetes
(Singh et al., 2011), Malassezia spp. (Cannizzo et al., 2007;
Figueredo et al., 2012), Trichosporon spp. (Di Bonaventura
et al., 2006; Colombo et al., 2011), Cryptococcus (Walsh et al.,
1986; Martinez and Casadevall, 2007), Histoplasma capsulatum
(Pitangui et al., 2012), Trichophyton spp. (Costa-Orlandi et al.,
2014) and Paracoccidioides spp. (Sardi et al., 2015).

Biofilms are highly structured and complex microbial
communities embedded in a self-produced extracellular matrix
(ECM) that attach to a wide range of surfaces and (Fanning
and Mitchell, 2012). Several factors contribute to initial surface
attachment, such as pH, temperature, osmolarity, flow of the
surrounding biologic medium, host immune factors and even
the presence of antimicrobial agents (Baillie and Douglas, 2000;
Chandra et al., 2001; Ramage et al., 2008).

Fungal biofilm formation occurs through a sequential
process including planktonic cell adhesion to an appropriate
substratum, colonization, ECM production, biofilm maturation,
and dispersion (Fanning and Mitchell, 2012). Despite these
specific characteristics, all types of fungal biofilms have distinct
properties from planktonic yeast cells and increase antifungal
drug resistance up to 1000-fold (Ramage et al., 2001; Uppuluri
et al., 2010). Indeed, several studies have shown the inefficacy of
antifungal therapy against different fungal biofilms.

Multiple other biofilm-specific factors contribute
simultaneously to the resistance of yeasts to antifungal
drugs, including cell density, quorum sensing, efflux pump
activity, persister cells, ECM presence, stress responses and
overexpression of drug targets.

The cell density is an important factor that contributes to the
antifungal resistance of biofilms. However, some studies show
that this is not a biofilm-specific resistance mechanism because
a similar trend was observed for planktonic cells. Perumal
et al. (2007) studied the efficacy of different azoles, AmB and
caspofungin on planktonic cells at densities similar to those found
in biofilms. The susceptibility of dissociated biofilm cells was
similar to that of planktonic cells at the same cell density, and
this susceptibility decreased as the density of the cells increased
(Perumal et al., 2007). This phenomenon was also demonstrated
by Seneviratne et al. (2008), who noted the density-dependent
susceptibility of planktonic or biofilm for ketoconazole and 5-FC.
Lass-Florl et al. (2003) showed similar drug resistance results by
increasing the inoculum sizes of Aspergillus species, supporting

the idea that the physical density of the cells influences antifungal
agent activity.

By providing microorganisms with the ability to communicate
and coordinate population growth/morphology via the secretion
of signaling molecules, cell density can be considered a key
aspect of the quorum-sensing process (Ramage et al., 2009,
2012). QS for fungi was first described in C. albicans by
Hornby et al. (2001), who identified farnesol as a molecule
that inhibits the hyphal transitional stage of C. albicans and
increases adhesion (Saville et al., 2003; Ramage et al., 2009).
Exposing C. albicans to farnesol also resulted in alterations in
gene expression involving hyphal developmental genes (TUP1
and CRK1), cell surface hydrophobicity genes and those involved
in drug resistance (FCR1 and PDR16) (Cao et al., 2005; Enjalbert
and Whiteway, 2005). In addition, farnesol induces apoptosis
in both A. nidulans and Fusarium graminearum (Semighini
et al., 2006, 2008). Tyrosol, the second QS molecule identified in
C. albicans, promotes germ tube formation. According to Alem
et al. (2006), tyrosol enhances the early phase of biofilm formation
and may also inhibit farnesol activity, thereby controlling cell
population morphology.

Khot et al. (2006) for the first time studied the mRNA levels
of genes involved in ergosterol biosynthesis (ERG genes) and in
β-1,6-glucan biosynthesis (SKN1 and KRE genes) in comparison
between planktonic and biofilm-associated cells. The authors
described the appearance of a unique transcript profile in a
subpopulation of AmB-resistant blastospores with significant
upregulation of ERG25, SKN1, and KRE1 and downregulation of
ERG1.Mukherjee et al. (2003) reported that ergosterol levels were
significantly decreased in intermediate and mature phases when
compared to early-phase biofilms, suggesting that the biofilm
resistance to azole might be explained by ergosterol alterations
in biofilm membranes. Subsequent studies (Borecká-Melkusová
et al., 2009; Nett et al., 2009; Nailis et al., 2010) compared
the exposure of young and mature biofilms to fluconazole,
concluding that both induce downregulation of genes encoding
enzymes involved in ergosterol biosynthesis (CaERG1, CaERG3,
CaERG11, and CaERG25). In addition, treatment of both young
and mature biofilms with AmB predominantly resulted in
overexpression of CaSKN1, with only modest upregulation of
CaKRE1 (Nailis et al., 2010).

Induction of ergosterol pathway genes has been described in
different biofilms of Candida species. For example, incubation
with fluconazole caused upregulation of CdERG3 and CdERG25
in C. dubliniensis (Borecká-Melkusová et al., 2009) and of genes
involved in ergosterol biosynthesis in C. parapsilosis, resulting in
antifungal resistance (Rossignol et al., 2009).

Moreover, drug efflux pumps also participate in drug
resistance of biofilms. Ramage et al. (2002) investigated the role
of efflux pumps, ABC and MFS transporters, of C. albicans
biofilm. Expression of CDR genes predominated at the beginning
of biofilm formation (24 h), whereas MDR1 was solely
overexpressed after 24 h. Expression of CDR1, CDR2, andMDR1
showed that C. albicans was susceptible to azoles when grown
planktonically but exhibiting resistance when grown in a biofilm.
Several subsequent studies confirmed these results, suggesting
that the expression of these genes is necessary for biofilm
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resistance (Mukherjee et al., 2003; Perumal et al., 2007). Gao
et al. (2014) showed that fluconazole increased the expression
of CDR1, CDR2 and MDR1 and that the combination with
doxycycline downregulated the gene overexpression induced by
FLZ.

Later, Nett et al. (2009) performed an in vivo study of
C. albicans biofilm formation on implanted catheters and showed
upregulation of genes during biofilm development: CDR2 at 12 h
and MDR1 at both 12 and 24 h. Similar results were reported
for other Candida species, including C. glabrata, in which the
expression of CDR1 and CDR2 was found at early (6 h) and
intermediate (15 h) biofilm stages, even though neither gene
was upregulated at the mature phase (48 h) (Song et al., 2009).
C. tropicalis showed increased expression of MDR1 after 24 h
of biofilm formation (Bizerra et al., 2008). In A. fumigatus, the
initial phase of biofilm formation was associated with increased
activity of the efflux pump MDR and gene upregulation at 8 h
when treated with voriconazole (Rajendran et al., 2011). Thus,
all reports support the idea that efflux pump expression is a
mechanism of biofilm resistance, especially in the early phase of
biofilm growth until ECM production.

The ECM is considered one of the essential mechanisms of
biofilms resistance, conferring enhanced antimicrobial resistance
and protection from host immune responses (Sutherland, 2001;
Davies, 2003). The ECM may act as an adsorbent, reducing
the amount of antimicrobial available to interact with the
biofilm, and the structure physically reduces the penetration
of antimicrobial agents by walling off access to regions of the
biofilm (Taraszkiewicz et al., 2013). The matrix is composed
of a variety of proteins, nucleic acids, phospholipids, lipids,
amyloid fibers, humid substances, and in some cases, surprising
amounts of extracellular DNA (e-DNA) (Estrela et al., 2009;
Dogsa et al., 2013). The ECM confers important characteristics
to biofilm, such as providing for mechanical stability, an external
digestive system, and intense cell interactions, including cell–
cell communication and synergistic microconsortia, and serving
as a nutrient, energy, and recycling source (Flemming and
Wingender, 2010).

During biofilm formation, β-1,3 glucan is one of the principle
carbohydrate components of the ECM (Ramage et al., 2012). It is
responsible for sequestering azoles, echinocandins, pyrimidines,
and polyenes, acting as a “drug sponge,” and confers resistance
to C. albicans biofilms (Nett et al., 2010a,b). In addition, the ECM
of non-albicans Candida strains also contains β-1,3 glucan, which
contributes to azole resistance via specific binding (Mitchell et al.,
2013). FKS1 was the first gene described as encoding β-1,3 glucan
synthase of C. albicans (Nett et al., 2010a). Other genes essential
for the C. albicans ECM are SMI1 and RLM1, which are involved
in the protein kinase C cell-wall integrity pathway, controlling
the cell wall glucan content in response to stress. Recently, Taff
et al. (2012) showed that glucan transferases and exoglucanase
are crucial for the accumulation and delivery of β-1,3 glucan to
the matrix.

Biofilm presents persister cells, which are directly correlated
with accumulating high concentrations of antimicrobial agents.
In essence, a persister is a dormant cell that with little or
no cell wall synthesis; drugs bind to their target molecules

but are unable to promote cell death (Lewis, 2007). The
simplest route to form a dormant persister cell might be
through the overproduction of proteins that are toxic to the
cell and inhibit growth (Lewis, 2010). Different from bacteria,
these cells have only been detected in yeast biofilms and not
in planktonic populations (LaFleur et al., 2006). Due to the
ECM, the persisters present in the biofilm can withstand both
antifungal treatment and the immune system (Lewis, 2007).
Persisters may be mainly responsible for re-infection once
when the concentration of antimicrobial decreases, and they
can repopulate the biofilm (Lewis, 2001). Recently, a dose-
dependent study involving AmB and chlorhexidine against
C. albicans in planktonic and biofilm forms reported complete
elimination of planktonic cells in both exponential and stationary
stages. However, biphasic killing occurred in the mature biofilm,
suggesting the presence of persisters. After AmB treatment,
surviving C. albicans in the biofilm capable of producing a new
biofilm with a new subpopulation of persisters, suggesting that
yeast persisters are not mutants but phenotypic variants of the
wild-type population (LaFleur et al., 2006). In addition, Sun
et al. (2016) showed that C. albicans AMB-tolerant persisters
were produced mainly during the adhesion phase and that the
maintenance of these cells was dependent of surface adhesion.
Further studies showed the presence of persister cells after
the treatment of C. krusei and C. parapsilosis biofilms with
AmB. However, the biofilm of C. albicans SC5314 under
the same treatment condition did not reveal surviving cells,
indicating a lack of persister cells (Al-Dhaheri and Douglas,
2008).

Based on the above, it is possible to affirm that biofilm
confers antifungal resistance and that this occurs through
various mechanisms. Accordingly, the discovery of new strategies
to overcome these microbial communities has been deeply
researched.

The development of new drug formulations is one of the
main options of studies, including echinocandins and AmB lipid
forms that are inhibit fungal biofilm both in vitro (Kuhn et al.,
2002; Ramage et al., 2013) and in vivo (Mukherjee et al., 2009;
Kucharikova et al., 2013).

The association of drugs is another example of a strategy
against fungal biofilms. Some studies have reported the efficacy
of a combination of AmB and aspirin (Zhou et al., 2012),
FLZ and doxycycline (Gao et al., 2013), and caspofungin and
diclofenac (Bink et al., 2012). The sensitization of C. albicans
biofilms to different antifungals by the immunosuppressant drug
cyclosporine A also resulted in enhanced biofilm inhibition
(Shinde et al., 2012).

The presence of e-DNA, which is an important component of
the ECM, has prompted some strategies using DNase to decrease
biofilm biomass and to enhance the activity of antifungal agents
(Martins et al., 2010). Lactonases and α-amylases are also used
to control fungal biofilms (Taraszkiewicz et al., 2013). Moreover,
an interesting therapeutic option is to block persister survival.
Bink et al. (2011) discovered that superoxide dismutase (SOD)
may be an inhibitor of N,N’-diethyldithiocarbamate (DDC) in
C. albicans biofilms, reducing the miconazole-resistant persister
fraction by 18-fold (Bink et al., 2011).
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The application of antimicrobial photodynamic therapy has
been investigated for anti-fungal biofilm properties with regard to
the efficiency of inhibiting several microorganisms, with minimal
damage to the host cell (Biel, 2010). This therapy involves
the combination of photosensitizer (PS), light and molecular
oxygen (de Melo et al., 2013). In addition, strategies involving
nanoparticles (Allaker, 2010; Ramasamy et al., 2016), plant
extracts (Wojnicz et al., 2012), and chitosan (Carlson et al., 2008)
have been applied against microbial biofilm, with significant
results. Further studies are necessary for identifying means to
overcome fungal biofilm resistance.

DRUG COMBINATIONS

Based on the problems discussed above with regard to antifungal
treatment, one of the options is the combination of drugs. Using
more than one drug can increase efficacy due to the possibility of
action on more than one target; in addition, toxicity is reduced
because less of the drug is used (Chen et al., 2014). Drug
combinations can lead to improved activity, such as synergist
activity, or decrease antagonist action. Evaluation of the effect of
a drug combination in vitro can be realized by the checkerboard
method (Johnson et al., 2004).

Most studies on the in vitro and in vivo combination of azoles
with AmB do not show synergistic activity, though previous
treatment with azole can influence the action of polyenes. This
can be explained by the fact that both drugs have the same
target: ergosterol. However, because azoles inhibit ergosterol
biosynthesis, less ergosterol is available for polyene to bind (Louie
et al., 2001; Sanglard, 2002). Nonetheless, invasive mucormycosis
has been successfully treat with an antifungal combination of
AmB and posaconazole (Pagano et al., 2013).

There are numerous in vitro studies of antifungal
combinations using triazole with echinocandin or triazole
with AmB (Elefanti et al., 2013; Katragkou et al., 2014).
Regardless, the clinical results of combinatory treatment remain
unclear and are generally described for infections caused
by fungi, which present difficulty in treatment, such as in
aspergillosis and mucormycosis (Belanger et al., 2015). The
combination of caspofungin and voriconazole showed in vitro
synergistic activity against Aspergillus spp. (Walsh et al., 2008).
Moreover, this combination showed efficacy in a mammalian
model (Kirkpatrick et al., 2002). Treatment of patients with
invasive aspergillosis with a combination of voriconazole and
anidulafungin improved survival in comparison with treatment
with voriconazole monotherapy (Marr et al., 2015). However, in
another study, triazole and echinocandin combination showed
the same effect as triazole alone (Raad et al., 2015).

The antifungal 5-FC in combination with AmB or with
azole did not show synergistic activity for Candida sp. (Scheid
et al., 2012). However, this was efficient for the treatment of
cryptococcal meningitis. It should be noted that the lack of
availability of 5-FC results in the use of less effective combinations
inmany countries (Perfect et al., 2010).Moreover, this compound
is associated with rapid development of resistance (Vandeputte
et al., 2011).

Interaction with non-antifungal agents has also been described
as potentiating antifungal activity. Triclosan, a compound
exhibiting antimicrobial activity, is widely used in soap,
toothpaste, and other personal care products. This molecule
showed in vitro synergistic activity with FLZ against C. albicans
(Yu et al., 2011). Triclosan is also active against C. neoformans by
activating the apoptosis pathway and also shows synergic activity
with AmB and FLZ (Movahed et al., 2016). As ion homeostasis
is a fundamental factor in the development of fungal disease, ion
chelators have been used in the treatment of fungal infections.
However, synergistic activity with antifungal drugs did not result
in favorable responses in vitro (Lai et al., 2016). Treatment
of cardio-vascular disorders has been realized with calcium
channel blockers, which also demonstrate antifungal activity
(Yu et al., 2014). Recent work shows that the calcium channel
blockers amlodipine, nifedipine, benidipine, and flunarizine
present synergistic activity with FLZ in C. albicans isolates
resistant to FLZ via a mechanism not related to efflux pump
inactivation (Liu S. et al., 2016).

Natural source molecules with antifungal activity are also
described as having in vitro synergistic activity with traditional
antifungal drugs, reducing the concentration of both substances
(Soares et al., 2014; Sardi et al., 2016; Wang et al., 2016). Use of
the natural substance beauvericin with traditional antifungals was
able to inhibit efflux pumps and morphogenesis in FLZ-resistant
C. albicans and potentiate the action of this azole (Shekhar-
Guturja et al., 2016).

NEW ANTIFUNGAL FORMULATIONS
AND NEW ANTIFUNGAL DRUG
STRUCTURE MODIFICATION

Two different strategies have been developed to increase the
therapeutic index of antifungal agents: chemical modifications
and/or elaboration of new formulations of antifungal agents to
obtain less toxic derivatives (Sheng and Zhang, 2011).

Theoretical and experimental studies on the mechanism
of action of AmB and its derivatives were performed by
Borowski (2000). Two generations of derivatives were
developed. First-generation compounds are modified at the
carboxyl group, which improves selective toxicity based on
disturbance of the hydrogen bond network in complex with
sterols. Second-generation compounds have introduction
of a bulky substituent, resulting in an appropriate steric
hindrance effect that disturbs interaction with cholesterol but
not with ergosterol, leading to improved selective toxicity
(Borowski, 2000). Among second-generation derivatives,
N-methyl-N-D-fructosyl AMB methyl ester (MFAME) is
considered the most interesting compound because it is
able to form water-soluble salts, has a broad antifungal
spectrum, and lower toxicity than AMB toward animal cells
in in vitro and in vivo experiments (Szlinder-Richert et al.,
2001).

Despite the huge effort made to decrease fungal resistance
and the toxicity of AmB, the development of rational chemical
modification of known antifungal agents was insufficient to solve
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these problems. Thus, new delivery systems have been evaluated
to reach this goal (Borowski, 2000; Sheng and Zhang, 2011).

Since 1990, nanostructured systems have been studied
as carriers of antifungal agents. Clinically, the intravenous
dosage form of AmB-deoxycholate has adverse effects, mainly
nephrotoxicity. The synthesis of AmB analogs such as AmB
esters or a preparation including an AmB lipid complex, AmB
colloidal dispersion, liposomal AmB and intralipid AmB have
been generated to improve the therapeutic index and lower
toxicity (Gupta and Tomas, 2003; Vyas and Gupta, 2006; Voltan
et al., 2016).

In addition, other delivery systems, such as carriers based on
solid and nanostructure lipids, synthetic and natural polymers,
inorganic and metal nanostructure lipids, dendrimers, silica, and
carbon materials (magnetic nanoparticles), have been pursued.
These delivery systems are able to improve bioavailability and
reduce toxicity and present specificity for target tissues; however,
there is an associated high cost of production (Vyas and Gupta,
2006; Sato et al., 2015; Voltan et al., 2016).

Recent work shows that the composition of nanoparticles
used as delivery vehicles is fundamental for increasing antifungal
activity. Ahmad et al. (2016) produced a conjugate system
with AmB and metal nanoparticles that displayed synergistic
antifungal activity due to the antimicrobial property of silver
against C. albicans and C. tropicalis. Niemirowicz et al.
(2016) reported synergistic activity for the combination of
polyenes and magnetic nanoparticles. This bio-active nano-
sized formulation exhibited enhanced efficiency against two
clinical isolates of Candida species in planktonic and biofilm
states.

For many years, the only available antifungal for invasive
fungal infections was AmB, which has been incorporated into
three lipid formulations. However, the imidazole class offers
new treatment options because it is proven to be less toxic
and in some cases more effective than AmB (Shalini et al.,
2011). Although the imidazole class has been available for a
decade, improvements in safety were necessary. Accordingly,
this class was also subjected to rational chemical modifications.
The triazole class was generated by the addition of a
nitrogen atom to a cyclic ring. This modification provided
a broad spectrum of activity as well as improved safety and
pharmacokinetic profile (Allen et al., 2015). In this sense,
the introduction of triazoles accelerated the pace of drug
development.

New azoles have been developed to combat resistant
pathogens to improve the tolerability and administration.
Voriconazole is structurally similar to FLZ, with the exception
of a fluoropyrimidine group in place of a triazole moiety,
which leads to better bioavailability. Alternatively, posaconazole
has a spectrum of antifungal activity comparable to that of
voriconazole, but the molecular structure with a hydroxylated
analog is similar to that of itraconazole. Currently, isavuconazole,
ravuconazole, albaconazole, and efinaconazole are the four best
studied agents in research aiming to identify an ideal antifungal
with a wide spectrum and reliable pharmacokinetics, parenteral
and oral dosage forms, and a favorable adverse effect profile
(Shalini et al., 2011; Allen et al., 2015).

In addition, Moazeni et al. (2016) reported that the
combination of solid lipid nanoparticles with FLZ was able
to avoid recognition by efflux pump proteins, preventing
extrusion when tested against FLZ-resistant Candida isolates.
In another study, an aqueous nano-suspension of itraconazole
for the treatment of bronchopulmonary aspergillosis solved
pharmacokinetic problem of adequate concentration (Rundfeldt
et al., 2013).

In addition to all azole agents, echinocandins are among the
newest class of antifungal agents and act by inhibiting glucan
synthesis in the fungal cell wall. Echinocandins are composed of a
complex hexapeptide core with an N-terminus acylated by a long
hydrophobic chain. Although echinocandins are fungicidal with
good selectivity, they cannot be orally administered because of
their complex lipopeptide structure. To address the limitation,
several small molecule glucan synthesis inhibitors have been
discovered. However, none is under clinical evaluation thus far
(Sheng and Zhang, 2011; Liu N. et al., 2016).

ANTIFUNGAL IMMUNOTHERAPY:
VACCINES

Given their increasing frequency and unacceptably high
morbidity and mortality rates, prevention of invasive fungal
infections has become of vital importance (Spellberg, 2011;
Medici and Del Poeta, 2015). Vaccination of high-risk groups
is a particularly promising strategy to prevent invasive fungal
infections because easily identifiable risk factors are clearly
defined for many such infections (Perlroth et al., 2007; Spellberg,
2011).

Advances in our understanding of the host defense and
pathogenic mechanisms underlying fungal infections has
supported the development of effective vaccines to combat these
diseases. Accordingly, researchers have dedicated studies to
developing robust, durable and safe fungal vaccines, especially
those that may be useful for endemic infections or in chronic or
superimposed infections in intensive care patients (Santos and
Levitz, 2014; Shahid, 2016).

Although very few clinical trials have been performed in
humans, a growing number of antifungal vaccine candidates are
being evaluated in pre-clinical studies. This may be due to the
renewed interest in the potential use of vaccines, replacing or
associated with chemotherapy, to reduce antifungal drug use and
consequently limit drug resistance and toxicity.

For most active vaccines studied against invasive fungal
infections, the key to protection has been the induction
of cell-mediated, pro-inflammatory, Th1 or Th17 responses,
which improve phagocytic killing of the fungus. It is also
clear that antigens targeted for vaccination need not be
restricted to virulence factors, markedly increasing the antigen
repertoire available for testing. Additionally, the concept of niche
vaccination of acutely at-risk patients or patients in restricted
geographical areas is a new idea that opens doors in vaccinology
(Spellberg, 2011).

The greatest advances in fungal vaccines are with regard to
studies of invasive candidiasis, and two promising vaccines are
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presently in the clinical trial phase. The first, containing the
rAls3p-N antigen, is in Phase IIa and prevents fungal adhesion
and invasion in immunized hosts. Protection with this vaccine
has been found to largely be mediated by T cells via neutrophil
recruitment and a specific antibody in vaccinated hosts (Edwards,
2012; Shahid, 2016).

The second candidal vaccine in clinical trial phase is a
virosome-based vaccine containing a Sap2 antigen/truncated
recombinant Sap2 antigen. The truncated form is stable,
immunogenic and harmless. The Sap2 vaccine administered
intra-muscularly or intra-vaginally induces systemic and 100%
mucosal protective immunity (Vecchiarelli et al., 2012; Shahid,
2016).

Another important molecule that has been studied in
candidiasis vaccination is heat shock protein 90 (Hsp90-CA).
Raska et al. (2005) tested an Hsp90-CA DNA vaccine and found
that vaccinated mice exhibited survival times prolonged by 64%
compared with the untreated control. In addition, vaccination
with the recombinant protein r-hsp90-CA significantly increased
survival compared to the control groups.

A monoclonal antibody that binds to the immunodominant
epitope of C. albicans Hsp90p was tested pre-clinically.
A synergistic action with AMB against FLZ-sensitive and -
resistant C. albicans strains was demonstrated in in vivo
and in vitro experiments. The same antibody was used in
a multicenter double-blind placebo-controlled trial of patients
with invasive candidiasis, and complete mycological resolution
reached 84% in the combination therapy group compared to
48% in the AMB monotherapy group. Moreover, clearance of
infections in the combination therapy group was twice that of
AMB therapy alone, resulting in 4 and 18%mortality, respectively
(Matthews et al., 2003; Bugli et al., 2013; Wang et al., 2015).

In a different approach, S. cerevisiae cells were genetically
engineered to display Enolase 1 (Eno1p) antigens of C. albicans
on their surface. Oral administration of these cells could elicit an
immune response and aid the survival of mice challenged with
C. albicans (Vecchiarelli et al., 2012; Shibasaki et al., 2013; Shahid,
2016). Interestingly, by sharing some elements with Aspergillus
species, Candida enolase also exerts a protective function against
aspergillosis.

Studies on vaccines protective against other fungi are still in
the early pre-clinical phase (Fernandes et al., 2011; Hsieh et al.,
2011; Edwards, 2012; Hole and Wormley, 2012; Shahid, 2016).

For protection against aspergillosis, studies have shown that
the type 1, cell-mediated immune response, which is efficient in
protecting against this disease, can be induced by recombinant
protein antigens from Aspergillus, as observed by Bozza et al.
(2002). Administration of recombinant allergen Asp 16 f in
conjunction with CpG oligonucleotides improved the survival of
mice infected by inhaled A. fumigatus. Vaccination with crude
antigen preparations from A. fumigatus was also tested, and it
was observed that such vaccination improved the survival of mice
infected by inhaled and intravenously administered fungi, even in
those that were subsequently immunocompromised (Cenci et al.,
2000; Ito and Lyons, 2002).

In the case of Cryptococcus, Devi et al. (1991) proposed
the use of an anti-phagocytic antigen from the capsule of

C. neoformans, glucuronoxylomannan (GMX), as a vaccine to
elicit antibody-mediated protection. In a different approach,
Wozniak et al. (2011) administered T-cell depleted mice,
mimicking a T-cell-deficient host, with an engineered strain of
C. neoformans that could express IFN-g. After the immunization,
a secondary pulmonary infection using a pathogenic strain was
produced, and the mice were protected against the infection.
The results demonstrate that it is possible to generate a
protective immune response toCryptococcus even after becoming
immunocompromised, such as in cases of HIV.

Recently, Rella et al. (2015) proposed the use of a live
attenuated mutant strain lacking sterol glucosidase enzyme
(1sgl1) as a vaccine. In this study, immunization of mice
with 1sgl1 cells led to strong protection against challenge with
C. neoformans and C. gattii and could also elicit protective
immunity in mice deficient for T CD4+ cells, a frequent
condition in cryptococcosis patients.

Another possible therapeutic agent in the prophylaxis of
Cryptococcus is glycosphingolipid glucosylceramide (GlcCer), a
C. neoformans virulence factor. In a recently study, Mor et al.
(2016) demonstrated that administration of GlcCer prior to
infection with C. neoformans in a murine model prevented
dissemination of the fungi from the lungs to the brain and led to
60% mouse survival while preventing side effects such as hepatic
injury, a common and great problem in the use of the antifungal
therapy currently available.

A peptide derived from the gp43 adhesin of P. brasiliensis,
named p10, protects mice from paracoccidioidomycosis (PCM),
and combination of immunization with this peptide and different
antifungal drugs showed an additive protective effect. The finding
suggests that this is an important molecule to be tested in clinical
trials against PCM (Taborda et al., 1998; Marques et al., 2006;
Marques et al., 2008; Rittner et al., 2012).

To date, few vaccines have reached the clinical stage. However,
the importance of mycosis to public health around the world
indicates that efforts should be given to the discovery of new
molecules and compounds that can be used in the prophylaxis
and treatment of these diseases. The challenges are numerous,
but the efforts offer hope for controlling these diseases that tend
to increase in incidence over time.

ALTERNATIVE ANIMAL MODELS TO
STUDY FUNGAL VIRULENCE AND
ANTIFUNGAL DRUGS

Classically, mammalian models are considered the gold standard
for drug discovery, virulence and immune response studies.
However, in 1959, the concept of the “alternative animal
model” was described by Burch and Russell with “the three R’s:
Refinement, Reduction, and Replacement” (Russell and Burch,
1959). In Table 1 are described the three R concept and the
actions required for its application. In recent decades, the use of
alternative animals, also called “mini hosts” or “non-conventional
animal models” have been encouraging for in vivo testing.
Amoeba, insects, nematodes, fish and chicken embryos are used
for the following reasons: (1) because the neural systems of these
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animals are poorly developed, they are almost painless; (2) a
large number of animals can be used for each experiment; (3)
maintenance is cheaper than for traditional animals; (4) there is
a good correlation between alternative animals and mammalian
animals (Trevijano-Contador and Zaragoza, 2014).

Chicken embryos have been used since 1971 for fungal
virulence studies (Partridge et al., 1971), and many studies
have been published using this model to evaluate virulence of
different fungi such as Candida spp., Rhizopus, and A. fumigatus
(Jacobsen et al., 2010, 2011; Kaerger et al., 2015). Moreover,
with this model, it is possible to evaluate the role of genes
using mutants and to study the immune response of the host
during infection (Jacobsen et al., 2010). Despite the importance
of this model to date, experiments of antifungal efficacy have
not been validated. Although chicken embryos are not consider
worldwide to be living organisms and the ethical issues for this
type of experimentation are less complicated, it is important to
highlight that the euthanasia performed after experiments should
be administered properly using anesthesia (Aleksandrowicz and
Herr, 2015).

Another non-conventional model widely used for in vivo
testing is zebrafish embryos, larvae, and adults. The main
advantage is that it is possible to analyze different biological
processes due to the presence of organs and systems, providing
complete raw data analysis for different fields of science (MacRae
and Peterson, 2015). This model was useful for studying of the
C. albicans virulence (Chao et al., 2010; Brothers et al., 2011; Chen
et al., 2015) and C. neoformans pathogenesis (Tenor et al., 2015).
Similar to chicken embryos, there is no description thus far of
the evaluation of antifungal efficacy using zebrafish. However,
toxicity assays and teratogenic testing have provided important
information. It is essential to highlight that after 120 h post-
fertilization (hpf), ethical regulations are required for zebrafish
experiments (Strähle et al., 2012).

Insects can also be used as an alternative animal model.
The fruit fly Drosophila melanogaster is described as a model
for investigating the virulence of human pathogens, due to
similarities between its immune system and that of mammals,
and for verifying the efficacy of novel antifungal compounds.
Infection can be achieved by injection, rolling contact or
ingestion (Lionakis and Kontoyiannis, 2012). Different Candida
species have been evaluated using this model; the virulence of
C. parapsilosis was found to be lower than that of C. albicans,
similar to observations in humans; FLZ also increased the
survival of susceptible strains (Chamilos et al., 2006). This
model is also suitable for virulence evaluation of C. neoformans
mutants (Apidianakis et al., 2004). The virulence of clinical
and environmental isolates of A. flavus have been evaluated, as
well as different mating types (Ramírez-Camejo et al., 2014).
In Drosophila melanogaster, antifungal treatment is realized by
ingestion, mixed with food. This model showed a correlation with
mammalian models with regard to synergism of tacrolimus with
posaconazole for the treatment of Rhizopus oryzae (Lewis et al.,
2013). Fusariummoniliforme and Scedosporium apiospermum are
able to infect D. melanogaster, and ingestion of food containing
voriconazole increased the survival of infected flies (Lamaris
et al., 2007).

Galleria mellonella has been described in different fields of
science for numerous purposes, and the number of studies is
increasing every year. Concerning virulence fungal assays, studies
have been reported using G. mellonella as an infection model
for different Candida species (Scorzoni et al., 2013; Frenkel
et al., 2016; Moralez et al., 2016), Cryptococcus spp. (Benaducci
et al., 2016), Sporothrix schenckii (Clavijo-Giraldo et al., 2016),
Paracoccidioides spp. (Thomaz et al., 2013; Scorzoni et al., 2015),
Histoplasma capsulatum (Thomaz et al., 2013), and Fusarium
sp. (Coleman et al., 2011) and also for biofilm formation and
behavior studies (Fuchs et al., 2010a; Benaducci et al., 2016).

The advances of this model are due to the ease of
manipulation, low cost, and large range of larval incubation
temperatures (25–37◦C) with the possibility of mimicking the
human body temperature. However, one disadvantage is that the
genome is not fully sequenced, resulting in a lack of mutant
strains to study host responses. Most of the work related to
infection and treatment of G. mellonella has been via injection
through one of the prolegs (Fuchs et al., 2010b). The benefit
of this is that the inoculum and the treatment are controlled.
G. mellonella is useful for in vivo treatment with conventional
antifungal drugs (Coleman et al., 2011; de Lacorte Singulani et al.,
2016), for assessing antifungal synergistic activity (Gu et al., 2016;
Sangalli-Leite et al., 2016) and for evaluating the in vivo efficacy
of new drug candidates (Browne et al., 2014).

The nematode Caenorhabditis elegans is been used for decades
in different fields of biology. This organism has a short life
cycle, produces a large number of progeny, and is transparent;
moreover, the genome is fully sequenced with the possibility
of studying host pathways through RNA interference (RNAi)
techniques or constructing transgenic strains. C. elegans is
maintained on agar medium and fed non-pathogenic E. coli
(Muhammed et al., 2016). C. elegans is susceptible to infection
by human pathogenic yeasts and filamentous fungi (Johnson
et al., 2009; Pukkila-Worley et al., 2009; Desalermos et al.,
2015). For this reason, this organism can be used for high-
throughput screening of antifungal drugs candidates. The
C. elegans model of infection is well described in antifungal
drug discovery. A study with 1,266 compounds identified
15 anti-candidal substances that prolonged the survival of
infected larvae and inhibited in vivo filamentation of the yeast
(Breger et al., 2007). In another screen with 3,228 candidate
substances, nine compounds with potential antifungal activity
were identified (Okoli et al., 2009). Synergistic antifungal activity
of tyrocidines and caspofungin was successfully evaluated in vitro
and in vivo using C. elegans (Troskie et al., 2014). Moreover, C.
elegans is a suitable model for studying the immune response
because it is able to produce different antimicrobial peptides
that are regulated upon infection; these peptides can also
serve as new antimicrobial candidates (Ewbank and Zugasti,
2011).

Although different types of animal models are discussed here,
it is important to evaluate which is the best system for each
study. Regardless, although alternative models have benefits,
mammalian models are still considered the gold standard, and
many additional studies are necessary before the complete
substitution of mammalian models for alternative animals.
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At present, alternative animals are suitable for screening prior to
further studies in mammals.

CONCLUSION

Despite the increasing number of reports regarding advances
in antifungal therapy, the number of cases of infection and
antifungal resistance are still alarmingly high, and control of
antifungal disease is far from being achieved. Important new
advances have been made in the discovery of antimicrobial
fungal targets; however, many years are necessary from
discovery to clinical use. Because of this, improving existing
molecules and developing new formulations and alternative
therapy for prevention and treatment are important for treating
fungal infections and increasing treatment options and quality
of life.
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