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Acute primary immune responses tend to focus on few immunodominant determinants using a very limited 
number of T cell clones for expansion, whereas chronic inflammatory responses generally recruit a large number of 
different T cell clones to attack a broader range of determinants of the invading pathogens or the inflamed tissues. 
In T cell-mediated organ-specific autoimmune disease, a transition from the acute to the chronic phase contributes 
to pathogenesis, and the broadening process is called determinant spreading. The cellular components catalyzing 
the spreading reaction are not identified. It has been suggested that autoreactive B cells may play a central role in 
diversifying autoreactive T cell responses, possibly through affecting antigen processing and presentation. The 
clonal identity and diversity of the B cells and antibodies seem critical in regulating T cell activity and subsequent 
tissue damage or repair. Here, we use two autoimmune animal models, experimental autoimmune thyroiditis (EAT) 
and type 1 diabetes (T1D), to discuss how autoreactive B cells or antibodies alter the processing and presentation of 
autoantigens to regulate specific T cell response. Cellular & Molecular Immunology. 2005;2(3):169-175. 
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Immunodominance and determinant spreading 
 
Antigen processing selects immunodominant targets 
The primary immune responses against self antigens (Ag) 
tend to focus on one or few regions, using a very limited 
number of the available T cell clones (1, 2). There is 
competition among the T cells responding to the few peptide- 
MHC complexes, and only clones with the highest affinity to 
the complexes predominate. This phenomenon is called 
immunodominance, a term also used to describe a similar 
initial focusing activity of the host immune system against 
specific determinants of foreign Ags (3, 4). To become an 
immunodominant target of a T cell response, a short peptide 
has to satisfy at least two basic requirements: 1) it must be 

readily generated from intact Ag and bind to MHC molecules; 
and 2) it should form a peptide-MHC complex that is 
“visible” to the existing T cell repertoire. Structural 
constraints of the native Ag -- its sites of initial enzymatic 
cleavage by endoproteases and the relative MHC loading 
efficiency of the products of the initial cleavage, as dictated 
by their relative MHC-binding affinity, influence the choice 
of dominant determinants. Different APC populations vary in 
endoprotease content, and their proteolytic effectiveness is 
also affected by various maturation and/or activation stimuli 
(5, 6). An elegant study by Mellman and his colleagues 
demonstrated that lysosomal acidification and subsequent 
increase of proteolytic activity during the maturation of 
dendritic cells are responsible for an enhanced presentation 
of peptide-MHC complexes (7). MHC-guided processing. i.e., 
additional trimming of MHC-bound peptides after initial 
enzymatic cleavage may also be required for generation of 
best-fit T cell ligands (4, 8). The open ends of the 
peptide-binding groove of class II MHC molecules allow 
peptides with various lengths to be presented. Accordingly, 
dominantly presented peptides eluted from MHC II are not 
restricted in their length but rather present as nested sets, and 
each set shares an identical, MHC-binding, core sequence 
with various number of flanking residues (9-11). It has been 
suggested that these nested sets are created possibly by 
specific protease cleavage at the C-terminus and random 
trimming at the N-terminus which seems driven by the 
proximity of the N-terminal flanking residues to the core 
sequences (12). The immunological significance of these 
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nested sets is unknown although crystal structure analysis has 
suggested that the flanking region of an I-Au determinant, 
MBP1-11, could greatly affect the binding affinity of the 
peptide to the MHC molecule (13). 
 
Effects of TCR-ligand affinity on immunodominance 
For many years, a central debate has continued over which 
factors – MHC – peptide binding or affinity-dependent T cell 
clonal selection, contributes most to immunodominance. 
There is no doubt that immunodominant peptides must have 
a high affinity for MHC molecules. Within a competent T 
cell repertoire, there are many T cells that can recognize a 
single dominant target, possibly with a range of various 
affinities for the dominant target and to some mimicking 
peptide-MHC complexes. In an immune response against 
foreign Ags, TCR affinity for the peptide-MHC complexes 
should be the driving force in selecting which T cell clone(s) 
will be dominant. However, in autoimmunity, those T cells 
with the highest affinity for dominant self targets are 
eliminated during thymic selection. Surprisingly, many 
pathogenic autoreactive T cell clones have a high affinity for 
particular self determinants. One plausible explanation is that 
dominant targets of self Ags may remain cryptic under 
normal conditions, either through an insufficient processing 
and presentation (4), or by competition from overlapping 
higher affinity MHC-binding determinants (14-16), which 
may cause a shift of anchoring to MHC groove. Competition 
among T cells could also be affected by an intrinsic structural 
interference of the flanking residues. This competition within 
dominant regions of self Ags for MHC binding and/or TCR 
recognition seems reasonable since current evidence supports 
that the mature TCR repertoire is heavily biased toward 
recognizing dominant self molecules owing to the 
requirement of an interaction with self determinants during 
positive selection of T cells in the thymus (17, 18). 
 
Determinant spreading 
If the immunodominant response fails to clear the targets at 
first, the immune system will mount a more diversified and 
possibly long-lasting inflammatory response locally or 
systemically. This process of broadening the initially restricted 
immune response is called determinant spreading (19). 
Spreading can occur within a single molecule (intramolecular) 
or among different nearby molecules (intermolecular) (20). 
Unlike the immunodominant response, where regulation of 
the few dominant “driver” T cell clones would be very 
efficient (21), a spreaded T cell response would be more 
difficult to regulate due to the increased TCR diversity 
among the effector T cells. If coupled with malfunctioning 
regulatory component(s), which are crucial for the down- 
regulation of the dominant T cells, a chronic autoimmune 
response would lead to irreversible pathogenesis. In fact, 
most organ-specific autoimmune diseases are linked to 
multiple genetic components controlling the regulatory 
network besides MHC molecules (22, 23). Encouragingly, 
the spreading cascade could be interrupted by the intro- 
duction of tolerance to dominant determinants at an early 
stage (24, 25), although the mechanism of spreading is unclear. 

Nevertheless, a Th1-biased inflammatory environment created 
during the initial immunodominant, high affinity reaction is 
apparently indispensable, and Th2 cells are insufficient to 
counter the dominant Th1 influence (26, 27), possibly due to 
an insufficient differentiation to the Th2 pathway at an early 
stage. It is believed that the spreading process involves 
altered Ag processing and presentation as well as increased 
costimulation (28). 
 
Antigen-specific processing in B cells and T-B 
reciprocal activation 
 
B cells are well-known for their dramatic increase in Ag 
uptake through surface immunoglobulin molecules (sIg) and 
subsequent enhancement of peptide presentation (29, 30). 
Antibodies (Ab) can increase the efficiency of Ag capture by 
103-104-fold in a piggy-back manner through FcR-mediated 
internalization (31), leading to increased Ag delivery to the 
processing compartment and presentation of MHC-peptide 
complexes on FcR+ professional APC (32). However, the 
increased Ag delivery and presentation is not sufficient to 
activate native T cells. In fact, oral or i.v. introduction of self 
Ags or their peptides without adjuvant frequently induces 
tolerance (33). Qualitative changes in Ag processing and 
additional assistance from costimulation are required to break 
established tolerance to dominant self determinants. 
Interestingly, binding sIg to its specific ligand will stimulate 
B cells to increase the expression of costimulation molecules, 
e.g., CD40 and B7 (34, 35). Thus, Ag-bound to B cells receptors 
may provide a unique pathway to activate previously 
tolerized cognate T cells (Figure 1). 

Along with increased presentation of previously tolerized 
dominant self determinants, B cells could display previous 
non-tolerized, cryptic self determinants following an altered 
Ag processing activity. Berzofsky’s (36) and Celada’s (37, 38) 
group, and then Lanzavecchia, Watts and their colleagues (39, 
40) showed, in elegant experiments, that depending upon 
which portion of the antigenic molecules was bound by the Ig 
receptor on the B cell, different T cell determinants on the 
molecule would be preferentially presented in association with 
MHC molecule. The relative topology of the different T and 
B cell epitopes might play an important role in T-B reciprocal 
activation (37, 40). Mamula reinforced the notion of T-B 
reciprocal activation in systemic auto-immune disease (41). 
We first reported this T-B reciprocal activation phenomenon 
in autoimmunity by demonstrating that autoreactive mAbs 
against thyroglobulin (Tg) could alter the processing and 
presentation of a subdominant pathogenic T cell determinant 
within Tg (42). It is unclear why T cells recognizing the 
cryptic determinants exist in the peripheral repertoire, 
provided that a TCR-peptide-MHC interaction is necessary to 
generate and maintain the repertoire. 
 
Experimental autoimmune thyroiditis (EAT) 
 
What do autoreactive T and B cells recognize? 
Patients with autoimmune thyroiditis (AT) frequently develop 
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Figure 1. Ag-specific T-B activation cascade during determinant spreading. T-B cognates form 
after initial triggering of a “driver-like” Th1 T1 cell, whose activity is required to transform 
antigen-specific B cells as competent effective APC, and thus to initiate the spreading cascade. Three 
major events may occur to Ag-specific B cells after activation: 1) enhanced Ag internalization by
surface Ig; 2) altered delivery of the Ag to special endosomal compartments and differential
processing and generation of cryptic determinants such as T2 and T3; and 3) upregulated costimuation 
such as B7 and CD40. 
 
 
 

autoantibodies (auto-Abs) against Tg and thyroid peroxidase 
(TPO) (43). However, while serum anti-Tg and anti-TPO Abs 
have been recognized as important indicators for AT 
diagnosis, their presence does not necessarily indicate 
occurrence of AT. Depending on the methods used for 
detection of the serum auto-Abs, the frequency of auto-Ab 
positive HT patients can vary from 60% to 100% (44). Such 
a high frequency clearly demonstrates a strong association 
between the anti-Tg/TPO auto-Abs and the development of 
AT (45). Currently, it is not clear whether or how these 
auto-Abs are involved in the pathogenesis of AT. It has been 
reported that Tg-specific Abs cannot fix complement, but 
may play a role in antibody-dependent cell-mediated 
cytotoxicity (ADCC) (46). Successful induction of EAT by 
transferring sera from Tg-immunized animals to syngeneic 
recipients has been reported in different animal models 
(47-49). Also, mice injected with hybridoma cells secreting 
anti-Tg mAb developed thyroid lesions quickly (50). 
However, other conflicting studies have shown that Abs or 
Tg-reactive serum cannot directly induce EAT (51). Healthy 
people and AT patients carry different types of anti-Tg Abs in 
their circulation, indicating that some auto-Ab clones may be 
harmless and others may be pathogenic and related to the 
development of AT (52). Most disease-associated anti-Tg 
auto-Abs are oligoclonal and restricted in their epitopic 
specificity (53, 54), while the natural anti-Tg auto-Abs in 
healthy people are more likely to be polyclonal (55). In 

addition, Dong et al. reported that the binding sites of 
pathogenic anti-Tg Abs are clustered within certain regions 
of Tg, but the epitopes of the natural anti-Tg Abs are spread 
randomly within Tg (56). More recently, Prentice et al. have 
also demonstrated that the Tg epitopes recognized by 
Tg-specific Abs from AT patients are different from those 
recognized by Abs from healthy individuals (57). 

Various strategies have been used for mapping T cell 
determinants critical for EAT development. Champion et al. 
found that poorly iodinated Tg failed to elicit EAT in mice 
and could not activate Tg-specific T-cell hybridomas (58). 
This observation raised the possibility that dominant 
pathogenic Tg epitopes might be iodinated. T-cell epitope 
mapping efforts led to the identification of a thyroiditogenic, 
thyroxine (T4)-containing Tg epitope, T4(2553), which 
contains a thyroxine molecule at position 2553 (59, 60). This 
study emphasized a role for peptides encompassing hormono- 
genic sites in EAT pathogenesis. The use of computerized 
algorithms searching for MHC-binding motifs in Tg allowed 
the identification of several other pathogenic Tg peptides: 
306-320, 1579-1591, 1826-1836, 2102-2116, 2495-2511, 
2596-2608 and 2694-2711, as evidenced by their capability 
of inducing specific T cells that can infiltrate the thyroid 
glands (61-63). All these peptides encompassed non-dominant 
T-cell epitopes, since they could not stimulate Tg-primed 
LNC in vitro, and they could not prime T-cells able to 
recognize intact Tg in vitro (64, 65). Immunodominant 
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determinant(s) in Tg has not yet been identified.  
 
Enhancement or inhibition of Tg peptide-specific T cell 
responses by anti-Tg Abs 
We have generated T-cell hybridoma clones against two 
pathogenic MHC class II-binding peptides at the C-terminal 
end of Tg: a subdominant peptide (2549-2560) which is 
derived following processing of Tg in vivo but not in vitro 
(60, 66); and a cryptic peptide (2495-2511), which is not 
generated following processing of intact Tg either in vivo or 
in vitro (62). To examine whether anti-Tg mAbs bound to Tg 
would interfere with Tg processing by APC, various 
Tg-mAbs immune complexes (IC) were pre-formed and then 
used to pulse APC. Presentation of the two peptides on the 
IC-pulsed APC was evaluated by activation of the appropriate 
T cell hybridomas. We found that generation of the T4(2553) 
peptide is augmented by two Tg-specific IgG mAbs which 
facilitated FcR-mediated internalization of Tg. However, 
other mAbs, of the same (IgG1) subclass, similarly enhanced 
Tg uptake by APC, but had no effect on the generation of this 
peptide (42). The boosting effect was selective since the 
enhancing mAbs did not facilitate generation of the 
neighboring cryptic (2495-2511) peptide. When Tg was 
simultaneously complexed to a mAb reactive with T4(2553) 
and to a mixture of boosting mAbs, the presentation of this 
epitope was completely suppressed. These results suggested 
that Tg-specific antibodies alter Tg processing and may boost 
or suppress the presentation of subdominant pathogenic 
determinants during the course of disease. 
 
Type 1 diabetes (T1D) 
 
Clinical relevance of anti-GAD, insulin and IA-2 antibodies 
Glutamic acid decarboxylase (GAD)-65 (67), insulinoma- 
associated protein tyrosine phosphatase-2 (IA-2) (68) and 
insulin (69) are the three major auto-Ags related to T1D. 
Auto-Abs against these Ags can be detected long before the 
appearance of clinical symptoms, suggesting that the immune 
pathogenic response starts early and spontaneously. 
Therefore, it is possible to use auto-Abs to predict the 
occurrence of T1D. Efforts to study these antibodies and their 
correlation to T1D have been taken, trying to standardize a 
protocol for the purpose of prediction or diagnosis (70). Over 
90% of newly diagnosed subjects have auto-Abs against one 
or more of the three Ags. In general, anti-GAD antibodies are 
stable through the course of disease, whereas anti-IA-2 
antibodies tend to decrease with the duration of disease, and 
few subjects display anti-insulin antibodies although age and 
insulin treatment may have effects on the titer of anti-insulin 
antibodies. Interestingly, it seems that the diversity or the 
number of different autoantibodies is more important than the 
titer of antibodies specific for an individual Ag with respect 
to the correlation to the development of diabetes (71), 
indicating a critical pathogenic activity of determinant 
spreading. 
 
B cells function as APC in T1D and T-B reciprocal interaction 
B cells are necessary for development of diabetes in the 

non-obese diabetic (NOD) mice (72). Capture of 
autoantigens such as GAD65 by surface immunoglobulin (Ig) 
is followed by processing and presentation of T cell 
determinants by B cells, a step that is crucial for activation of 
autoreactive T cells and induction of diabetes (73-75). B 
cell-mediated processing of self Ags may contribute to 
generation of an inflammatory microenvironment in the 
pancreas, which is critical for overcoming the regulatory 
barrier(s) of initiation of diabetes in NOD mice (76). Nepom 
first reported that GAD65-specific mAbs act in a piggy-back 
manner, through surface FcR-mediated Ag internalization 
pathway, to boost presentation of dominant T cell 
determinants on APC after formation of IC with GAD65 (77). 
Baekkeskov and her colleagues proposed a topological 
relationship between T cell and B cell determinants in that T 
cell determinants within the Ig-footprint would be suppressed 
in the processing machinery (78). Therefore, dominant T cell 
expansions could be chosen based on where dominant Ab 
response is initiated within the same auto-Ag. It would be 
interesting to see whether a B cell epitope hierarchy exists in 
correlation with the spreading hierarchy in the T cell 
response. 
 
Activation of diabetic T cells by GAD65-primed APC 
Many T cell clones have been isolated from diabetic NOD 
mice. GAD65 is obviously one of the major targets 
recognized by the diabetic T cells in the cascade that leads to 
T1D. NOD mice exhibit a "spontaneous" proliferative 
response to GAD65 determinants that arises concomitantly 
with the onset of insulitis (between 4-8 weeks) (2, 79). The 
autoaggressive response to β cell Ags initially directed 
toward a few determinants within GAD65 and later spread 
both intramolecularly and intermolecularly to other candidate 
diabetogenic autoantigens. The greatest proliferative response 
is initially directed against determinants contained within 
p509-528 and p524-543, which later spreads to other regions 
of the GAD65 molecule (including determinants within 
p78-97, p246-266, p340-356, p479-493, p540-556 and 
p570-585), the so-called "spontaneous determinants" of 
GAD65 (80). A second set of GAD65 CD4 T cell-inducing 
determinants in NOD mice includes p206-220, p221-235, 
p286-300 and p400-415-the so-called "immunizable" 
determinants (81). It is unknown what mechanism drives the 
selection of different targets within GAD65 during the 
spontaneous versus the immunized responses. Several lines 
of evidence implicate the GAD65 peptide, p524-543, as a 
specific, possibly low affinity stimulus for the spontaneously 
arising, diabetogenic T cell clone, BDC2.5 (82) (Dai et al., in 
press). Interestingly, BDC2.5 T cells, which normally are 
unresponsive to p524-543 stimulation, react to the peptide 
when provided with splenic APC obtained from mice 
immunized with the same peptide, p524-543, but not, for 
example, with hen’s egg lysozyme (HEL) (Dai et al., in 
press). Immunization with p524-543 increases the 
susceptibility of NOD mice to diabetes induced by the 
adoptive transfer of BDC2.5 T cells. In addition, very few 
CFSE-dye-labeled BDC2.5 T cells divide in the recipient’s 
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pancreas following transfer into a transgenic mouse which 
overexpresses GAD-65 in B cells, while they divide 
vigorously in the pancreas of normal NOD recipients (Dai et 
al., unpublished). These data suggest that specific and altered 
processing of self Ags may play an essential role in the 
development and expansion of autoreactive T cells. 
 
Conclusion and future prospects 
 
The immune system appears to have two opposite tendencies, 
to focus its energy on a few antigenic targets in the early 
stages of an immune response, and to diversify its influence 
to many enemy targets, late in the response. On one hand, a 
few highest affinity T cells are selected to attack the strongest 
antigenic part(s) of pathogens trying to halt the invasion at 
the first encounter. On the other hand, due to determinant 
spreading, many different T cells are recruited to fight 
persistent Ags in chronic inflammation. Alternatively, these 
two types of responses could occur in a Yin and Yang manner, 
in which focusing and diversification mutually compensate 
for, or maybe counteract each other in order to sustain the 
immune response. Ag-specific B cells and their antibodies 
are essential in catalyzing determinant spreading reaction via: 
a) generation of novel – previously cryptic – epitopes 
through altered antigen processing or b) facilitation of T cell 
activation through generation of ligands with higher affinity 
for TCR and delivery of costimulatory signals. Ag processing 
through surface receptor-mediated internalization, e.g., FcR 
and sIg, is different from that occurring through pinocytosis 
and phagocytosis, but the molecular mechanisms remain 
unsolved. Signals controlling receptor internalization, 
recycling and degradation are a major focus of current 
studies. 
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